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Abstract: Vapor bubbles are widely concerned in many industrial applications. The deformation and
collapse of a vapor bubble near a free surface after being heated and raised from the bottom wall
are investigated in this paper. On the basis of smoothed particle hydrodynamics (SPH) and the van
der Waals (VDW) equation of state, a numerical model of fluid dynamics and phase change was
developed. The effects of fluid dynamics were considered, and the phase change of evaporation and
condensation between liquid and vapor were discussed. Quantitative and qualitative comparisons
between our numerical model and the experimental results were made. After verification, the
numerical simulation of bubbles with the effects of the shear viscosity ηs and the heating distance
L were taken into account. The regularity of the effect of the local Reynolds number (Re) and the
Ohnesorge number (Oh) on the deformation of vapor bubbles is summarized through a further
analysis of several cases, which can be summarized into four major patterns as follows: umbrella,
semi-crescent, spheroid, and jet. The results show that the Re number has a great influence on
the bubble deformation of near-wall bubbles. For Re > 1.5 × 102 and Oh < 3 × 10−4, the shape of
the bubble is umbrella; for Re < 5 × 100 and Oh > 10−3, the bubble is spheroidal; and for 5 × 100

< Re < 1.5 × 102, 3 × 10−4 < Oh < 10−3, the bubble is semi-crescent. For liquid-surface bubbles,
the Re number effect is small, and when Oh > 5 × 10−3, the shape of the bubble is jet all the time;
there is no obvious difference in the bubble deformation, but the jet state is more obvious as the
Re decreases. Finally, the dynamic and energy mechanisms behind each mode are discussed. The
bubble diameter, bubble symmetry coefficient, and rising velocity were analyzed during their whole
processes of bubble growth and collapse.

Keywords: vapor bubble; deformation; SPH method; phase change; Re number

1. Introduction

A vapor bubble is a kind of gas that is generated by the instantaneous injection of
high energy to liquid, such as laser, electricity, or other rapid heating methods. It has been
applied in many industries; for example, the heat transfer of two-phase heat exchangers,
surface corrosion caused by shock waves, injection without needles, and destruction of
biological tissue using liquid jet superheat transfer [1–4]. In recent years, the study of
vapor bubbles has attracted a lot of attention, but the dynamic process of vapor bubbles is
nonlinear and highly complex [5,6]. It includes bubble oscillation and interface fluctuation
during bubble growth, shock wave impact, and cavitation noise during bubble collapse.
Understanding the deformation and collapse mechanisms of vapor bubbles is the key to
successfully address these application-related challenges.

In order to study the dynamics of vapor bubbles, many researchers were involved in
experimental research and numerical simulations. In experiments, the usual way to create
vapor bubbles is to use pulsed lasers or electric sparks to shoot them instantaneously, and to
observe the interaction of the bubbles with the solid surface using high-speed cameras [7,8].
Gonzalez et al. [9] studied the dynamic process of laser-induced bubbles in liquid gaps at
different heights. Sun et al. [10,11] concluded that the thermal effect plays an important role
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in the growth and collapse of vapor bubbles in microchannels. Kangude et al. [12] studied
the cavitation mechanism of vapor bubbles on hydrophobic surfaces using the thermal
imaging method. The experimental results of Tang showed that the hydrophobic coating
has a significant influence on the growth process of laser-induced bubbles [13]. According
to the three-dimensional view of the experiment, Hement et al. [14] found that the near-wall
bubble collapses very rapidly, and that the tangential flow would lead to the formation
of the ring cavity. Considering the influence of gravity and viscosity, Sangeeth et al. [15]
studied the jet velocity resulting from bubble collapse at a liquid surface; the dependence
of the dimensionless jet velocity, expressed in terms of the Weber number, on the Bond
number, is determined by the dimensionless cavity depth. The Weber number is used to
measure the relationship between the surface tension and the inertia force, and the Bond
number is used to measure the relationship between the gravity and the surface tension. By
using a spark-generated device and a high-speed camera, Zhang et al. [16] conducted an
experiment on the dynamic process of vapor bubbles under water; six classical water burial
phenomena were induced, and their forming mechanism was analyzed. Ma et al. [17]
investigated the growth of vapor bubbles under different levels of gravity by conducting
an experiment and found that gravity has a significant influence on the growth of a single
vapor bubble.

Besides experiments, many numerical methods have also been reported to analyze
the bubble dynamics, including the Lattice Boltzmann method (LBM), the finite difference
method (FDM), the finite volume method (FVM), the volume of fluid method (VOF), the
smoothed particle hydrodynamics method (SPH), and so on. Liu et al. [18] deduced the
relationship between the various characteristic parameters of bubbles, then explored that
different liquid parameters would have a significant impact on the cavitation process
based on the FDM. Phan et al. [19] used a compressible homogeneous mixture model to
numerically investigate the dynamics of an underwater explosion bubble, and the dynamic
bubble motion including the bubble expansion, contraction, collapse, jet, and rebound.
As for the VOF methods, they contain the algebraic VOF and geometric VOF methods.
Owing to the merits of mass conservation, the latter was widely applied in the bubble
simulation in [20]. By using the VOF method, Tang [13] simulated the hydrophobic wall
surface by controlling the thickness of the air film at the solid–liquid interface, studied the
oscillation behavior of the laser-induced bubble, and summarized the dynamic mechanism
and law. Nguyen et al. [21] used a geometrical VOF algorithm based on the piecewise–
linear interface calculation (PLIC) to numerically investigate the dynamic behavior of
bubble collapses, water jets, and pressure loads during the collapse of the bubble near
walls and a free surface; the results showed a good agreement between the simulation and
experiment of the bubble dynamics during the collapse process. Erin et al. [22] used the
SPH and VOF methods to simulate the rising of bubbles, and compared with previous
experimental results, they concluded that both the VOF and SPH methods may be used to
capture physically realistic transient and steady-state multi-phase systems; the SPH method
could better capture the centroid of the bubble, while the VOF method better captured the
rising velocity of the bubble.

