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Abstract: A fully developed turbulent flow in a concentric annulus, Re = 10, 000, ri/ro = 0.5,
with an inner rotating cylinder in the velocity range N = Uω/Ub = 0÷ 4, is studied via a large-
eddy simulation. Also, for comparison, simulations by steady-state, unstatiounary RANS k-ω SST
(URANS), and Elliptic Blending Model (EBM) were made. The main focus of this study is on the
effect of high rotation on the mean flow, turbulence statistics, and vortex structure. Distribution of
the tangential velocity and the Reynolds stress tensor change their behaviour at N > 0.5 ∼ 1. With
rotation increases, the production of tangential fluctuation becomes dominant over axial ones and the
position of turbulent kinetic energy maximum shifts towards the wall into the buffer zone. URANS
and EBM approaches show good agreement with LES in mean flow, turbulent statistics, and integral
parameters. The difference in pressure loss prediction between LES and URANS does not exceed
20%, but the average difference is about 11%. The EBM approach underestimates pressure losses up
to 9% and on average not more than 5%. Vortex structures are described well by URANS.

Keywords: concentric annulus; turbulent rotating flow; rotating inner cylinder; large-eddy simulation;
URANS; elliptic blending model

1. Introduction

The annular flow phenomenon is ubiquitous in engineering and can be observed in
diverse applications such as heat exchangers, chemical mixing devices, sliding bearings,
well drilling, and turbomachinery. As a result, numerous experimental and numerical
studies have been conducted to investigate the flow characteristics associated with the
internal and external rotation of the cylinder (wall). Despite the geometric simplicity of this
configuration, annular flow exhibits a complex three-dimensional boundary layer, swirling,
and turbulence enhancement when the inner wall rotates. Conversely, when the outer wall
rotates, the flow is suppressed, leading to a tendency toward laminarization [1].

Most of the previous research has focused on the inner wall rotational flow, apparently
because of the interest in the shear-driven three-dimensional boundary layer. Previous
experiments conducted by Nouri et al. (1993–1997) [2–4], Escudier and Gouldson (1995) [5],
and Rothe and Pfitzer (1997) [6] have provided valuable insights into the influence of
inner wall rotation on turbulence structures in the inner wall region. A DNS study by
Chung et al. (2002) [7], while limited to a non-rotating annular flow at a Reynolds number
of 8900, discussed the effect of convex and concave lateral curvature on turbulence dynam-
ics in regions adjacent to the inner and outer wall, respectively. Another DNS investigation
conducted by Jung and Sung (2006) [8] used DNS to explore coherent structures near the
inner rotating wall and their modification due to the work of centrifugal forces. In contrast,
investigations of annular flows with a rotating outer wall are relatively scarce.

In the literature, a common observation is that the rotation rate in annular flows is
usually low to moderate, where the velocity of the moving wall is either slightly above
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or equal to the fluid bulk velocity. For instance, Chung and Sung (2005) [9] conducted
LES of annular flow at Re = 8900 and investigated three rotation rates (N = 0.2145,
N = 0.429, N = 0.858), which exhibited discernible but not significant variations for
different values of N.

Annular flow in the narrow gap was investigated by LES in studies [10–12]. The
authors [10] investigated the influence of the rotation on the mean flow and on the turbu-
lence statistics, and studied the nature of the coherent structures appearing in the boundary
layer and their influences on the heat transfers. Authors [12] showed a large contribution
of the turbulent transport term on the Nusselt number results. In article [11], the turbu-
lent kinetic energy transport in the near wall region was investigated for heat recovery
system application.

Hanjalić and Launder in book [13] note that RANS models using the eddy viscosity
hypothesis cannot properly describe flows with a high degree of swirl. This was also shown
in a list of publications [14–17] about the Taylor–Couette–Poiseuille annular flow.

Authors of [16] compare results of LES and URANS approaches for Newtonian and
power-law fluid. They prove and explain the reason for the applicability of the URANS
approach to simulate swirling flow in the annulus.

In study [14], authors show good agreement with the first and second moment of flow
simulated by RANS RSM [18] with the experimental data of [5]. Applied model [18] is
inspired by studies [19–21].

Here in the introduction, we mentioned only key studies related to current work. The
work of Lockett should also be noted [22] for the extensive review of experimental and
numerical work on the subject done before the 1990s. An extensive and fresh literature
review of heat transport in rotating annular ducts was done in [23]. The review includes
articles from the first work by Taylor to recent experimental and numerical studies. A
wide range of numerical methods was observed. There are not only articles related to heat
transfer but also about isothermal annulus flow.

As mentioned above in the literature review, the Taylor–Couette–Poiseuille system
has been extensively investigated for N < 1. One of the purposes of the present study is
to extend the investigated range of the Reynolds number to Re= 10, 000 and the rotation
number up to N = 4 using LES. Another goal of this work is to compare LES results with
results obtained by URANS k-ω SST, RANS k-ω SST, and RANS EBM [24] approaches. The
first and second flow moments obtained by the EBM approach and URANS were compared
with LES. Integral parameters such as pressure losses and torque were compared for all
above-mentioned approaches.

