
Citation: Brissot, C.;

Cailly- Brandstäter, L.; Hachem, E.;

Valette, R. A Vaporization Model for

Continuous Surface Force Approaches

and Subcooled Configurations. Fluids

2023, 8, 233. https://doi.org/

10.3390/fluids8080233

Academic Editors: Artur V. Dmitrenko

and Nilanjan Chakraborty

Received: 6 July 2023

Revised: 29 July 2023

Accepted: 8 August 2023

Published: 19 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

A Vaporization Model for Continuous Surface Force
Approaches and Subcooled Configurations
Charles Brissot, Léa Cailly-Brandstäter, Elie Hachem and Rudy Valette *

MINES ParisTech, PSL Research University, CEMEF—Centre for Material Forming, CNRS UMR 7635, CS 10207
Rue Claude Daunesse, 06904 Sophia-Antipolis Cedex, France
* Correspondence: rudy.valette@minesparis.psl.eu

Abstract: The integration of phase change phenomena through an interface is a numerical challenge
that requires proper attention. Solutions to properly ensure mass and energy conservation were
developed for finite difference and finite volume methods, but not for Finite Element methods. We
propose a Finite Element phase change model based on an Eulerian framework with a Continuous
Surface Force (CSF) approach. It handles both momentum and energy conservation at the interface
for anisotropic meshes in a light an efficient way. To do so, a model based on the Level Set method is
developed. A thick interface is considered to fit with the CSF approach. To properly compute the
energy conservation, heat fluxes are extended through this interface thanks to the resolution of a
transport equation. A dedicated pseudo compressible Navier–Stokes solver is added to compute
velocity jumps with a source term at the interface in the velocity divergence equation. Several 1D
and 2D benchmarks are considered with increasing complexity to highlight the performances of
each feature of the framework. This stresses the capacity of the model to properly tackle phase
change problems.

Keywords: phase change; continuous surface force; level set; heat flux jump computation; velocity
jump; subcooling; Stefan problem

1. Introduction

Boiling phenomena are a key subject for many industrial domains in need of efficient
heat exchangers. Most of the time, boiling is used as a great energy sink. The characteriza-
tion of heat transfer between solids and fluids is of high interest for all applications.

Theoretical models and empirical laws have been developed to assess this quantity. In
1934, Nukiyama [1] was the first to describe, as a whole, all the different modes of boiling
by plotting heat fluxes versus temperature, thanks to a heat wire that was plunged into
a bath full of water. Nucleation, transition boiling and film boiling were observed. Then,
many experiments using various fluids, conditions and parameters were made to better
understand each mode. Correlations based on physical arguments were developed to
estimate heat flux laws by pioneer works [2–7] as well as more recent investigations [8,9].
Some simple analytical models have also been developed [10]. All these approaches are very
interesting and provide analytical laws but are often case-dependent, and their precision
remains limited when confronted with industrial configurations.

Computational fluid dynamics (CFD) models have been proposed to better under-
stand the physics of phase change. CFD allows the reproduction and evaluation of local
phenomena that are difficult to estimate during tests. Once numerical models are validated,
they can even be used as a powerful experimental laboratory. However, the development of
a numerical model that could predicatively simulate all boiling modes remains a challenge.

Pioneer works have been conducted to simulate two-phase flows with phase change
in 2D. Lee [11] developed a semi-implicit two-fluid phase change model with a sharp
interface. A projection technique with an iterative scheme was used to compute the velocity
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jump, and the mass transfer was computed thanks to a proportional law. This enabled the
simulation of a steam–water jet impingement. Using the volume of fluid (VOF) method,
this work was extended by Rattner et al. [12] for film condensation. The mass transfer rate
previously chosen was arbitrarily assessed through enthalpy considerations. This model
was embedded for a finite volume approach within the Open-FOAM library. More recently,
Giustini et al. [13] proposed a similar approach with the added value that their framework
could fit arbitrary meshes without the need to introduce smearing of the mass transfer term.
Son et al. [14] combined this second-order projection method with a Level Set method to
solve saturated 2D horizontal film boiling. Juric et al. [15] also simulated this problem with
a single-field formulation and a front tracking method implemented with finite differences.
Welch et al. [16] performed the same but with a volume-of-fluid-based interface tracking
method. Once again, the projection method was used, and the reconstructed interface
led to the computation of temperature gradients from both sides. Kang et al., Gibou et
al. and Tanguy et al. [17–19] implemented a Ghost Fluid Method to ease the introduction
of interfacial terms within an Eulerian finite difference method. A similar approach was
conducted by Esmaeeli et al. [20], who eliminated the iterative procedure with a predictor–
corrector algorithm. Using the interface tracking and projection methods with a sharp
interface approach, Sato et al. [21] implemented a staggered finite volume vaporization
solver and computed proper bubble nucleation and growth. Khalloufi et al. [22] worked
on the complete simulation of quenching processes in 3D for simple geometries thanks
to an Eulerian framework with Level Set methods and Finite Elements. Other innovative
methods have been developed, like the coupled Level Set and volume of fluid method [23],
aiming to improve the interface definition and mass change rate computation.

These recent developments, however, require a large number of numerical compu-
tations over the interface. These could be troublesome when dealing with industrial
applications. This is the reason why the choice of the Continuous Surface Force (CSF)
approach is often preferred, as it guarantees an integrated implementation that is very light.
This feature is especially appreciated when dealing with industrial applications. In the
present work, we propose a phase change model within an Eulerian framework based on a
stabilized Finite Element method. These methods have been proven to support the Navier–
Stokes equations as well as convection diffusion reaction numerical schemes, allowing them
to overcome challenging test cases [24]. The Level Set method is used to track the interface.
A CSF approach is applied to deal with stiff differences in the physical properties, with
a dedicated method to properly handle thermal variations. This consideration has been
shown to bring stability to multiphase flow solvers with a simple implementation [25–27].