SPH is a meshless method. It is uniquely capable of representing the dynamic evo-
lution of complicated geometries without additional algorithmic complication, such as
those found in multi-phase flows [22]. When simulating fluid dynamics problems, the SPH
method discrete the flow field into moving fluid micro clusters, which can be regarded
as a combination of a series of molecules with the same properties [23]. Unlike the tra-
ditional grid algorithm, SPH has no grid connection between the particles, and follows
the interaction between the particles, which is suitable for any large deformation problem.
On the other hand, the SPH method uses the Lagrange method to describe the flow field,
which can be used to study some multiphase flow problems with discrete phases and has
obvious advantages over the traditional grid algorithm in the study of large deformation
and dynamic boundary problems.
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The diffusion interface method (DIM), based on the SPH method, is more commonly
used when involved in the precise capture of the gas–liquid phase flow interface [24]. Siga-
lotti et al. [25] first used the DIM, which treats the gas–liquid interface as continuous, added
the Korteweg tensor to characterize the capillary forces, and used the SPH algorithm [23]
to solve, which was proven to be useful in cavitation hydrodynamics. Gallo et al. [26]
verified the study on the nucleation of vapor bubbles in metastable liquid by using the
DIM. Wang [24] applied the DIM to numerically simulate the rising of vapor bubbles in
static water, and proved that it is feasible to calculate the dynamics of vapor bubbles by
using the DIM. Moreover, the relation between the shape of the rising vapor bubble and
the dimensionless parameters such as the Reynolds number was also introduced.

Based on the gas–liquid DIM, the Navier–Stokes–Korteweg (NSK) equation consid-
ering the gas–liquid interfacial tension is derived, the van der Waals (VDW) equation of
state is introduced, and the SPH algorithm is used for the numerical solution. The effects
of the shear viscosity ηs and the heating distance L on the growth and collapse processes
of the vapor bubble are taken into account. The regularity of the effect of the Re number
and the Oh number on the deformation of vapor bubbles is summarized through a further
analysis of several cases, which can be summarized into four major patterns. Then, the
formation mechanism is analyzed, and the growth and collapse of the bubbles are studied.
According to our results, it is possible to precisely control the deformation of vapor bubbles
by adjusting the two dimensionless parameters, the Re number and the Oh number. This
has a certain engineering guiding significance for the current application, for example,
the avoidance of surface corrosion caused by nuclear boiling, the dispersion of poisonous
droplets caused by the disintegration of vapor bubbles, and the effect of bubble deformation
on EHD-enhanced boiling heat transfer [27].

2. SPH Modeling

In our model, compressible vapor and liquid are considered to be two-phase fluids
with a continuous density gradient. In the Lagrange formula, the liquid and gas phases
uniformly follow the conservation equations of mass, momentum, and energy as follows:

dρ

dt
= −ρ∇ · v (1)

ρ
dv
dt

= ∇ ·M + FE (2)

dU
dt

=
1
ρ

M : ∇v +
κ

ρ
∇2T (3)

where ρ is the density, v is the velocity vector, M is the stress tensor, FE is the external force
of gravity, T is the temperature, U is the internal energy, and κ is the thermal conductivity.
The stress tensor M includes the pressure terms, the shear and bulk viscosity terms, as well
as an additional Korteweg tensor Mc of the gas–liquid diffusion interface, as follows:

M = −pI + ηs(∇v +∇vT) + (ηv −
2

dim
ηs)(∇ · v)I + MC (4)

where p represents the pressure, dim represents the dimension of space, and ηs and ηv
are the shear and volume dynamic viscosity, respectively. The Korteweg tensor Mc can be
used to simulate the capillary force on the interface due to the density gradient, expressed
as follows:

MC = K(ρ∇2ρ +
1
2
|∇ρ|2)I− K∇ρ∇ρ (5)

where K is the gradient energy coefficient for a given material.
According to the description of the SPH model, the density can be better described

in the following summation density Equation (6), instead of the continuity Equation (1).
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The summation density conserves mass exactly and guarantees second-order accuracy [25],
which benefits the simulation of the liquid–vapor interface.

ρa = ∑b
mb
ρb

ρbWab = ∑b mbWab (6)

where m is the particle mass, the subscript b indicates the neighbor particles around this
particle a, the subscript ab denotes the variable difference between particle a and b, the
subscript b represents the adjacent particles around particle a, and Wab is a kernel function,
which explains the particle distance between particles a and b.