2. Problem Statement and Numerical Algorithm

Consider the incompressible flow throw an annular axisymmetric channel. The cylin-
der axis is aligned with the z-axis of the coordinate system. The inner cylinder, with radius
ri, rotates clockwise (viewed toward z-direction) with constant velocity Uω, while the
outer cylinder, with radius ro, is at rest. The ratio of the inner to outer cylinder radius is
ri/ro = 0.5. The Reynolds number Re= 10, 000 is based on fluid bulk velocity Ub and hy-
draulic diameter Dh = 2(ro − ri). The dimensionless rotation velocity of the inner cylinder
takes values N = Uω/Ub = 0, 0.2, 0.5, 1, 2 and 4.

The simulation is carried out using an in-house CFD code, which has been verified by
DNS of the flow in the pipe [25] and by LES in annulus [16]. The numerical algorithm is
based on the finite volume method for an unstructured mesh. The SIMPLE–C algorithm
was applied for the pressure correction procedure and the collocated grid arrangement with
the Rhie–Chow interpolation. The system of linear algebraic equations for the pressure
correction equation is solved using an algebraic multigrid solver. Periodic boundary
conditions are applied for the flow direction.

In the LES approach, here the filtered Navier–Stokes equations and the continuity
equation were closed by the dynamic Germano–Lilly eddy viscosity sub-grid model [26,27].
The convective and diffusive terms were approximated by a second-order central difference
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scheme. The time step discretization was carried out by the second-order Crank–Nicholson
scheme. The cell size on the channel walls in wall units was chosen so that in the radial direc-
tion ∆r+ < 1, in the axial direction ∆z+ < 16, and in the tangential direction (∆θr)+ < 20.
The sizes of the wall cells were chosen on the basis of recommendations from the book [28]
and previous works on the same subject [1,9,11]. From the walls of the computational
domain to the middle of the gap, the mesh sizes were increased with a growth factor of
no more than 5% from mesh to mesh. Thus, the mesh is redundant for LES, since the
modelled part of TKE did not exceed 9% in most cases (Figure A1), with recommendations
up to 20% [29]. The time step was chosen based on the condition CFL < 0.9. Discussion
about choosing of the time step and meshing is placed in Appendix A. The channel length
Lz = 4.5Dh was chosen based on the results of [8], where a two-point correlation was used
to determine the sufficiency of the channel length. The parameters of the computational
mesh for LES are shown in Table 1.

Table 1. Mesh resolution applied at LES for different rotation rates N.

N 0 0.2 0.5 1 2 4

Nr × Nθ × Nz 103× 129× 120 103× 515× 403 119× 473× 376 109× 273× 342 117× 421× 659 141× 470× 480
∆r+i 0.85 ± 0.14 0.79 ± 0.14 0.79 ± 0.16 0.98 ± 0.21 0.93 ± 0.2 0.55 ± 0.25
∆r+o 0.74 ± 0.13 0.67 ± 0.12 0.47 ± 0.08 0.71 ± 0.13 0.78 ± 0.15 0.75 ± 0.12
∆z+i 8.22 ± 1.37 7.63 ± 1.35 9.56 ± 1.91 13.03 ± 2.83 9.36 ± 2.05 14.47 ± 3.19
∆z+o 7.68 ± 1.31 6.97 ± 1.22 7.79 ± 1.37 9.44 ± 1.75 5.9 ± 1.14 16.11 ± 2.25

(∆θr)+i 4.49 ± 0.75 4.18 ± 0.74 5.31 ± 1.06 11.41 ± 2.48 10.24 ± 2.24 20.24 ± 4.46
(∆θr)+i 8.37 ± 1.43 7.61 ± 1.33 8.65 ± 1.52 16.51 ± 3.05 12.89 ± 2.49 11.28 ± 2.25

CFL 0.67 ± 0.28 0.75 ± 0.29 0.73 ± 0.25 0.7 ± 0.21 0.73 ± 0.23 0.88 ± 0.27

Other non-stationary simulations were carried out using URANS with the k-ω SST
turbulence model. The numerical discretization schemes used are the same as in the
LES approach and have the same radial distribution of computational nodes. In the
tangential and axial directions, the number of nodes is reduced but satisfied ∆z+ < 30,
(∆θr)+ < 30. The time step is also chosen based on the condition CFL< 0.8 and channel
length Lz = 4.5Dh. The parameters of the computational mesh are shown in Table 2.

Table 2. Mesh resolution applied at URANS for different rotation rates N.

N 0.2 0.5 1 2 4

Nr × Nθ × Nz 103× 129× 120 119× 138× 120 109× 148× 144 117× 180× 216 132× 234× 312
∆r+i 0.8 ± 0 0.82 ± 0.14 0.94 ± 0.2 0.9 ± 0.22 0.74 ± 0.16
∆r+o 1.42 ± 0 1.2 ± 0.02 1.2 ± 0.12 1.0 ± 0.1 0.8 ± 0.06
∆z+i 25.61 ± 0 29.32 ± 4.97 29.39 ± 6.53 27.58 ± 6.53 28.55 ± 6.41
∆z+o 24.06 ± 0 24.09 ± 0.5 21.32 ± 1.93 16.97 ± 1.63 15.69 ± 1.35

(∆θri)
+ 16.64 ± 0 17.94 ± 3.04 20.11 ± 4.47 23.24 ± 5.5 26.7 ± 6

(∆θro)+ 31.22 ± 0 29.43 ± 0.61 29.13 ± 2.63 28.57 ± 2.74 29.32 ± 2.52
CFL 0.44 ± 0.17 0.46 ± 0.16 0.60 ± 0.18 0.77 ± 0.29 0.63 ± 0.19

In the LES and URANS approaches, all statics were obtained by averaging over time
and in uniform directions, along the channel, and in the angular direction. The averaging
time in all transient simulations was about 200Dh/Ub.