Most of the time, when boiling takes place in industrial processes, the liquid located far
from the vaporizing front is below its saturation temperature. The difference in temperature
(usually called subcooling) has been shown to significantly improve heat transfers [9,28–33].
The entire boiling curve is shifted at a higher Leindenfrost temperature the minimum
temperature for the stabilization of a vapor film. More generally, the physics of boiling
drastically changes from the saturated case. This is the reason why proper consideration of
heat flux jumps at the vapor/liquid interface is crucial.

Moreover, as the vapor phase is usually much lighter than the liquid phase, va-
porization entails an important dilatation at the interface. This is numerically challeng-
ing and requires specific attention adapted to the considered framework. To do so, a
dedicated pseudo-compressible Navier–Stokes solver is added, based on the work of
Khalloufi et al. [22]. It computes velocity jumps with a volume source term at the interface
in the velocity divergence equation. This ensures mass and momentum conservation at
the interface in a light and efficient way, with consideration of volume mass transfer distri-
bution. To reduce the computational time in prevision of future cases, it is coupled with a
remeshing algorithm (see [34] for further details on the implementation of this algorithm).

To the authors’ knowledge, there is not any existing method that accurately combines
the CSF approach with the heat flux jump computation and a volume mass transfer distri-
bution. In the present work, this is conducted with the consideration of a complete fictitious
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thick interface for the mixing laws described in Section 2. The phase change distribution is
also smoothed and the temperature profile is set to the phase change temperature at the
interface. Thus, the jump is not computed on one straight surface that usually features the
interface, but on the border of this thick interface. Such consideration is new and requires
the design of a dedicated method that will be described in details in Sections 3 and 4. To
validate the presented method for diffusion-only cases, simple 2D test cases are studied in
Section 5. Then test case validating the pseudo-compressible approach are presented in
Section 6. The complete vaporization framework is finally tested and validated in Section 7
on the compressible subcooled Stefan problem and on an adiabatic problem.

2. Phase Change Modeling
2.1. Mathematical Framework — Level Set Method

Two-phase flows with a mixture of liquid and vapor are considered. In order to
separate the two different phases, the Level Set formalism is used. For ~x the position vector,
a signed distance function p~x, tq ÞÝÑ α describes the interface I between the two phases:

αp~x, tq “

$

’

&

’

%

dp~x, Iq in the vapor phase
´dp~x, Iq in the liquid phase
0 on the interface

(1)

This way, the gradient of the distance function ~∇α defines the normal of the interface.

The normal of the interface~n is defined as
~∇α
ˇ

ˇ

ˇ

~∇α
ˇ

ˇ

ˇ

.

The associated characteristic function α ÞÝÑ Hα allows to determine the fraction of
vapor and liquid at any point. To avoid numerical instabilities, an interface thickness 2ε is
considered. Different functions can be used to smooth this Heavyside function, such as a
tangent or a sine function. This latter has been chosen in this work:

Hα “

$

’

’

’

&

’

’

’

%

1 if α ą ε
1
2

ˆ

1`
α

ε
`

1
π

sin
´πα

ε

¯

˙

if |α| ď ε

0 if α ă ´ε

(2)

The reasons behind this need of a smoothing function and a complete justification
of the consistency of this solution can be found in [34]. This allows us to determine the
characteristics of a fluid particle regarding the characteristics of the two phases.

Finally, to determine properties at the interface, the smoothed Dirac function α ÞÝÑ δα

is defined as the derivative of Hα with respect to α. Thus:

δα “

$

&

%

0 if |α| ą ε
1
2ε

´

1` cos
´πα

ε

¯¯

if |α| ď ε
(3)

Two relations can be noticed:

~∇Hα “ p~∇αqδα (4)

BHα

Bt
“
Bα

Bt
δα (5)

2.2. Continuous Description of Phase Change

The mass change is represented by the vector ~9m: |~9m| is the absolute surface mass
transfer rate from one phase to another. The local direction of ~9m indicates if it stands for
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vaporization or condensation. ~9m is assumed to be orthogonal to the surface, thus aligned
with the normal vector~n. The total value of mass change over a surface S of the interface is
ş

S
~9m ¨~n dS (see Figure 1).

Figure 1. Schematic description of the mass transfer rate vector ~9m. The red dashed line corresponds
to the interface position after a time dt. On the upper part, the liquid vaporizes and ~9m points towards
the vapor phase. On the lower part, the vapor condensates and ~9m points towards the liquid phase.

A continuous mass change profile [22] is chosen. The mass change is spread on the
volume of an interface of thickness 2ε thanks to a Dirac distribution δα (see Figure 2). The
local infinitesimal mass transfer rate d 9M over an infinitesimal volume dV then reads:

d 9M “ ~9m ¨
´

~∇α
¯

δα dV. (6)

(a) (b)
Figure 2. Modeling of the interface temperature profile adapted to a Continuous Surface Force
approach. The temperature is fixed at Tsat on the entire layer of thickness 2ε to create a well defined
heat flux jump. The mass transfer is spread out on the layer with a δα profile. (a) Sharp interface
configuration; (b) Smooth interface configuration.

With this configuration, ~9m is supposed to be locally constant and orthogonal to the
interface, and the total value of mass change over a surface S of the interface is conserved as:

ż

S

ż

r´ε;εs
d 9M “

ż

S

ż

r´ε;εs

~9m ¨
´

~∇α
¯

δα dα dS “
ż

S
~9m ¨~n dS (7)

by definition of α and δα.
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Working with a Continuous Surface Force approach, the notion of heat flux jump is
ambiguous, as all quantities are continuous. Moreover, its value must be accessible for
each node inside the interface to determine the local constant value of ~9m, and to be able to
compute the velocity jump and the energy jump terms.

To address these issues, the present work proposes to set the entire interface temper-
ature at Tsat, as shown in Figure 2. The heat flux jump is then considered from the two
extremities of the interface. As only conductive heat fluxes are considered in the present
study, the condition on ~9m reads:

|~9m|L “ vk~∇T ¨~nwε´ε (8)

where k is the conductivity.
The extension method and the algorithm relying on it to compute the balance of flux

on each points of the interface are presented hereafter.