The momentum and energy calculations are discretized into long-range and short-
range terms, because the same smoothing length for all the force terms was unable to
handle the surface tension effects and cause the interfacial instability [28] as follows:

dva

dt
= ∑ bmb(

Ma

ρ2
a
+

Mb

ρ2
b
) · ∇Wab + ∑ bmb(

MH
a

ρ2
a

+
MH

b
ρ2

b
) · ∇WH

ab + FE (7)

dUa

dt
=

1
2∑ ama(

Ma

ρ2
a
+

Mb

ρ2
b
) : vba∇Wab +

1
2∑ bmb(

MH
a

ρ2
a

+
MH

b
ρ2

b
) : vH

ba∇WH
ab + UE (8)

where the short-range repulsive term has the smooth length of h with no mark, and the
double smooth length of H = 2h is used for the long-range attractive term and marked with
superscript H. M and MH are equal to M− aρ2I−MC and M + aρ2I, respectively.

In this paper, we use the hyperbolic kernel function proposed by Yang [29], which
ensures that the distribution of particles is more uniform in both the two-dimensional and
three-dimensional problems and does not lead to the unstable growth of stress, so better
results can be obtained in the simulation.

In order to close the momentum and energy equations, the VDW equation is chosen to
describe the pressure state equation, which can describe the gas–liquid coexistence system.
The expression of the van der Waals equation of state is as follows:

p =
ρkbT

1− βρ
− αρ2 (9)

where kb is the Boltzmann constant, α is the parameter of attraction, and β is related to the
size of the particles. And the critical state is expressed by these three parameters:

Tc =
8α

27kbβ
, ρc =

1
3β

, Pc =
α

27β
2 (10)

where kb, α, and β are set as 1, 2, and 0.5 for the VDW fluid, respectively. Here, the gas
or liquid phase is distinguished by the critical density of the VDW fluid. According to
the VDW isothermal curve [30], when ρ→ 0 , the VDW equation transforms into the ideal
gas law. Therefore, if the fluid density is less than the critical density, it is the gas phase.
Otherwise, it is the liquid phase.

Using the SPH discretization Equations (6) to (8) and coupled with the VDW EOS
Equation (9), the liquid and the heated vapor are simultaneously simulated. After that, the
bubble position, velocity, size, and other properties are analyzed. More key parameters
could be characterized by the following dimensionless numbers: Re represents the Reynolds
number, which is used to measure the relationship between the inertia force and the viscous
force, and Oh represents the Ohnesorge number, which is used to measure the relationship
between the viscous force, the inertia force, and the surface tension. Their expressions are
as follows:

Re =
ρvDmax

ηs
(11)
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Oh =
ηs√

ρσRmax
(12)

where ρ represents the liquid density, v represents the average velocity of the bubble, Dmax
represents the maximum diameter, Rmax represents the maximum radius as Rmax = Dmax/2, σ
represents the surface tension coefficient, and ηs represents the dynamic viscosity coefficient.

The NSK equation is simulated in a non-dimensional scale; thus, all the data are presented
without specified units in the following part. It is convenient to examine those bubble and liquid
characteristics with the key non-dimensional parameters of the Re and Oh numbers. In the
meantime, these non-dimensionalized parameters could be referred to dimensional ones using
the given material properties. Here, for the water and water vapor bubble, the reference values
in the length, temperature, time, and mass scales are 5.33 × 10−8 m, 546 K, 1.36× 10−10 s, and
7.33× 10−20 kg, respectively [30].

3. Validation
3.1. Comparison Verification

In this section, we use the SPH method to simulate the water vapor bubble interaction
with the free surface in two-dimension and compare it with the experimental results [16].
Our simulation setting is shown in Figure 1.
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Figure 1. Vapor bubble heating geometry in our simulation.

Figure 2 shows the bubble deformation photos from Zhang’s experiment with a bubble
radius of about 15 mm. With the current computational efficiency and memory storage, it
is still challenging to directly simulate the millimeter scale problem for our SPH simulation.
Thus, we mimic the experimental setup in the following two critical parameters: the degree
of super heat temperature ∆T, the relative heating distance γf.

Firstly, we estimated the power input into the bubble and, thereafter, the bubble’s
super heat temperature. The experiment was conducted using a capacitor discharge with
U = 200 V before the discharge, and 150 V after the discharge, with a capacity of 6600 µF
and a thermal efficiency of 2%. Thus, the heat input to the bubble was about 1.155 J [16].
Using the saturated water vapor density of 0.6 kg/m3 and a heat capacity of 2.075 J/g·K,
we obtained the super heat temperature for a 15 mm water vapor bubble of about 65,622 K,
which is non-dimensional as ∆T = 12 in our system.
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Then, we used the dimensionless distance between the burst point and the free liquid
surface with the ratio to the bubble radius in Zhang’s experiment as γf = 0.78 to arrange the
heating position in our numerical simulation. We provide the data of two non-dimensional
distances instead of one; ε = H/Rmax represents the dimensionless parameter of the liquid
layer thickness, and λ = L/Rmax represents the dimensionless parameter of the bubble
heating distance to the bottom of wall. Thus, the relative heating distance to the free surface
could be obtained as γ = ε-λ, which has the same meaning as in Zhang’s experiment of γf.
Here, we used the height of the liquid layer H = 160dx and the heating distance L = 120dx,
where dx represents the initial distance between the SPH particles. After the simulation,
we calculated ε = H/Rmax = 2.22, λ = L/Rmax = 1.43; therefore, γ = ε − λ = 0.79, which is
approximately equal to the γf value of 0.78 in Zhang’s experiment.