For steady-state simulations, two RANS approaches were also used for comparison.
The first one is widely used in engineering applications: the k-ω SST with eddy viscosity
assumption. The second approach, based on the Reynolds Stress Model (RSM), which
models the full Reynolds stress tensor, is Elliptic Blending Model (EBM) [24]. For both
of these approaches, mesh with two cells in an axial direction was used, and the same
radial distribution of cells was used as in the LES approach. The convective terms were
approximated by a QUICK scheme.
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3. Results and Discussion
3.1. Mean Flow Properties and Turbulence Statistics

It should be noted that the flow features and redistribution mechanics of the turbulence
characteristics have been sufficiently described in earlier works. In this section, we focus on
flow features that have not been noted before and compare the LES results with the results
of the EBM simulation.

An increase in rotation increases the axial velocity gradient on the walls, making the
axial velocity distribution Uz flatter in the central region of the gap. The EBM model slightly
overestimates the axial velocity near walls (Figure 1a), thereby underestimating it in the
central region. The azimuthal velocity component Uθ at N = 0.2–0.5 rotations has small
local maxima at a distance 0.2–0.4 of the gap from the inner wall(Figure 1b). The EBM does
not capture this small effect but tends to the LES curves at larger rotations.
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Figure 1. Axial (a) and tangential (b) velocity normalized by the bulk and inner cylinder velocity,
correspondently. Solid curves show LES and the dashed ones shows EBM.

Let us discuss the axial velocity profile of the inner and outer walls in wall unites.
In the non-rotating case, the axial velocity profile fits well to the wall–law near the inner
and outer walls of the channel. As in work [9], the inner wall axial velocity profile Uz,i
appreciably decreases with increasing rotation N (Figure 2a). This is explained by the
increasing in the axial friction on the inner wall with N. However, near the outer wall,
these differences are noticeably smaller (Figure 2b). It is also remarkable that with rotation
of N = 0.2, the axial velocity is higher than in the case without rotation, but with increasing
rotation, as near the inner wall, it decreases noticeably in the buffer and logarithmic zone.
The EBM approach does not capture this small effect at 0.2 rotation, but the general trend
in behaviour and numerical values are captured correctly.

Wide theoretical investigation of swirling turbulent flow in axially symmetric flow
was made in [30]. Here, we should shortly repeat some logic and conclusions to describe
the results of the simulation. Let us briefly overview relations between different terms
in axially symmetric systems with centrifugal force. The swirl effect on turbulent flow is
determined by ∂(rUθ)/∂r and uruθ . The classification made in the three cases according to
the signs of these two terms are

• Case 1: uruθ ≤ 0 and ∂(rUθ)/∂r > 0.
• Case 2: uruθ > 0 and ∂(rUθ)/∂r ≤ 0.
• Case 3: uruθ > 0 and ∂(rUθ)/∂r > 0.

The first case realizes when the outer cylinder rotates; this suppresses turbulence and
leads to flow laminarization, which is shown in the study [1]. When only the inner cylinder
rotates, the uruθ value is positive along the entire annular gap, but the value of ∂(rUθ)/∂r
can change sign, thus, here we should consider the next two cases.
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Figure 2. Axial velocity in wall units. Inner wall region (a) and outer wall region (b). Solid curves
show LES and the dashed curved shows EBM.

The mechanism of the rotation effect on momentum transport is not straightforward;
therefore, we show it using a block diagram for Case 2 and Case 3 in Figure 3, which is
inspired by [30]. Expressions for the production of the various components of the stress
tensor are given below:

Pzz = −2uzur
∂Uz

∂r
, Prr = 2uruθ

Uθ

r
, Pθθ = −2uruθ

∂Uθ

∂r
, (1)

Pzr = −urur
∂Uz

∂r︸ ︷︷ ︸
(Pzr)I

+ uθuz
Uθ

r︸ ︷︷ ︸
(Pzr)I I

, Pθz = −uruθ
∂Uz

∂r︸ ︷︷ ︸
(Pθz)I

−uzur

r
∂rUθ

∂r︸ ︷︷ ︸
(Pθz)I I

, Prθ = −urur
∂Uθ

∂r
+ uθuθ

Uθ

r
. (2)

axial velocity Uz uzuz urur

swirling velocity Uθ

uruθ > 0

uθuz

uzur

Pzz = −2uzur
∂Uz
∂r redistribution (Pzr)I = −urur

∂Uz
∂r

Prθ = −
(

urur
∂Uθ
∂r − uθuθ

Uθ
r

)
Prθ = −

(
urur

∂Uθ
∂r − uθuθ

Uθ
r

)
Prr = 2uruθ

Uθ
r

(Pθz)I = − uzur
r

∂rUθ
∂r � (Pθz)I I

(Pθz)I I = −uruθ
∂Uz
∂r

(Pzr)I I = uθuz
Uθ
r

Figure 3. The mechanism of swirl effects on momentum transport for Case 2 and Case 3.

The axial fluctuations uzuz promoted by axial flow gradient ∂Uz
∂r with uzur because they

change sign at the same time as the walls, making production positive (Pzz = −2uzur
∂Uz
∂r ).

Through redistribution, it promotes the radial velocity fluctuations urur, which also are
increased due to their positive production term Prr = 2uruθUθ/r.