3. Heat Flux Jump Computation
3.1. Description of the Extension Method

This method relies on a common technique explained by Aslam et al. [35]. The basis
of this technique is to extend on Ω a scalar quantity q0 that lives on Ω0 (generally Ω and
Ω0 form a partition of the computation space). The extension is conducted by following
streamlines of a normalized vector field ~n through an interface Γ that separates the two
domains Ω and Ω0. In other words, the solution q equals q0 on Ω0, and on Ω, q is set
constant on the streamlines of~n, its value being the value of q0 on the intersection of Γ with
the streamline. This corresponds to the resolution of the following system:

" q “ q0 on Ω0 (9)

~n ¨ ~∇q “ 0 on Ω (10)

Equation (9) is solved immediately, and is used as a Dirichlet condition on Γ for the
resolution of (10). For frontiers of Ω that are at the vicinity of the calculation domain, a
Neumann condition of null flux is used.

The second equation by itself is not numerically unconditionally stable, so a diffusion
term is added:

~n ¨ ~∇q´ ~∇ ¨ pλ~∇qq “ 0 (11)

The value of λ should be as small as possible in Ω to limit its impact on the solution,
but large enough to stabilize the solver. If h is the mesh size, a dimensional analysis leads to:

|~n|q
h
»

λq
h2 (12)

As~n is normalized, the condition reads λ » h. λ will be chosen at most of the same
order of magnitude as h.

Before its implementation on heat flux jump computation, this method is tested on
a theoretical test case: the extension of a scalar field that has a cylindrical symmetry on a
disc. The field~n is based on the gradient of the Level Set α (the signed distance function in
respect to the interface that is positive inside Ω). As a result,~n is normal to the interface.

3.2. The Disc Case

Ω is a disc of radius R “ 0.2 centered on the origin of a 1 ˆ 1 square domain (see
Figure 3a). The source field q0 is defined in the cylindrical coordinates system pr, θq such as:

q0pr, θq “ ´2r (13)

~n is defined as:
~npr, θq “ ´er (14)

Thus~n has a singularity at the origin.
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The case is implemented on an unstructured mesh of triangles of characteristic size
h “ 10´2 with λ “ 10´3. Results projected on the horizontal axis of the disc are plotted on
Figure 3b.

y “ 0

~n

Ω0

Ω

(a)
(b)

Figure 3. The disc test case: an initial radial scalar field is extended on a disc (the red zone) following
the radial vector field (the black arrows). (a) Schematic description of the disc test case. (b) Source
and extended field values on the radial axis y “ 0.

We can see that the extension of q0 over Ω is well computed, and the singularity of
the vector field~n does not cause issues to the solver. Errors can be controlled by refining
the mesh.

3.3. Determination of Heat Flux Jumps over a Smooth Interface

Back to the phase change problem, the idea is to apply this tool on each side of the
interface to access the values of the balance of heat fluxes on every point of the interface.

The method is applied with the scalar field
~∇α

|~∇α|
¨ pk~∇Tq to determine the heat fluxes on

the vapor and on the liquid sides.
A first simple approach would be to choose Ω as the domain of the interface, and Ω0

the union of the vapor and the liquid domains for both cases (it is useless to further project
the heat flux from one phase on the whole domain of the other phase).

However, due to diffusion effects, the transition from Tsat on the interface to the
temperature profile diffuses on a few elements. A “safety margin” is taken to make sure
that the temperature profile is well established. This is the reason why the heat flux value
to project is drawn one mesh size away from the isovalue α “ ˘ε. Moreover, to further
reduce the influence of the diffusion term λ, the end of Ω is considered three mesh sizes
away from the isovalue α “ ˘ε. Figure 4 summarizes these considerations. Doing so, the
heat flux jump is well defined and constant on the domain tα P rε; εsu.

As an illustration and test purpose, this method is implemented on a simple 2D test
case. A 1 ˆ 1 square with a vertical interface x “ 0 at its center (see Figure 5a).
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(a) (b)

Figure 4. Modeling of the interface temperature and heat flux profiles with a Continuous Surface
Force approach. In order to well capture the heat flux jump, heat flux values are extended from
a distance ε` h of the interface center. The end of the extension domain is located at a distance
ε` 3h of the interface center to reduce diffusion impacts on the extended value. (a) Sharp interface
configuration. (b) Smooth interface configuration.

y “ 0.25

~nL ~nR

Ω0RΩ0L

(a)
Figure 5. Cont.
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(b)

(c)

Figure 5. The interface test case—an initial radial scalar field is extended from both sides of a thick
interface (the red zone) following the normal vector field (the black arrows). Results projected on
the horizontal and vertical green dotted line are shown in (b,c). (a) Schematic description of the
Interface Case. (b) Source and extended field values on the horizontal axis y “ 0.25. (c) Theoretical
and extended field values on the centered vertical axis x “ 0.

The field to project from the left side of the interface is q0L “ 5000yp1` xq, and the
associated domain ΩL is located between the axes x “ ´0.07 and x “ 0.05. The field
to project from the right side of the interface is q0R “ 10000yp1` xq, and the associated
domain ΩR is located between the axes x “ ´0.05 and x “ 0.07.

~nL and~nR are taken normal to the interface, but of opposite directions.
The case is implemented on an unstructured mesh of triangles of characteristic size

h “ 10´2 with λ “ 10´3. Results projected on the central vertical axis and on the horizontal
axis y´ 0.25 are plotted on Figure 5b,c.

The extension is well computed, and errors are in the order of magnitude of the
mesh precision.

3.4. Precision of the Method

As the extended heat flux is located one mesh size away h from the boundary of the
interface, an error is made, which is proportional to h (see Figure 6a). Noting s the position
of the boundary interface, and taking the distance function α, a linear approximation on q
around s reads:

qps` hq “ qpsq `
Bq
Bα
psqh` ophq (15)
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Extending q from the position s` h instead of s thus leads to an error
Bq
Bα
psq.