We compare our simulation bubble deformation with the experimental photos of [16]
during the bubble growth and collapse near the free surface. The lifetime of the bubble dur-
ing its first cycle period is set as t0 either for the experiment or simulation. Figure 2 shows
the typical bubble deformation from its generation to its collapse in our SPH simulation
and Zhang’s experiment under a similar heating degree and geometry. Figure 3 shows the
dimensionless radius R/Rmax during the first bubble cycle t0, where R represents the local
bubble radius, and Rmax represents the maximum bubble radius. In the early period of
the bubble growth, the bubble remains spherical; then, the bubble expands upwards along
with the flow curve; finally, a clear upwelling column of water can be observed near the
free surface. The results show that at the early stages before 0.3t0, our results are in good
agreement with the experiments, either qualitatively or quantitatively. However, at the
late stages after 0.3t0, there is a certain deviation between the numerical prediction and
the experimental observation. For example, at 0.467t0, our simulation bubble has a more
severe deformation, and a smaller jet height at 0.867t0, compared to the experiments. The
reason is because the simulation accuracy is not that good for the SPH method; therefore,
the computational error would be accumulated at the late stages. The advantages of SPH is
the efficiency and flexibility in solving large deformation problems. In the future, we might
strive to improve the accuracy of the SPH method. Currently, we believe that our SPH
model is basically correct, and could be used to capture the bubble deformation during its
deformation and collapse near the free surface.
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3.2. Shock Wave

The second benchmark case is for the propagation of a shock wave. During the
bubble’s growth and collapse, the shock wave was found to be as important as the ki-
netic energy and thermal energy as shown in Figure 4. We tested the simulation of the
discontinuity point in a typical one-dimensional shock wave problem using our SPH model.
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Figure 5 shows the typical settings for a shock wave problem, and the discontinuity
point is at x = 2.5. The initial state of the fluid on either side of the discontinuity point is
[ρL vL pL uL] = [10 0 100 25] and [ρR vR pR uR] = [1 0 1 2.5]. The specific heat capacity at
constant volume is cv = 1. The equation of state is as follows:

p = (γ− 1)ρu = (γ− 1)cvρT = 0.4 · ρT (13)

where the subscripts L and R represent the left and right sides of the fluid. The total number
of SPH particles is 1100, and the smooth length is h = 1.8dx.
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The results for when the time t = 0.4 are shown in Figure 6. The red scatter is the
result of the SPH, and the black line is the result of the exact Riemann solver. The SPH
results agree well with the analytical solutions. This shows that our method is reliable in
simulating the flow caused by the density and pressure difference.
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4. Numerical Settings

The critical fluid density is introduced to distinguish between the liquid and vapor.
The SPH liquid particle mass is m = 0.6, the stable density is ρ = 1.2029, the initial fluid
temperature is Tb = 1.01, the heating height L above the solid wall is set to be L = 15~120,
the shear viscosity is ηs = 0.1~1.0 as shown in Table 1, the volume viscosity is ηv = 0.5ηs, the
400 × 160 particles are arranged at the bottom area in the x and y directions, the heating
radius is r = 12dx, and the excess heat is ∆T = 12. The region is uniformly spherical after
laser heating. The left and right boundaries are periodic boundaries, and the upper and
lower wall are set as adiabatic solid boundaries, which can be referred to in our previously
published study [30]. The vapor bubble heating geometry in our simulation is shown
in Figure 1. The values of the three dimensionless parameters γ, ε, and λ, defined in
Section 3.1, are shown in Table 2.
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Table 1. The parameter settings of each case.

ηs CASE ID L/dx

1.0

C1 15
C2 30
C3 60
C4 100
C5 120

0.1

C6 15
C7 30
C8 60
C9 100
C10 120

Table 2. The dimensionless parameters of the bubble.

CASE ID H/dx L/dx ε = H/Rmax λ = L/Rmax γ = ε − λ Nsecb

C1 160 15 4.31 0.32 3.99 0
C2 160 30 3.78 0.57 3.21 0
C3 160 60 3.55 1.06 2.48 0
C4 160 100 2.97 1.48 1.48 0
C5 160 120 2.22 1.43 0.79 0

C6 160 15 2.18 0.16 2.02 3
C7 160 30 2.36 0.35 2.01 3
C8 160 60 2.68 0.80 1.87 4
C9 160 100 2.78 1.39 1.39 0
C10 160 120 2.29 1.37 0.92 0

5. Results
5.1. Category of Bubble Deformation

First of all, the numerical simulations were performed for each case, and the effects
of the shear viscosity ηs and the heating distance L on the growth and collapse processes
of the vapor bubble are taken into account. The regularity of the effect of the Re number
and the Oh number on the deformation of the vapor bubbles is obtained through a further
analysis of several cases, which can be summarized into four major patterns. The following
category between the Re and Oh numbers and the bubble deformation is drawn.