Stress uruθ > 0 that is responsible for tangential shear stress and torque is pro-
duced by rotation. That stress uruθ is part of the production of radial velocity fluctuation
urur and stress uθuz. Stress uθuz is generated by the two production terms −uruθ∂Uz/∂r
and −(uzur/r)∂(rUθ)/∂r. In the current simulations, term (Pθz)I = −(uzur)/r∂(rUθ)/∂r
changes sign along the radius, but at the same time is significantly smaller than the value
of (Pθz)I = −uruθ∂Uz/∂r. By these means, Case 2 and Case 3 in the present conditions
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give the same results, and term uθuz is promoted. Thus, the generation term of uzur
((Pzz)I I = 2uθuzUz/r) is also enhanced. Stress uruθ is also enhanced by the increase
in 2uθuzUθ/r.

The term responsible for the axial momentum transfer from the walls uzur is generated
by the two production terms −urur

∂Uz
∂r and uθuz

Uθ
r . The first one depends on the gradient

of the axial velocity and radial fluctuations promoted by the axial and rotational velocity.
The second term is promoted by rotation. Thus, the term uzur responsible for axial friction
(pressure loss) increases with both axial speed and rotational velocity.

The distribution of root-mean-square velocity fluctuations and Reynolds shear stresses
obtained by LES and EBM are shown in Figure 4a. Without rotation, the axial component
of the velocity fluctuations dominates over the other components and has well-defined
maximums near the channel walls, similar to the flow in the channel. Rotation leads
to an increase in all velocity fluctuation components as centrifugal force leads to flow
destabilization and greater turbulence; the angular component appears with maximums
near the channel walls like the axial component, and at high values of rotation their
maximums become comparable in magnitude. It should also be noted that the position of
the fluctuation peak gets closer to the wall with rotation as the viscous sublayer becomes
thinner. The EBM approach describes the behavior of velocity fluctuation curves well,
except for the axial fluctuations uz,rms, underestimating it. Thus, the total kinetic energy of
velocity fluctuations is underestimated by EBM.
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Figure 4. Distributions of root-mean-square velocity fluctuations (a) and Reynolds shear stress (b).
Solid curves show LES, and the dashed one shows EBM.

At the transition from N = 1 to N = 2, the stress shape uθuz changes behavior along
the radius. At the region of the inner wall and N < 2, stress uθuz is strictly negative, but at
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N ≥ 2 it changes sign and has a local maximum (Figure 4b). The mechanism of production
and suppression of Reynolds stress tensor is well-described in article [30]. Production
of uθuz consist of two terms, Pθz = − ∂Uz

∂r uruθ − ∂Uθr
∂r

uzur
r . The second term changes the

sign, but it is too small to change the sign of production. It would be logical to assume
that the redistribution term is responsible for the behavioural change of the component
uθuz. EBM misses such a small effect; below, we will see that this is not reflected in the
integral characteristics.

Production terms Pzz and Pθθ have same structure (Formula (1)) and they depend on
stress responsible for the transfer of respective momentum in radial direction and respective
velocity gradient. It is evident that the tangential gradient ∂Uθ/∂r grows faster than the
axial gradient ∂Uz/∂r, with increase in rotation N at inner wall. At the same time, rotation
leads to an increase in wall friction and friction velocity Uτ . Thus, production Pθθ of the
rotational component increases, but production Pzz of axial component decreases near the
inner wall in wall units. Hence, the fluctuations of the rotational velocity component grow
faster with rotation (Figure 4a). It is also worth noting that the maximum production shifts
from the buffer zone closer to the viscous sublayer, probably due to the rotation of the
inner cylinder and centrifugal force (Figure 5). The sum of productions Pzz and Pθθ remains
approximately constant near the rotating wall in near-wall units (Prr significantly smaller
than both of them).
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Figure 5. Production of uzuz (a) and uθuθ (b) in wall units near the inner wall.

A comparison of TKE distribution obtained by LES, URANS, and EBM is shown in
Figure 6. As mentioned above, the EBM underestimates the fluctuations of the axial velocity,
hence the total kinetic energy of the fluctuations, but correctly captures the position of
its maximums.

It was shown earlier that k-ω SST as an eddy viscosity model does not work properly
in rotational flow, underestimating TKE. Thus, we do not show curves for it in Figure 6a.
Let us try to describe why the URANS approach improves simulation results. Due to fluid
ejection from the inner wall of a fluid layer with a low level of modelled turbulent energy,
the thickness of the near-wall layer increases, shear stresses on the walls decrease, and the
modelled turbulent energy dissipates. A decrease in the modelled turbulent viscosity leads
to flow instability and formation of vortices in the near-wall region. The ejection process
is responsible for suppression of the modelled part of the turbulence and an increase
in the resolvable part of the turbulence caused by large-scale spiral vortices. Thus, the
mechanism for increasing the resolvable fluctuation fraction is proportional to the rotation;
this can be seen from Figure 6a. The URANS approach applied here reproduces values
and a maximum of TKE well near the inner wall, but does not catch in at the outer wall
of the annular channel. Thus, we can conclude that URANS probably resolves vortex
structures at passive wall worth than at a wall that actively produces vortices by rotation.
Also, we should note that URANS at rotation N = 0–0.2 does not resolve any vortices,
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simulating turbulent steady-state flow, i.e., the resolvable TKE fraction is zero (Figure 6b).
At rotation N = 0.5, vortex structures are resolved only near the inner cylinder by URANS.
The resolved fraction of the TKE value tends to unity near the wall, the location of flow
instability generation, and noticeably decreases towards the center of the gap. Interesting
to note that the total resolved TKE increases at N = 0–1 and decreases at N > 1 (Figure 6b).
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Figure 6. (a) Turbulent kinetic energy k (TKE) distribution. (b) Part of resolved TKE by URANS.