Furthermore, unstructured mesh have been used in this study, and the evaluation
of points ε` h away from the interface used as reference points for the extension method
leads at most to a doubled “safety margin”, as shown on Figure 6b.

(a)

2h

ε ε` h
Distance to the interface

(b)

Figure 6. Description of the “safety margin” taken for the extension of the heat flux that avoids errors
due to the continuity of the temperature gradient. Heat flux values are taken from points away of at
least ε` h from the interface. As the mesh in not structured, the effective distance varies from one
point to another up to ε` 2h. (a) Graphical illustration of the safety margin. (b) Schematic description
of the selection of reference points of the extension method.

Considering only conductive heat fluxes q “ ~q ¨
~∇α

|~∇α|
“ ´k

BT
Bα

, this leads to a maxi-

mum error on
ˇ

ˇ

ˇ

~9m
ˇ

ˇ

ˇ
:

∆
ˇ

ˇ

ˇ

~9m
ˇ

ˇ

ˇ
9

1
L L,V

ÿ

k
ˇ

ˇ

ˇ

ˇ

B2T
Bα2

ˇ

ˇ

ˇ

ˇ

2h (16)

4. Two-Phase Thermal Solver

The presented mass transfer modeling is associated with a thermal equation and a
Level Set convection equation. This solver is made to solve diphasic and “static” (no fluid
velocity) Thermal systems with phase change. Thus, only divergence free cases are tackled
for the moment, meaning equal density between phases.

4.1. Thermal Equations

As no movements are considered, a purely diffusive system with phase change is
solved. According to the Continuous Surface Force approach, the integration in the energy
conservation equation of the source term due to phase change from Equation (6) reads:

ρcp
BT
Bt
“ ~∇ ¨

´

k~∇T
¯

´L
´

~9m ¨ ~∇α
¯

δα (17)

where ρ is the density and cp the specific heat capacity.
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There is an equivalence between the condition T “ Tsat at the interface and the
formulation of the source term ´L

´

~9m ¨ ~∇α
¯

δα in addition to the computation of the mass

transfer thanks to the Heat Flux Jump Computation ~9m “

t

k~∇T ¨
~∇α

|~∇α|

|

: formulated this

way, the system theoretically maintains the interface temperature at Tsat.
To be consistent regarding the mixing laws of every parameter, a choice is made to

consider that Hα is a volume ratio. This entails the mixing law of ρcp. For the mixing laws
of k, a geometric law is used following the recommendations of former studies [36,37] that
shew the importance of the mixing law to properly tackle the flux continuity:

ρcp “ HαpρcpqV ` p1´ HαqpρcpqL (18)

1
k
“

Hα

kV
`

1´ Hα

kL
(19)

As the phases are considered to have the same density ρ, the velocity field is zero.
The mass conservation then entails the following Level Set convection Equation (α being
positive inside the vapor phase):

Bα

Bt
´

~9m
ρ
¨ ~∇α “ 0 (20)

4.2. Stabilization

The proposed system is theoretically consistent, as the formulation tends toward the
sharp interface formulation for small ε. However, the conservation of Tsat is unfortunately
not ensured as such. Among other reasons, overshooting effects are observed. Moreover
the conductivity jump leads to stronger diffusion effects on the liquid side that tends to
cool down the interface.

To guaranty the efficiency of the method, a penalty term of the form AδαpT´ Tsatq

is added, A being a sufficiently large parameter (taken as 1ˆ 106 W K´1 m´2, the order
of magnitude of L ˆ 1 K). This formulation guarantees the conservation of Tsat on the
interface.

~9m being computed thanks to the heat flux jump, the final system reads:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ρcp
BT
Bt
` ApT´ Tsatqδα “ ~∇ ¨

´

k~∇T
¯

´L
´

~9m ¨ ~∇α
¯

δα (21)

Bα

Bt
´

~9m
ρ
¨ ~∇α “ 0 (22)

with: L~9m “

3

k~∇T ¨
~∇α

|~∇α|

;

(23)

As a reminder, the advection velocity of Equation (22) represents the displacement of
the interface due to the phase change. Furthermore, Equation (23) represents the energy
conservation at the interface.

4.3. Numerical Method and Mesh

This formulation is composed of convection diffusion equations. These equations
are solved using a Finite Element method, and are stabilized thanks to a SUPG-SCPG
scheme presented in [38] that presents the solver used in this work. Basically, the Finite
Element method consists of discretizing space into small, simple elements and choosing an
approximation for the solution within each element using, for example, linear functions.
Stabilization schemes such as SUPG-SCPG are necessary to ensure stability (for example in
advection-dominated problems) and compatibility of the chosen approximations for each
field (velocity, pressure, temperature ...). The anisotropic mesh at the interface is refined
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(to improve accuracy of the solution, see [22]) using the gradient of the hyperbolic tangent
of the Level Set. The physical properties of each domain are set with appropriate mixing
laws. Each mesh is adapted under the constraint of a fixed, case-dependent number of
edges. Representative interface regions at the end of the anisotropic adaptation process are
shown in Figure 7. In practice, the adaptation process consists of adding nodes locally in
the vicinity of the interface. The rest of the elements keep the same background size, that
increases with the distance via three successive refinement steps to accurately capture the
near-wake region.

Figure 7. Temperature field and mesh of the Case 3 simulation for h “ 2ˆ 10´6 m at time 0.1 s. The
mesh is refined around the interface where temperature gradients and physical properties variations
are important. Only the left side of the computational domain is plotted.

5. The Isochoric Stefan Problem

As a first simple benchmark of this model, the isochoric 1D Stefan problem is solved
in a 2D domain and compared with the analytical solution. This benchmark has been
first used while working with solid/fluid phase changes (see for exemple [39]). It has
been recently used as a basis by Chaurasiya et al. to study such systems with time depen-
dant conductivity and convection [40–43]. It has then been extended to configurations of
liquid/gas interactions (see for exemple [19,44]) .

Both phases are considered to have the same density ρ, though different ρcp of a
liquid/vapor mixture. Two configurations are studied: the saturated Stefan problem and
the subcooled Stefan problem.