According to Figure 7, the liquid-surface vapor bubble takes on the jet shape, which
is not greatly affected by the Re number. On the other hand, the near-wall vapor bubble
varies in shape depending on the Re number and the Oh number. The shape can be divided
into umbrella, semi-crescent, and spheroid. When Re > 1.5 × 102 and Oh < 3 × 10−4, an
umbrella shape is observed; when Re < 5 × 100 and Oh > 10−3, a spheroidal shape is
present; and when 5× 100 < Re < 1.5× 102, 3× 10−4 < Oh < 10−3, the bubble is categorized
as semi-crescent.

Differences in the bubble deformation are notable between the liquid-surface bubbles
(bubbles at high heating distance) and the near-wall bubbles (bubbles at medium and
low heating distance). The high temperature in the vapor bubble of the near-wall bubble
is absorbed by the solid wall and the thick liquid layer, leading to a less-pronounced
deformation. Furthermore, the surface tension effect on the vapor bubble growth and
collapse varies with the Re number and Oh number, indirectly influencing the limiting
effect of the liquid, and ultimately leading to a differing bubble deformation.
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5.2. Mechanism Discussion
5.2.1. Jet Bubble

An analysis of the liquid-surface bubbles is carried out. Figure 8 depicts the formation
of the jet bubble in case C5. With Oh ≈ 2 × 10−3, during the initial growth phase, the
bubble retains a spherical shape, and the free surface curves at t = 50. However, due to
the existence of hydraulic fluid and the top of the bubble being drawn into the liquid
surface, the bubble eventually takes on an oblong shape with a sharp top. Subsequently,
the bubble gradually collapses and fuses with the liquid surface. This fusion produces
a noticeable up-welling column of water at the point of contact. While capillary waves
diminish in magnitude as the Oh number increases, the boundary of the bubble is smooth,
and the impulse at its bottom increases, leading to an escalation in the jet velocity; this
phenomenon is referred to as the jet bubble. The upper level of the liquid experiences
significant oscillations caused by the rapid evaporation process, which affects the amount
of heat energy present.
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5.2.2. Spheroidal Bubble

The near-wall bubble is investigated for its sensitivity to the different Re and Oh numbers.
The spheroidal bubble shape change diagram in case C3 (Figure 9) demonstrates that the
bubble maintains a spherical shape during the growth and collapse processes while Re ≈ 1.5
and Oh≈ 10−3, with the Re number approaching 1 indicating that the bubble’s viscosity force
is nearly equal to its inertia force, and the bubble maintains a spherical shape in the growth
and collapse processes. The bubble reaches the minimum shape when t = 120, while the fluid
zone phase is completed with minimal fluctuation in the liquid level. Due to the distance
between the vapor bubble’s center and the top liquid layer, the energy exchange can only
occur within the liquid layer. A slight oscillation occurs at the top of the liquid at the end of
the bubble collapse.
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5.2.3. Umbrella Bubble

For case C8, Figures 10 and 11 depict the density change and flow field vector diagrams
of the umbrella bubble. The Re ≈ 150, and Oh ≈ 10−4. Initially, the bubble experiences
extrusion pressure from both the left, right, and lower sides of the liquid, resulting in a
longer flow field vector in the lower part of the bubble than in the upper part. As the Oh
number reaches the minimum, due to the progressive damping of the capillary waves
decreasing at t = 50, the bubble’s edge becomes more irregular, causing it to transform from
the ellipse to the umbrella shape. Throughout the process, buoyancy generates an upward
force on the bubble, causing it to ascend. This results in the “umbrella handle” beneath the
bubble to contract inwards, culminating in the formation of the fan bubble at t = 70.
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5.2.4. Semi-Crescent Bubble

Figure 12 shows the density change and flow field vector diagram of the semi-crescent
bubble in case C8. The Re ≈ 80, and Oh ≈ 8 × 10−4. We found that at t = 230, the gas in the
bubble moved up to the liquid surface to form a liquid film, the liquid film did not break
during the expansion, and a thin “liquid bridge” appeared on the top of the liquid surface.
Subsequently, when t = 270, the surface tension of the “liquid bridge” prevented the bubble
from breaking, and it started to shrink downwards due to the force of the “liquid bridge”.
The flow field vector diagram in Figure 12b shows that due to the high temperature gas in
the vapor bubble interacting with the free liquid surface, the “liquid bridge” vaporized,
and small vapor bubbles formed quickly. Eventually, the vapor bubble collapsed on the
free surface.
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5.3. Bubble Deformation when Re < 10

The current analysis focuses on classical cases involving near-wall bubbles and liquid-
surface bubbles when Re < 10, building on previous research. Figure 13 illustrates the
variation in the bubble deformation and flow field density across cases C1~C5.

Figure 14 illustrates the variations in the longitudinal diameter of the near-wall bubbles
and liquid-surface bubbles. The analysis indicates a marked difference in the deformation of the
bubbles. For the near-wall bubbles (observed in cases C1~C3), the forces of viscosity and inertia
are approximately equal, thereby enabling the bubbles to maintain their spherical shape. The
bubbles undergo a growth stage, followed by a complete collapse throughout 3~4 cycles. For
the liquid-surface bubbles (observed in cases C4~C5), the bubbles are subjected to an inertial
force from below that causes them to make contact with the liquid surface and form the “liquid
bridge”; then, by capillary wave damping, the impulse at the bottom of the bubbles increases,
which eventually leads to the formation of the “jet”. The two stages are discussed in detail
below to allow for a better understanding of the bubbles’ behavior.
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Figure 14. The longitudinal diameter changes of near-wall bubbles (C1~C3) and liquid-surface
bubbles (C4~C5).