In Chang’s work [9], it was shown that as N grows, the structural parameter a1 also
grows, which indicates an increase in shear stresses relative to normal stresses, i.e., the
efficiency of shear stress generation grows. In our simulations, this conclusion is confirmed
for N < 1, but at larger rotations, the parameter a1 decreases (Figure 7a). EBM cannot fully
replicate the LES curves for parameter a1, but the general character of the dependence is
captured, which is a very good result for turbulent flow with swirling flow (Figure 7b).
Also, it should be noted that EBM is not sensitive to small rotations, because curves for
N = 0 and N = 0.2 are the same for EBM.
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Figure 7. Structure parameter a1. (a) LES and (b) EBM.

3.2. Flow Patterns, Vortical and Turbulence Structures

Briefly, flow visualization by λ2 criterion were shown in [9] and [8] for Re = 8900,
ri/ro = 0.5, and N = 0, 0.429. A more detailed flow structures analysis was made by [11]
for the radii ratio ri/ro = 0.809 at the maximum Reynolds number Re = 8776 with rotation
N = 0.85. Here, we concentrate our attention on high rotation and comparison of flow
structures obtained by LES and URANS.
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Classical Görtler instability was described when the boundary layer thickness is
comparable to the radius of the curvature; under the action of centrifugal force, a pressure
change in the boundary layer occurs [31]. In our case, the rotation of the inner cylinder
generates a centrifugal force sufficient to destabilise the flow. Centrifugal instability of the
boundary layer leads to the subsequent formation of Görtler vortices. The instability leads
to the ejection of fluid from the channel walls, forming a pair of vortices and a region of
reduced friction on the wall between them. A region of increased friction is formed between
two pairs of such vortices, where fluid injects back. Schematically, ejection/injection, zone
of higher/lower friction, and vortex formation are shown in Figure 8a. Visualisation of
such vortices are shown in Figure 8b.

(a) (b)

Figure 8. Vorticity formation on inner wall, their structure, and axial wall stress. (a) Schematic.
(b) Flow visualization by λ2 at N = 2. Red-coloured vortices have a positive rotation, blue ones have
a negative rotation. Greater axial stresses on the wall are shown in a darker tone.

The velocity fluctuations is higher on the inner wall of the channel (Figure 6a), as it is
an active generator of turbulence due to its rotation, while vortex formation on the outer
wall is secondary, as it occurs due to rotation of the whole liquid near the resting wall. As a
consequence, we should expect a higher density of vortices on the inner wall, as we can
see from the LES and URANS visualizations (Figure 9a). The vortices are also distributed
non-uniformly along the walls, forming helical clouds or clusters on both the inside and
outside walls of the channel.

Vortices on different walls of the channel are inclined in opposite directions. On
the inner cylinder, the spiral of the vortices is wrapped against the rotation of the flow
and on the outer cylinder in the direction of the flow rotation. The eddies form in pairs
and are carried downstream. As the inner wall is rotating, i.e., moving in a tangential
direction relative to the liquid, the vortices formed will be carried away in the opposite
direction to its movement. Thus, the direction of the vortices and the twisting of their spiral
clusters is opposite to the rotation of the flow. In the case of the outer wall, the situation is
exactly the opposite. Non-uniform distribution of vortices along the channel was observed
in the Couette–Taylor flow in [32], where only the inner cylinder rotated without axial
flow. If, in the case of purely rotational flow, the vortex clusters resemble a torus in case
of a combination of rotational flow and axial flow, they appear as spirals. The angle of
inclination of spirals in relation to flow direction increases with an increase in rotation
speed, and at significant dominance of rotational flow spiral clots of vortices can possibly
degenerate into toroidal ones. Such a phenomenon has already been observed, however,
for laminar flows at Re ∼ 300 and rotation N > 3 when the phenomenon is observed for
laminar regimes when the vortices of the Görtler-type degenerated into Taylor vortices
with increasing rotation [33].
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The distribution of axial friction at the inner and outer cylinder is shown in Figure 9b,c,
respectively. Strips of inhomogeneity in the wall friction are formed by vortices. The
increase in vortex angle and decrease in the vortices’ size with increasing rotation N are
reflected by inhomogeneities in the wall friction. At rotation N = 4, the vortices are
deviated very far from the channel axis so that the axial friction can become negative; such
areas are marked in blue in Figure 9b.

LES, N = 1,
λ2 = −15

LES, N = 2,
λ2 = −55

LES, N = 4,
λ2 = −140

URANS,
N = 1,

λ2 = −1

URANS,
N = 2,

λ2 = −1

URANS,
N = 4,

λ2 = −1
(a)

LES,
N = 1

LES,
N = 2

LES,
N = 4

URANS,
N = 1

URANS,
N = 2

URANS,
N = 4

(b)

LES,
N = 1

LES,
N = 2

LES,
N = 4

URANS,
N = 1

URANS,
N = 2

URANS,
N = 4

(c)

Figure 9. Flow structure visualization by LES and URANS. (a) Vortices visualisation by λ2 isosurfases.
Coloured by radius, thus, blue corresponds to the inner cylinder and red corresponds to the outer
one. (b,c) Axial shear stress at the inner and outer cylinders, respectively. Red is positive, blue is
negative friction. The same scale is applied for Figures (b,c).