The saturated problem has been tackled many times before (see [14,16,21,22,44–46]).
However the subcooled Stefan problem is rarely studied to the authors’ knowledge.

5.1. Reminders of the Problem

The considered Stefan problem is a semi infinite domain (indexed by the x P r0,`8r
coordinate) filled with liquid at initial temperature T8, and touching a wall (x “ 0)
at temperature Tw ą Tsat (see Figure 8). At t ą 0, the wall warms up the liquid and
vaporization occurs, creating a moving interface positioned by sptq that goes away from
the wall. The boundary is set to Tsat.
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Figure 8. Schematic description of the Stefan problem test case.

The governing equations of this problem read:
$

’

’

&

’

’

%

pρcpqV
BT
Bt
“ kV

B2T
Bx2 for x P r0, sptqr (24)

pρcpqL
BT
Bt
“ kL

B2T
Bx2 for x Pssptq,`8r (25)

With the boundary conditions:
$

’

’

’

&

’

’

’

%

Tpx, t “ 0q “ T8 for x ą 0 (26)

Tpx “ 0, tq “ Tw for t ą 0 (27)

Tpx “ `8, tq “ T8 for t ą 0 (28)

Tpx “ sptq, tq “ Tsat for t ą 0 (29)

Moreover, the energy jump condition at the interface remaining at Tsat and that governs
the behavior of s reads:

L|~9m| “ ρVL
ds
dt
“ ´kV

BT
Bx |x“s´

` kL
BT
Bx |x“s`

(30)

The analytical solution classically reads:

Tpx, tq “

$

’

’

’

’

&

’

’

’

’

%

Tw `
Tsat ´ Tw

erfpχq
erf

ˆ

χ
x

sptq

˙

for x P r0, sptqs

T8 `
Tsat ´ T8

erfc
ˆ

χ

c

DV
DL

˙ erfc
ˆ

χ
x

sptq

c

DV
DL

˙

for x P rsptq,`8r (31)

where DL “
kL

pρcpqL
is the liquid diffusivity and DV “

kV
pρcpqV

is the vapour diffusivity. The

evolution of s reads:
sptq “ 2χ

a

DV t (32)

χ is evaluated thanks to the resolution of the following equation:

ρVLχ
a

DV `
kVpTsat ´ Twq e´χ2

?
πDV erfpχq

`
kLpTsat ´ T8q e

´χ2
DV
DL

?
πDL erfc

ˆ

χ

c

DV
DL

˙ “ 0 (33)
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The temperature gradient reads:

BT
Bx
px, tq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1
?

πDV t
Tsat ´ Tw

erfpχq
e
´

˜

χ
x

sptq

¸2

for x P r0, sptqs

´
1

?
πDLt

Tsat ´ T8

erfc
ˆ

χ

c

DV
DL

˙ e
´

˜

χ
x

sptq

d

DV
DL

¸2

for x P rsptq,`8r

(34)

One can notice that the temperature gradient (and its derivative) at the interface
tends toward infinity as time gets close to zero. This entails an extra complexity for the
computation of the Heat Flux Jump at the beginning of the simulation: it is interesting as it
allows to test the performances of the Heat Flux Jump Computation feature and the error
estimation (16).

All physical properties are those of a water and vapor mixture and summarized in
Table 1. Yet a divergence free test case is considered and the density of water is taken as the
density of vapor (though ρcp values are not changing).

Table 1. Physical properties of the considered fluids for the isochoric Stefan problem.

Density ρ Volume Heat Capacity ρcp Thermal Conductivity k Latent Heat L
kg m´3 J m´3 K´1 W m´1 K´1 J kg−1

Vapor
5.97ˆ 10−1 1.12ˆ 103 2.48ˆ 10−2

2.26ˆ 106
Liquid 4.40ˆ 106 6.79ˆ 10−1

5.2. Studied Cases
5.2.1. Case 1: Without Subcooling

The first case solved is the classical Stefan problem with the liquid being at saturation
temperature. The wall is 10 K above the saturation temperature, and χ “ 0.067.

The test case is computed for an unstructured 2D mesh of dimension 1ˆ 10−4 by
5ˆ 10−4 m2 with 5 mesh sizes h (in m): 1ˆ 10−6, 2ˆ 10−6, 4ˆ 10−6, 7ˆ 10−6 and 1ˆ 10−5.
The time step is set to 1ˆ 10−5 s. The interface thickness is set to 6h with an extension zone
of 8h.

The simulation starts with an initial interface position of 2ˆ 10−5 m (identified as the
border of the thick interface on the vapor side). The initial temperature profile is computed
according to its analytical solution.

5.2.2. Case 2: With a Small Subcooling

The second case is similar to the first one, except that the water phase is not at
saturation temperature anymore. An initial temperature for the water of Tsat ´ 1 K is taken,
and χ “ 0.021. The domain, mesh sizes, time step and other parameters are the same. The
initial position of the interface is also 2ˆ 10−5 m.

5.2.3. Case 3: With a High Subcooling

The robustness of the method is assessed in computing a more extreme Stefan Case
for higher temperature: the wall is 900 K above the saturation temperature, the liquid is
10 K below, and χ “ 0.101. Furthermore, the remeshing methods is applied to test the good
behavior of the combined methods.

The test case is computed for an unstructured non uniform 2D mesh of dimension
2ˆ 10−4 by 2ˆ 10−3 m2 with 30,000 elements whose mesh size h at the interface varies
among 5 values (in m): 5ˆ 10−7, 1ˆ 10−6, 2ˆ 10−6, 3ˆ 10−6 and 5ˆ 10−6. The time step
is still 1ˆ 10−5 s. The initial position of the interface is this time 1ˆ 10−4 m. The interface
thickness is set to 6h with an extension zone of 8h.
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5.3. Results

An example of temperature field values and mesh for the Case 3 is shown in Figure 7.
Results of interface position and mass transfer rate values versus time are plot-

ted in Figures 9a and 10a for the Case 1, in Figures 9b and 10b for the Case 2, and in
Figures 9c and 10c for the Case 3.