5.3.1. Deformation of Near-Wall Bubbles

The deformation of the near-wall bubbles for cases C1~C3 in Figure 13 shows that the
vapor bubble increases significantly during the growing period. As it grows, the spherical
shape appears to experience a little vertical compression, and it undergoes a period in which
it repeatedly grows and collapses. At the beginning, though there are slight differences in
the shape of the bubble, the radius of the bubble grows at the same speed. In the process
of collapse, the collapse amplitude of the bubbles varies, and the maximum radius of the
bubbles is also different, but the duration of the initial bubble is similar.

In Figure 14, for case C3, the bubble has four growth and collapse periods; for cases
C1~C2, the bubbles have three growth and collapse cycles. The maximum diameter of
bubbles in each period decreases with C1~C3, and the maximum diameter of the second
bubbles is larger than that in the other periods.

The bubble symmetry coefficient β is introduced to measure the morphological
changes of the bubble, where Rx is the transverse radius of the bubble, and Ry is the
longitudinal radius of the bubble, as follows:

β = Rx/Ry (14)

Figure 15 illustrates the variation in the symmetric coefficient β of the near-wall
bubbles for cases C1~C3, and besides the various cycles, the change in β is similar. In
the pro-phase of the bubble growth, β > 1, and the bubble is a longitudinal flat oval. In
the middle process, as β decreases, the deformation of the bubbles undergoes a dramatic
change in the collapse period, and β increases rapidly after the lowest point. In cases
C1~C2, the bubble growth stage is attached to the wall surface; when the vapor bubble is
shot out instantaneously, the heat exchange on the solid wall is faster, and when part of it is
absorbed, the deformation of the bubble becomes more serious. In case C3, the symmetric
coefficient β of the non-bonded vapor bubble has little fluctuation scope, and its shape
remains spherical.

5.3.2. Deformation of Liquid-Surface Bubbles

In Figure 13, in cases C4~C5, the deformation of the liquid-surface bubble appears to extend
upwards as soon as it comes into contact with the free liquid surface. When t = 50, the gas inside
the bubble bends upwards, and the top portion is absorbed by the liquid surface, forming a
distinct ellipsoidal tip. Then, the bubble keeps expanding and collapses into a spherical shape.
While it is mixed with the liquid surface, a very distinct jet shape is generated at the bottom of
the bubble when t = 120, as seen in case C5. Eventually, the gas inside the bubble drops quickly
due to the gravity force, and then it is pushed back to the surface of the fluid, causing a small
oscillation on the free liquid surface.
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Figure 16 shows a graph of the centroid of the Y-axis for the liquid-surface bubbles in cases
C4~C5. The results show that after t = 40, when the vapor bubble moves nearer to the liquid
surface, the higher the gradient of the curve will be. That is, the more rapidly the vapor bubble
moves upwards, the more pronounced the jet shape generated by the impact with the free
liquid surface. The reason is that as the bubble goes up, it becomes smaller and smaller as it
moves closer to the surface. So much of its energy can be transformed into the jet’s potential
energy and the energy of the bubble’s growth and collapse.

5.4. Bubble Deformation When Re ≥ 10

On the basis of former research, we analyzed several classical cases of near-wall bubbles
and liquid-surface bubbles when Re≥ 10. Figure 17 shows the change in the bubble deformation
and the variation of the flow field density in cases C6~C10.

Fluids 2023, 8, x FOR PEER REVIEW 16 of 22 
 

 
Figure 16. The changes of the liquid-surface bubble Y-axis centroid distance. 

5.4. Bubble Deformation When Re ≥ 10 
On the basis of former research, we analyzed several classical cases of near-wall bub-

bles and liquid-surface bubbles when Re ≥ 10. Figure 17 shows the change in the bubble 
deformation and the variation of the flow field density in cases C6~C10. 

The results show that when Re ≥ 10, the shape of the liquid-surface bubbles in cases 
C9~C10 is similar to that of cases C4~C5 when Re < 10, as seen in Figure 13. Figure 18 
compares the changes in the liquid-surface bubble’s longitudinal diameter at two condi-
tions. The tendency of variation is quite similar, and there is no obvious difference among 
them. Therefore, the effect of the Re on the shape of the near-wall bubbles is not apparent. 
Furthermore, it is found that when Oh < 5 × 10−3, at t = 130, the jet condition is more evident 
at case C5 in Figure 13 than at C10 in Figure 17, which is analogous to Sangeeth’s experi-
mental conclusion, which states that in the range Oh < 0.02, an increasing viscosity can 
increase the jet velocity through capillary wave damping [25]. 

For cases C6~C8, we can differentiate the near-wall bubbles into several different 
stages based on their appearance, which is explained later. 

Figure 16. The changes of the liquid-surface bubble Y-axis centroid distance.



Fluids 2023, 8, 187 16 of 21Fluids 2023, 8, x FOR PEER REVIEW 17 of 22 
 

 
Figure 17. The density changes of near-wall bubbles (C6~C8) and liquid-surface bubbles (C9~C10). Figure 17. The density changes of near-wall bubbles (C6~C8) and liquid-surface bubbles (C9~C10).