LES resolves significantly smaller vorticity structures than URANS, thus, URANS
visualizations look like LES flow but filtered at a larger scale (Figure 9a). Groups of small
vortices united into one larger and longer vortex. This is clearly visible in cases with N = 2
and N = 4, where clusters of small vortices at the outer wall (red-colored) obtained by
LES transformed into larger and longer continuous spiral vortices. The axial shear stress
distribution obtained with URANS saves the slope angles of the inhomogeneities formed
by the vortex structures, but the distribution is greatly smoothed due to the approach itself
(Figure 9b,c). Overall, it should be noted that URANS correctly shows the structure of
the flow, albeit in an enlarged form and not in as much detail, but it saves computational
resources considerably.

3.3. Integral Parameters

In this paragraph, we will consider the integral parameters, axial friction, responsible
for pressure loss and tangential friction, responsible for the torque acting on the inner and
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outer cylinders. Values of axial friction on the inner and outer cylinder are shown in Table 3.
The results of LES show that without rotation, the friction on the inner and outer cylinder
is comparable. As the rotational velocity increases, the friction on the inner cylinder grows
faster because vortices are more intensely formed on it, which increases energy dissipation.
Also, at rotation N < 0.5, friction on both walls increases non-linearly with rotation, while
at higher values of rotation the dependence is practically linear (Table 3). We have seen a
rearrangement of the rotational velocity profile (Figure 1b) and the behaviour of structural
parameter a1 (Figure 7a) changes at N > 0.5. It changes the momentum transfer mechanism
and friction dependence in rotation. Also, this is true for the total pressure loss (Figure 10a).

Table 3. Skin friction factor at the inner (C f ,i) and outer (C f ,o) cylinder. The difference with LES is
written in brackets.

N LES URANS EBM k-ω SST

C f ,i

0 0.00864 0.00921 (+6.6%) 0.00903 (+4.5%) 0.00921 (+6.6%)
0.2 0.00946 0.00925 (−2.2%) 0.00903 (−4.6%) 0.00925 (−2.2%)
0.5 0.01214 0.01192 (−1.8%) 0.01074 (−12%) 0.00969 (−20%)
1 0.01659 0.01537 (−7.4%) 0.01423 (−14%) 0.01065 (−36%)
2 0.02311 0.02122 (−8.2%) 0.02138 (−7.5%) 0.01364 (−41%)
4 0.03493 0.02940 (−16%) 0.03385 (−3.1%) 0.01712 (−51%)

C f ,o

0 0.00754 0.00819 (+8.6%) 0.00810 (+7.2%) 0.00819 (+8.6%)
0.2 0.00778 0.00823 (+5.8%) 0.00810 (+4.1%) 0.00823 (+5.8%)
0.5 0.00853 0.00820 (−3.9%) 0.00834 (−2.2%) 0.00842 (−1.2%)
1 0.00984 0.00899 (−8.7%) 0.00935 (−4.9%) 0.00866 (−12%)
2 0.01294 0.01129 (−13%) 0.01256 (−2.9%) 0.00992 (−23%)
4 0.01979 0.01521 (−23%) 0.01989 (0.5%) 0.01169 (−41%)

Most authors disregard the analysis of the tangential friction or the torque acting on
the cylinders, although this may be an important parameter both from a fundamental
point of view for tuning turbulence models, and from a technical point of view for solving
engineering problems. Here we show non-dimension torque T nondimensionalized using
analytical solutions that are proportional to viscosity and rotation. With good accuracy, it
can be assumed that the dimensionless torque is proportional to rotation at N > 0.5, then,
its dimensional value is proportional to the square of the rotation frequency of the inner
cylinder (Figure 10b).
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Figure 10. Dependence of the skin friction coefficient (a) and torque acting on cylinders (b) in rotation.

As has been shown many times, models with the eddy viscosity hypothesis are
unable to adequately capture swirling flows [13]. Thus, the k-ω SST model underestimates
friction at the inner cylinder more where more vortices are formed (Table 3). At rotations,
N < 0.5 gives an acceptable error in pressure loss (8–9%), but with increasing rotation,
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the underestimation grows to 37%. Average difference in pressure loss is 26%. The torque
is underestimated by this approach from 20% up to 60%, with an average value of 46%.
Thus, tangential friction is much worse predicted in a steady-state simulation by the k-ω
SST model.

The disadvantages of the stationary k-ω SST approach are partially compensated for
by the non-stationary URANS approach, which is capable of resolving non-stationary
vortex structures [16,34,35]. The behaviour of pressure losses by URANS at a low rotation
(N ≤ 0.2) is similar to RANS, clearly seen in Figure 10a and Table 3. Thus, URANS at
small rotations is not sensible to rotation. This is happening because high eddy viscosity
suppresses the formation of instabilities and vortices. As rotation increases, the difference
in URANS with LES in pressure loss increases, but not exceeding 20%, with an average
value of 11%. The torque is predicted by URANS quite well, with maximum difference less
than 12% and an average value around 8% (Figure 10b).