Results of Case 1 are satisfactory, as errors on the position and mass transfer rate are
small (less than 1%) whatever the mesh size.

The influence of the mesh size appears for the second case, mostly at the first time
steps of the simulation where the heat flux jump computation is sensitive. This is explained
by a higher heat flux gradient on the liquid size that raises the error on the mass transfer
rate described by (16). Otherwise the case remains correctly described by the simulations.

(a) (b)

(c)
Figure 9. Analytic and simulated positions of the interface for different mesh sizes h. (a) Case 1.
(b) Case 2. (c) Case 3.

(a)

Figure 10. Cont.
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(b)

(c)
Figure 10. Analytic and simulated mass transfer rates for different mesh sizes h. (a) Case 1. (b) Case 2.
(c) Case 3.

Results for the Case 3 stress even more this observation, as even smaller mesh sizes
reveal non negligible errors due to the important thermal constraint at play at the first time
steps of the simulation. As soon as the temperature gradient is lower, errors on the mass
transfer rate quickly decrease.

5.4. Precision and Accuracy Order

A first estimation of the HFJC method accuracy given by Equation (16) can be con-
firmed by plotting the errors of the three simulations on a ph, ∆|~9m|q graph. This is shown
on Figure 11.

The lines represent the error estimation, thanks to the computation of
B2T
Bx2 ps, t “ t0q

given by the analytical solution. The error estimation correctly fits with the simulations
results. This means that these errors are due to a too coarse grid, and can be controlled and
reduced with the mesh size. An optimized approach to properly solve sub-cooled Stefan
problems would be to control the mesh refinement according with the time.

To further study the accuracy of the method, a convergence analysis with the mesh
size h has been conducted. The error is defined as:

err “
1
N

iPv1,Nw

ÿ

ˇ

ˇ

ˇ
si

simu ´ si
an

ˇ

ˇ

ˇ
(35)

where N is the number of sample steps among each iteration step, taken here as 20, and
si

simu and si
an are the position of the simulated and analytic interface at sample step i.
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Results for the three cases are plotted on Figure 12a–c.

Figure 11. Relative error of the initial mass transfer rate value versus interface mesh size. Estimations
of this error given by Equation (16) are plotted in dashed lines

(a) (b)

(c)

Figure 12. Space-time convergence analysis for the isochoric Stefan Benchmark. (a) Case 1. (b) Case 2.
(c) Case 3.

For all cases, the convergence order is around 1 as predicted by (16). The accuracy of
the HFJC method is controlled by the value of ε that should be small enough to properly
compute heat fluxes. If this condition is validated, and providing that the mesh is properly
refined and validates the Fourier condition far from the interface, the presented method
can be applied to more complex cases.
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6. Multiphase Pseudo-Compressible Framework

To tackle the difference of density between the two phases, the consideration of
compression or dilatation shall be implemented. In this framework, thermics drives the
phase change, meaning a strong constrain on the mechanics. Continuing with a CSF
approach, volume changes are implemented as a source term at the interface. This means
the need to implement a Navier–Stokes solver that takes into account a source term on the
mass conservation equation.

6.1. Pseudo-Compressible Navier–Stokes Solver

The one phase pseudo-compressible Navier–Stokes solver resolves a modified version
of the incompressible Navier–Stokes equations:

$

’

&

’

%

~∇ ¨~u “ ϕ (36)

ρ

ˆ

B~u
Bt
` p~u ¨ ~∇q~u

˙

“ ´~∇P` ~∇ ¨ 2η 9εp~uq ` ρ~g (37)

where ϕ is an imposed volume term, P is the pressure, 9ε is the strain rate tensor and ~g
the gravity.

6.2. Numerical Method

This Navier–Stokes system is solved with a Finite Element method and stabilized with
the Variational MultiScale (VMS) method presented in previous communication of the
laboratory who provided this work [34,38,47]. However, the stabilisation scheme has to be
modified due to the addition of the source term in the velocity divergence equation. The
new pressure residual (formerly Rp “ ´~∇ ¨~u) now reads:

Rp “ ϕ´ ~∇ ¨~u (38)

This slightly changes the formulation of the resolution matrix. However, the source
term does not change significantly the solver accuracy and stability. The main aspects
of the method, as well as the value of the stabilization parameters presented by Hachem
et al. [38] are not changed.

6.3. A 2D Benchmark—The Pseudo-Compressible Square

We consider a first benchmark inspired by [37], whose first purpose was to study the
behavior of the incompressible Navier–Stokes solver.

The target is to reproduce the following steady analytical solution on a p0, 1q ˚ p0, 1q square:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

~ux “ ´5xy4 ` Ax2

~uy “ ´0.5` y5

p “ 0.5py5 ´ y10q ` 5νy4

fx “ 5xy8 ` 10xy3 ` 60νxy2 ´ 2νA´ 15Ax2y4 ` 2A2x3

fy “ 0

ϕ “ 2Ax

To do so, the values of fx, fy, ϕ and the boundary solutions are set, as described on
Figure 13. The pressure boundary conditions are set free.

Two convergence studies are conducted with two values of A: 0.01 and 0.1. Five mesh
sizes are considered: 2ˆ 10−3, 5ˆ 10−3, 1ˆ 10−2, 2ˆ 10−2 and 5ˆ 10−2.

ρ is set to 1, and η to 0.001. The simulation starts with a null velocity, and runs until
a time 20. The time step is set to 0.1. Results at time 20 are compared to the analytical
solution. An example of the velocity and pressure fields are plotted in Figure 14.
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Figure 13. Dirichlet velocity boundary conditions for the Square Benchmark. The other velocity
components are set with homogeneous Neumann boundary conditions.

Figure 14. Final velocity and pressure fields for A “ 0.1 and h “ 2ˆ 10´3.