The results show that when Re ≥ 10, the shape of the liquid-surface bubbles in cases
C9~C10 is similar to that of cases C4~C5 when Re < 10, as seen in Figure 13. Figure 18
compares the changes in the liquid-surface bubble’s longitudinal diameter at two conditions.
The tendency of variation is quite similar, and there is no obvious difference among them.
Therefore, the effect of the Re on the shape of the near-wall bubbles is not apparent.
Furthermore, it is found that when Oh < 5 × 10−3, at t = 130, the jet condition is more
evident at case C5 in Figure 13 than at C10 in Figure 17, which is analogous to Sangeeth’s
experimental conclusion, which states that in the range Oh < 0.02, an increasing viscosity
can increase the jet velocity through capillary wave damping [25].
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Figure 18. Comparison of the longitudinal diameter changes of liquid-surface bubbles with different
Re numbers.

For cases C6~C8, we can differentiate the near-wall bubbles into several different
stages based on their appearance, which is explained later.

Deformation of Near-Wall Bubbles

In cases C6~C8 of Figure 17, there is a process in the bubble deformation from the
initial sphere to the umbrella bubble when t = 50 in case C8, and finally, a crack on the free
liquid surface.

Figure 19 illustrates the variation of the rate of the near-wall bubbles in cases C6~C8.
We find that there is initially a short but fast acceleration, then the bubble oscillates, and
the increasing rate decreases as it moves upwards until it hits the free liquid surface. In
addition, in cases C6~C8, when the vapor bubble is closer to the free surface, the speed of
the bubble is faster, and the bubble oscillation is more intense. This is due to the fact that
when the bubble approaches the free surface, there is a smaller amount of gravity potential
energy, a larger amount of bubble kinetic energy is required, and a larger flow rate, which
results in a more severe oscillation. In the later period, the rate is reduced. This is because
the faster the bubble moves to the free surface, the faster it reaches the free surface. After
reaching the free surface, the resistance is greater, which causes the increasing rate of the
bubble to decrease gradually due to the pressure on the interface liquid and the surface
tension of the liquid film. This also has a crucial effect on the subsequent analysis of the
characteristics of the bubble deformation.
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Figure 19. The changes of near-wall bubble rising velocity in cases C6~C8.

Based on the morphology characteristics of several stages, the graph of the symmetry
coefficient β is drawn in Figure 20. Figure 21 shows the stage change chart of case C8, and it
is used to classify the stage change of these three classical situations. From Figures 20 and 21,
it can be seen that during the initial stage (a), the bubble is subject to extrusion pressure from
both the left, right, and the lower sides of the liquid, the bubble changes from an oval to an
umbrella shape, and it appears that β > 1 in the stage (b). Then, as the bubble goes up, the
differential pressure in the interior and exterior of the gas–liquid interface at the bottom of the
bubble becomes larger. Consequently, the lower part of the bubble quickly contracts inwards
and presents a semi-crescent shape as shown in stage (c). Simultaneously, when the bubble
approaches the free liquid surface, it pushes it up and forms a liquid film. While the fluid film
expands without breaking, a thin “fluid bridge” is formed at the top of the bubble. In the final
stage (d), because the surface tension of the “liquid bridge” prevents the bubble from breaking,
it merges with the liquid surface.

Fluids 2023, 8, x FOR PEER REVIEW 19 of 22 
 

 
Figure 19. The changes of near-wall bubble rising velocity in cases C6~C8. 

Based on the morphology characteristics of several stages, the graph of the symmetry 
coefficient   is drawn in Figure 20. Figure 21 shows the stage change chart of case C8, 
and it is used to classify the stage change of these three classical situations. From Figures 
20 and 21, it can be seen that during the initial stage (a), the bubble is subject to extrusion 
pressure from both the left, right, and the lower sides of the liquid, the bubble changes 
from an oval to an umbrella shape, and it appears that 1   in the stage (b). Then, as the 
bubble goes up, the differential pressure in the interior and exterior of the gas–liquid in-
terface at the bo om of the bubble becomes larger. Consequently, the lower part of the 
bubble quickly contracts inwards and presents a semi-crescent shape as shown in stage 
(c). Simultaneously, when the bubble approaches the free liquid surface, it pushes it up 
and forms a liquid film. While the fluid film expands without breaking, a thin “fluid 
bridge” is formed at the top of the bubble. In the final stage (d), because the surface tension 
of the “liquid bridge” prevents the bubble from breaking, it merges with the liquid sur-
face. 

  
Figure 20. The changes of near-wall bubble symmetry coefficient in cases C6~C8. 

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

v

Time

 C6
 C7
 C8

0 100 200 300 400
0

1

2

3

4

5

A
sy

m
m

et
ric

 F
ac

to
r 

Time

 C6
 C7
 C8

 = 1

(a) (b) (c) (d)

Figure 20. The changes of near-wall bubble symmetry coefficient in cases C6~C8.



Fluids 2023, 8, 187 19 of 21Fluids 2023, 8, x FOR PEER REVIEW 20 of 22 
 

 
Figure 21. The stage change of classical case C8. (a) initial stage, (b) umbrella shape stage, (c) semi-
crescent shape stage, (d) bubble collapse stage. 