The EBM reproduces Reynolds stresses well (Figure 4) and thus proved to be suitable
for describing swirling flows. It is interesting to note that the EBM approach overestimates
the axial friction at the axial flow on the channel walls, as does the k-ω SST approach, but
as the rotation increases, the difference first increases and then almost disappears. The
maximum difference with LES for wall friction is 14% and for total pressure loss 9% (average
5%). The torque is predicted satisfactorily, with an error of up to 19% (average 16%).

4. Conclusions

LES simulations of a fully-developed turbulent annular flow at Re = 10, 000 and
ro/ri = 0.5 with an axially rotating inner wall at a range of rotation rates N = Uθ/Ub = 0,
0.2, 0.5, 1.0, 2.0, and 4 was carried out to study the effects of rotation on the flow, turbu-
lence properties, and eddy structures. The observation and analysis of the mean velocity,
turbulent stress fields, the vortical structures visualized by the λ2, and integral parameters,
as well as comparisons made between them and the results of URANS k-ω SST, RANS k-ω
SST, and EBM, lead to the following conclusions:

• Rotation leads to a thinning of the viscous sublayer and, as a consequence, a widening
of the mean axial profile and an increase in gradients at the wall. The axial velocity
component distribution in wall units decreases due to an increase in friction on the
wall with increasing rotation N.

• Rotation decreases axial fluctuation production and increases tangential fluctuation
production in wall units, while the maximum value of total production is weakly
dependent on rotation, but its position shifts towards the wall into the buffer zone.

• With increase in rotation and N > 0.5, the following changes are observed:

– The tangential velocity component changes its shape, eliminating the local maxi-
mum at about one-third of the channel width from the inner wall.

– The profile of the Reynolds stress tensor component uθuz changes its monotonicity
and becomes positive in areas where it was not before.

– The structural parameter a1 begins to decrease with increasing rotation, i.e., the
production of shear components becomes less efficient.

• The applicability of URANS and EBM techniques for describing first and second
statistical moments of velocity fluctuation as well as integral characteristics of the flow
is shown. URANS describes the vortex structures of the flow well, however, in an
enlarged form.

As already written in the introduction, flow in an annular channel is encountered
in many applications such as chemical reactors, heat exchangers, turbomachines, and
drilling. The fluids used for drilling have non-Newtonian rheology. The turbulent flow of
such fluids is not widely studied. Thus, the turbulent flow of non-Newtonian fluids in an
annular channel is both interesting from a fundamental point of view and has important
applications. Research of this type should be a logical continuation of this study.
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Nomenclature

a1 structure parameter =
√

uzur
2 + uruθ

2 + uθuz
2/2k

C f skin friction factor = τz/0.5ρU2
b

Dh hydraulic diameter = 2(ro − ri)

k turbulent kinetic energy = 0.5(urur + uθuθ + uzuz)

Lz computational length in the z direction
N rotation rate = Uω/Ub
Nr, Nθ , Nz number of mesh points in the r, θ, z directions, respectively
P production of Reynolds stress tensor
ri, ro radius of inner and outer cylinder, respectively
Re Reynolds number based on characteristic velocity and length scales
S symmetric component of the velocity gradient tensor
Ur, Uθ , Uz mean velocity components in the r, θ, z directions, respectively
Ub bulk axial velocity
Uω inner cylinder rotation velocity

Uτ friction velocity =
(√

τ2
z + τ2

θ /ρ
)1/2

ur, uθ , uz fluctuating velocity components in the r, θ, z directions, respectively

T dimensionless torque = τθ,i(r2
o−r2

i )ri
2r2

o νρUω

y distance from the inner or outer wall
∆r, ∆θ, ∆z mesh spacing in the r, θ, z directions, respectively
λ2 second largest eigenvalue of S2 + Ω2

Ω anti-symmetric component of the velocity gradient tensor
ρ density of fluid
τθ , τz statistically averaged wall shear stress in the θ, z directions, respectively

at the inner or outer wall
()+ value in wall units, normalized by Uτ , ν

(),i, (),o value related to inner or outer wall, respectively
()rms root mean square value

Abbreviations

CFL Courant–Friedrichs–Lewy number
DNS Direct Numerical Simulation
LES Large Eddy Simulation
URANS Unstationary Reynolds Average Navier–Stokes
RANS Reynolds Average Navier–Stokes
RSM Reynolds Stress Model
r.m.s. root mean square
EBM Elliptic Blending Model
QUICK Quadratic Upstream Interpolation for Convective Kinematics
TKE Turbulence Kinetic Energy (k)
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Appendix A

In this appendix we want to bring the discussion of the applicability of the chosen
mesh for the LES and URANS methods, since this is a side but important task during
simulation. As already mentioned in the main text of the article, from the walls of the
computational domain a sparse grid is made with a growth factor of no more than 5%
towards the middle of the channel gap. The choice of such a thickening factor is not
optimal from the point of view of computational resource consumption, because the mesh
is excessively detailed in the radial direction for LES and URANS. While it is recommended
not to exceed the proportion of the modelled part of the TKE of 20% for LES [29], for all
the selected meshes it is on average not more than 6%, but does not exceed 9% (Figure A1).
Since for each rotation N the mesh varied but the construction algorithm was the same, we
will make an analysis using the mesh parameters and time step for N = 1 as an example.
The obtained conclusions and estimations can be extended to other rotations N as well,
since the sizes of the near-wall cells in viscous scales and CFL numbers are of approximately
the same order for all rotations.
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Figure A1. Portion of modelled k (TKE) by LES

A Richardson extrapolation is usually used to estimate the error of the numerical
algorithm [36]. Extrapolation of the solution is performed on a series of grids and time
steps. For a Richardson extrapolation to provide reliable estimates of the exact solution of
the model, several basic assumptions should be satisfied: (1) that the discrete solutions are
within the asymptotic range, (2) that the meshes have uniform (Cartesian) spacing over the
domain, and (3) that the coarse and fine meshes are connected by systematic refinement.
While it is possible to reach obtaining the discretisation parameters in the asymptotic range,
the uniformity of the grid and the series of the grid’s systematic refinement are rather
difficult to implement for problems of such scales. Therefore, we should specify at once
that the obtained errors for this study are conditional and approximate.