The error criteria based on the L2 norm is used:

errx “

g

f

f

e

ş

Ωpxsimu ´ xanq
2 dS

ş

Ωpxanq
2 dS

(39)

where x stands for the velocity vector or the pressure. 20 is long enough to ensure the
steady state, when differences between two time steps are in the order of magnitude of the
machine precision (see Figure 15).

Figure 15. L2 norm error evolution for A “ 0.1 and h “ 5ˆ 10´3. The final time considered it high
enought to guaranty the steady state regime on the final iteration.

Results of the convergence study for both variables are plotted on Figure 16 for A “ 0.1
and Figure 17 for A “ 0.01.

The order of convergence for the case A “ 0.01 is of the same order as the one of the
incompressible formulation computed by Hachem [37], proving the good behavior of the
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solver for this case. For A “ 0.1, the order of convergence is reduced (close to 1), showing a
limit of the range of applicability of the formulation.

(a)

(b)
Figure 16. Space convergence analysis for the Square Benchmark with A “ 0.01. (a) Velocity L2 norm
error. (b) Pressure L2 norm error.
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(a)

(b)
Figure 17. Space convergence analysis for the Square Benchmark with A “ 0.1. (a) Velocity L2 norm
error. (b) Pressure L2 norm error.

6.4. Combination with the Level Set method

Now that the pseudo-compressible Navier–Stokes solver has been validated, it is used
to account for a phase change process between fluids of different densities within the CSF
approach. Considering back the surface mass transfer vector ~9m, the conservation of mass
in both fluids considering a Dirac distribution of mass transfer reads:
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$

’

’

’

’

’

&

’

’

’

’

’

%

BHαρV
Bt

` ~∇ ¨ pHαρV~uq “

´

~9m ¨ ~∇α
¯

δα (40)

Bp1´ HαqρL
Bt

` ~∇ ¨ pp1´ HαqρL~uq

“ ´

´

~9m ¨ ~∇α
¯

δα (41)

This can be rewritten as a velocity divergence equation combined with a Level Set
convection equation form.

The momentum conservation equation is enriched with a Surface Tension term in the
way of [47]. It is introduced in an implicit way as a volume source term ~γα:

~γα “ γ0

«

~∇ ¨
˜

~∇α

|~∇α|

¸ff

δα~∇α (42)

This leads to the following system:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

~∇ ¨~u “
ˆ

1
ρV
´

1
ρL

˙

´

~9m ¨ ~∇α
¯

δα (43)

ρ

ˆ

B~u
Bt
` p~u ¨ ~∇q~u

˙

“ ´~∇P` ~∇ ¨ 2η 9εp~uq ` ~γα ` ρ~g (44)
Bα

Bt
`

ˆ

~u´
ρ

ρVρL
~9m
˙

¨ ~∇α “ 0 (45)

The properties ρ and η are computed thanks to the following mixing laws:

ρ “ HαρV ` p1´ HαqρL (46)

η “ HαηV ` p1´ HαqηL (47)

This system well describes a phase change process with an arbitrary distribution ~9m.
Special attention should be paid on the velocity convecting the Level Set. The velocity
field ~u as well as the correction factor are not constant perpendicular to the interface. This
means a tendency of this formulation to deform the Level Set close to the 0 isovalue. The
presence of ~∇α close to δα allows small deviations from the distance property. However,
this does not not stand above a certain point. To reduce this deformation impact, the value
ρpα “ 0q can be taken instead of ρ for the correction term, without disturbing the mass
conservation property. What is really important is indeed the proper convection of the 0
isovalue. To consider this also avoid the spatial error made on ρ. Otherwise, the Level Set
function shall be reinitialised regularly. The reinitilization technique is the one described by
Shakoor et al. [48]. This is a Direct Reinitialization with Trees (DRT) that uses a geometrical
approach to redefine the distance function from the 0 isovalue of the Level Set function.
It is based on k-dimensional trees applied for Nearest Neighbor Searches to reduce the
computational time of the reinitialization procedure. Further details are available in [48]
that presents the algorithm used in this work.

This formulation is tested on two different benchmarks.

6.5. A 1D Benchmark—Moving Interface

The first benchmark is the convection of a straight line, meaning no theoretical influ-
ence of the surface tension term. The case is solved in 2D, in a 1 m ˆ 1 m square domain.
The vertical interface separates a vapor phase of small density on the left part from a liquid
phase of high density on the right part. A mass transfer 9m is imposed from the vapor to
the liquid phases. The fluids can only escape on the right side, leading to an interface
displacement from left to right along with the liquid being pushed away due to the change
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of density. No slip boundaries conditions are fixed on the left side, and free slip conditions
are fixed on the top and bottom sides. Pressure conditions are set free. This is summed up
in Figure 18.

Figure 18. Description of the Moving Interface Benchmark. Dirichlet conditions are described in this
figure. Boundary conditions for the velocity components and pressure that are not mentioned are
set free.

A constant interface velocity of uI “ 2ˆ 10´3 m s´1 is imposed. Different density
ratios ρL{ρV are considered ranging from 2 to 2000 by changing ρV . 9m is set accordingly to
have the desired uI . The interface starts at a position 0.4 from the left side. The benchmark
is conducted for the fluid properties gathered in Table 2.

Table 2. Physical properties of the considered fluids of the Moving Interface benchmark.

Density ρ Viscosity η Surface Tension γ0
(kg m−3) (Pa s) (J m−2)

Vapor 5ˆ 10−1/5/5ˆ 101/5ˆ 102 1.2ˆ 10−5
6ˆ 10−2

Liquid 103 2.8ˆ 10−4

No reinitialization was conducted for this benchmark, leading to a deformed Level
Set. This enhances the capability of the formulation to handled non reinitialised Level Set
on simple configurations.

The case was computed with four mesh sizes (in m): 5ˆ 10−3, 1ˆ 10−2, 2ˆ 10−2 and
5ˆ 10−2. Four time steps were set accordingly to maintain a constant CFL value of 0.2
related to the interface velocity uI “ 9m{ρV .