6. Conclusions 

We used the SPH numerical simulation method to directly simulate the deformation 
and collapse of a vapor bubble near the free surface after being heated and raised from 
the bo om wall; the effects of the shear viscosity ηs and the heating distance L on the 
growth and collapse processes of the vapor bubble were taken into account. The regularity 
of the effect of the Re number and the Oh number on the deformation of the vapor bubbles 
was obtained through a further analysis of several cases, which can be summarized into 
four major pa erns. The classification and mechanism were carried out according to the 
four major pa erns of jet, umbrella, semi-crescent, and spheroid, and the category under 
each pa ern was drawn. The main conclusions are as follows.  

For liquid-surface bubbles, the Re number has li le influence on them, as there is no 
significant difference in the specific deformation of the bubbles and the changes in the 
longitudinal diameter of the bubbles. When Oh > 5 × 10−3, all of them showed a jet shape, 
and the jet state is more obvious as the shear viscosity increases. 

For near-wall bubbles, the Re number has a great influence on the bubble defor-
mation; the shape can be categorized into umbrella, semi-crescent, and spheroid. For Re > 
1.5 × 102 and Oh < 3 × 10−4, the bubble appears to have an umbrella shape; for Re < 5 × 100 
and Oh > 10−3, the bubble appears to be spheroidal; and for 5 × 100 < Re < 1.5 × 102, 3 × 10−4 
< Oh < 10−3, the bubble appears to have a semi-crescent shape. Near-wall bubbles experi-
ence inhibited longitudinal growth and often collapse at the liquid surface without creat-
ing the jet shape. Additionally, the balance of the surface tension and inertia force, influ-
enced by the Re and Oh numbers, contributes to the formation of different bubble shapes. 

The spheroidal bubble (cases C1~C3) underwent 3~4 cycles of growth and collapse. 
As the bubble approached the free surface, its shape became less influenced by the solid 
wall. The maximum radius of the bubble decreased with each growth and collapse cycle, 
resulting in less fluctuation in the symmetrical coefficient. Ultimately, the bubble tended 
to become rounder in shape. 

The jet bubble (cases C4~C5) experienced less gravitational potential energy loss as it 
approached the free surface, resulting in a faster upward movement of the bubble. This, 
in turn, led to a more prominent jet that occurred upon impact with the free liquid surface. 

Author Contributions: Conceptualization, Y.C., H.X., and L.Q.; methodology, Q.W. and Y.C.; soft-
ware, Q.W. and Y.C.; validation, Q.W. and Y.C.; formal analysis, Y.C., H.X., and L.Q.; investigation, 
Y.C.; resources, Y.C.; data curation, Y.C.; writing—original draft preparation, Y.C.; writing—review 
and editing, H.X. and L.Q.; visualization, Y.C.; supervision, H.X. and L.Q.; project administration, 
H.X. and L.Q.; funding acquisition, H.X. and L.Q. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (No. 
11972321, No. 91852102). 

Data Availability Statement: The data presented in this study are available upon request from the 
corresponding authors. The data are not publicly available due to privacy reasons. 
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crescent shape stage, (d) bubble collapse stage.

6. Conclusions

We used the SPH numerical simulation method to directly simulate the deformation
and collapse of a vapor bubble near the free surface after being heated and raised from the
bottom wall; the effects of the shear viscosity ηs and the heating distance L on the growth
and collapse processes of the vapor bubble were taken into account. The regularity of the
effect of the Re number and the Oh number on the deformation of the vapor bubbles was
obtained through a further analysis of several cases, which can be summarized into four
major patterns. The classification and mechanism were carried out according to the four
major patterns of jet, umbrella, semi-crescent, and spheroid, and the category under each
pattern was drawn. The main conclusions are as follows.

For liquid-surface bubbles, the Re number has little influence on them, as there is no
significant difference in the specific deformation of the bubbles and the changes in the
longitudinal diameter of the bubbles. When Oh > 5 × 10−3, all of them showed a jet shape,
and the jet state is more obvious as the shear viscosity increases.

For near-wall bubbles, the Re number has a great influence on the bubble deformation;
the shape can be categorized into umbrella, semi-crescent, and spheroid. For Re > 1.5 × 102

and Oh < 3 × 10−4, the bubble appears to have an umbrella shape; for Re < 5 × 100 and
Oh > 10−3, the bubble appears to be spheroidal; and for 5 × 100 < Re < 1.5 × 102, 3 × 10−4

< Oh < 10−3, the bubble appears to have a semi-crescent shape. Near-wall bubbles experience
inhibited longitudinal growth and often collapse at the liquid surface without creating the jet
shape. Additionally, the balance of the surface tension and inertia force, influenced by the Re
and Oh numbers, contributes to the formation of different bubble shapes.

The spheroidal bubble (cases C1~C3) underwent 3~4 cycles of growth and collapse.
As the bubble approached the free surface, its shape became less influenced by the solid
wall. The maximum radius of the bubble decreased with each growth and collapse cycle,
resulting in less fluctuation in the symmetrical coefficient. Ultimately, the bubble tended to
become rounder in shape.

The jet bubble (cases C4~C5) experienced less gravitational potential energy loss as it
approached the free surface, resulting in a faster upward movement of the bubble. This, in
turn, led to a more prominent jet that occurred upon impact with the free liquid surface.
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