It is also important to note that this procedure is not fully applicable to LES due to the
direct dependence of the dynamic model of the subgrid viscosity on the cell size. It is not
quite clear how proportions between resolved fluctuation and modelled ones in URANS
depends on discretization. The LES method converges with DNS with grid refinement and
time step, which is not the case for URANS.

The basic parameters of the grid and time step will be the ones given for N = 1 in
Table 1 for LES and in Table 2 for URANS. We denote the time step by ∆t and the average
cell size by ∆h = 3

√
∆V, where ∆V is the average cell volume. For the basic simulation, we

denote the corresponding values by ∆t0 and ∆h0.
Tables A1 and A2 show the results of simulations with different grid and time step

parameters. The standard Richardson extrapolation is defined in the below formula:
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Table A1. Dependence of pressure loss coefficient C f and torque coefficient T on mesh and time step
resolution for N = 1 obtained by LES.

Discretization Parameters C f T

∆t/∆t0 ∆h/∆h0 Value ErrRich, % GCI, %,
∆t|∆h Value ErrRich, % GCI, %,

∆t|∆h

1 1 0.0120902 2.0 3.6|1.3 10.12200 − 8.6 3.5|6.2
1 0.666 0.0121562 2.6 −|− 10.39252 −6.1 −|−
1 1.5 0.0114605 −3.3 −|4.2 9.68278 −12.5 −|5.0

0.666 1 0.0119124 0.5 −|− 9.97591 −9.9 −|−
0.83 1 0.0119603 0.9 2.2|− 10.02131 −9.5 2.5|−

0 0 0.0118497 0 − 11.06893 0 −

Table A2. Dependence of pressure loss coefficient C f and torque coefficient T on mesh and time step
resolution for N = 1 obtained by URANS.

Discretization Parameters C f T

∆t/∆t0 ∆h/∆h0 Value ErrRich, % GCI, %,
∆t|∆h Value ErrRich, % GCI, %,

∆t|∆h

1 1 0.011135 −8.3 1.0|6.8 9.25550 −17.0 0.9|11.5
1 0.666 0.011460 −5.6 −|− 9.72499 −12.8 −|−
1 0.8 0.011317 −6.8 −|8.5 9.40816 −15.6 −|22.1

0.5 1 0.011028 −9.1 −|− 9.17314 −17.7 −|−
0.75 1 0.011092 −8.6 1.4|− 9.20806 −17.4 0.9|−

0 0 0.012137 0 − 11.15210 0 −

f (∆h, ∆t) = f0 + a∆h + b∆h2 + c∆t + c∆t2, (A1)

where f is the numerical solution, f0 is the extrapolated solution, and a, b, c, d are the
coefficients of the series. The parameters f0, a, b, c, and d can be found by solving an
optimization problem on the set of value f at different parameters, ∆h and ∆t. This
extrapolation was applied, which gave extrapolated values of C f and T. These values are
included in Tables A1 and A2 for ∆t = 0 and ∆h = 0. The error of f (∆h, ∆t) with respect
to the relatively extrapolated value f0 is determined as follows:

ErrRich(∆h, ∆t) =
( f (∆h, ∆t)− f0)

f0
· 100%. (A2)

and included in Tables A1 and A2. The error estimate of the LES method for the pressure
loss coefficient C f is 2% and 8.6% for the torque coefficient T. For the URANS method, the
corresponding error estimations are 8.3% and 17%, respectively.

The Roache’s grid convergence index (GCI) is also evaluated, assuming second order
of convergence in space and time [36]. The GCI for the fine grid numerical solution is
defined as:

GCI =
Fs

rp − 1

∣∣∣∣ f2 − f1

f1

∣∣∣∣ · 100%, (A3)

where Fs = 3 is a factor of safety, p = 2 order of accuracy, f1 is value obtained using fine
time or space resolution, and f2 is value obtained using coarser time or space resolution.
The calculation of the convergence index GCI requires a solution on two grids or with
two different time steps and the order of discretisation accuracy. The estimates given in
Tables A1 and A2 are made with respect to the smallest time step and space resolution. Since
the GCI convergence index is given separately for space resolution and time resolution,
we will take the larger one for estimation. The convergence index GCI of the LES method
for the pressure loss is 3.6% and for the torque it is 6.2%. For the URANS method, the
corresponding estimates are 6.8% and 11.5%, respectively.
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LES for the selected parameters showed a small error in determining the pressure
losses andan acceptable error in determining torque. With a sufficiently detailed mesh,
applicable even for the unresolved LES, URANS shows a rather high error. Apparently, an
excessively detailed mesh has a negative effect on the URANS solution. The problem of
grid convergence of the URANS method in solving problems with centrifugal force requires
a special study, which is beyond the scope of this paper. Thus, the choice of grid and time
step can be considered reasonable for LES and satisfactory for URANS.
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