Two convergence studies were conducted. In the first one, the parameter ε was set
constant to 0.1 m. In the second one, ε was set consistently with the mesh size h: ε “ 3h.

The considered error is also computed with (35) but with N “ 10 sample points.

6.5.1. Constant ε

Positions for every mesh sizes for the case r “ 2000 is plotted on Figure 19, and the
convergence study for every ratios is plotted in Figure 20.
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Figure 19. Space-time convergence analysis for the Moving Interface benchmark for ε “ 0.1 m.

Figure 20. Interface position in the case r “ 2000 for ε “ 0.1 m for the Moving Interface Benchmark.

Displacement of the interface is properly computed according to the analytical solution,
validating the combination of the two solvers. This is true whatever the ratio of density.
The convergence is well observed, with an order of 2 whatever the density ratio. This is
coherent with the results of the pseudo-compressible square benchmark with A “ 0.01.

Another point of interest is to verify if the mass conservation is properly respected.
The good capturing of the interface displacement tells us that the mass of vapor is consistent
with the analytical value. However, a liquid outflux exists on the right boundary, meaning
a potential source of error. We therefore compare the total mass of the 2D system M:

M “ H
ż s

0
ρV dx` H

ż L

s
ρL dx (48)

where L and H are the width and the height of the domain.
The analytical mass Man is given by the analytical value of s. It is compared with

the simulated mass Msimu computed by (48), and with the integrated mass Mout from the
liquid outflux:

Mout “ Mpt “ t0q ´

ż t

0

ż H

0
~uL ¨ ~ex dy dt (49)
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where ~ex is the horizontal vector pointing to the right.
It is also compared with the mass Mdiv computed by integrating the divergence of the

velocity field:

Mdiv “ Mpt “ t0q ´

ż t

0

ż H

0

ż L

0
~∇ ¨~u dx dy dt (50)

We consider the deviations of Msimu, Mout and Mdiv from Man thanks to the relative
difference |M˚ ´ Man|{Man. These three quantities are plotted in Figure 21 for the con-
figuration hmin “ 5ˆ 10´3 m and ∆t “ 0.5 s. As the interface is properly computed, the
simulated mass is naturally well computed. What is important is to notice that the masses
estimated from the outflux and from the velocity divergence is consistent with the absolute
mass, as the difference remains below 1%. This validates the efficiency of the system to
properly deal with mass conservation.

Figure 21. Comparison of the analytical and simulated mass of the moving interface benchmark
for the configuration hmin “ 5ˆ 10´3 m and ∆t “ 0.5 s. The estimations from the outflux and the
velocity divergence are consistent with the instant mass value.

6.5.2. Varying ε

The idea of the formulation is to reduce the interface size as much as possible, as the
goal is to model a quasi sharp interface. The physical mixing length of a vapor liquid
interface is of the order of magnitude of an Å, though this scale is rarely reached in practice.
ε is then set according to the mesh size value. The same law as for the Stefan problem
described in Section 5 is taken: ε “ 3h.

Doing so, two problems arise. Firstly, numerical instabilities described by [49] are not
handled anymore and disturb the interface. This is not surprising, as the BKZ condition
(∆tBZK ă

a

pρV ` ρLqh3{4πγ0) is exceeded by 2 orders of magnitudes, and the way the sur-
face tension is handled does not fully control these instability, according to [49]. However,
this problem can be handled by reducing the time step.

Secondly, even while canceling the surface tension term or stabilising the case by
increasing viscosity values by a factor 100, no proper convergence is observed up to a
certain point, and a residual error of around 1% remains. For example, interface positions
for a ratio r “ 2000 with higher viscosity are plotted Figure 22.
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Figure 22. Interface position in the case r “ 2000 for ε “ 3h.

This can be explained by the discretization of the Dirac function δα. Considering ε
proportional to h means that the δα function is discretized with the same number of point
whatever the mesh size: 7 discretization points for ε “ 3h (see Figure 23). However most
important is the capability of the function δα to guarantee an integral of 1 over the interface.
However, this is not guaranteed with a fixed amount of sample points in an unstructured
mesh. To demonstrate this, a Python code has been implemented to assess the order of
magnitude of the error made on the integral computation due to the discretization in 1D.

For the sake of an example, considering a constant mesh size h of 1, and still with
ε “ 3h, seven reference sample points are considered, enriched with two extremity sample
points at a distance 4h from the center to cover the entire function:

α̃iPv0,8w “ ´p3` 1qh` h i (51)

A batch of 1000 groups of sample points are created thanks to the random function
rdpq from the numpy library of Python, that allocates a random real between 0 and 1. Every
sample point is randomly placed around a reference sample point at a maximum distance
ζ. This is supposed to represent the non uniformity of the mesh. The bigger ζ, the more
distorted the mesh is.

tαiujPv1,1000w “

"

α̃i ` ζ
rdpq ´ 0.5

0.5

*

(52)

An example of a resulting sampling is plotted in Figure 23.
For different values of ζ, a thousand δα functions with randomised discritization points

are created. Integrals of these functions are then computed. Mean values of the error made
are plotted in Figure 24.

Tests has been carried out with groups of points bigger than 1000 without changing the
results. Thus, these results are assumed to represent well the discretization error conducted
with an unstructured mesh. The order of magnitude of the error is of the percent. This is
the same as the one observed for the interface displacement with ε changing with h. This
explains why the formulation for a varying interface thickness does not properly converge
in mesh size, as a permanent residual error exists due to the sampling of the Dirac function:
if the integral is not properly computed, the integrated velocity field resulting from the
velocity divergence equation deviates from the analytical solution. Then, the convection
velocity of the Level Set equation also deviates from the analytical solution due to the same
error, leading to the error on the interface position.
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Figure 23. Example of discretization of the Dirac function δα in 1D. A thousand similar discretizations
are conducted in the same way using randomized positions around the reference points.

Figure 24. Influence of the value of ζ on the mean value of the integral absolute deviation of the
discretized Dirac functions of every batch.

6.6. A 2D Benchmark—Growing Bubble

For this 2D benchmark, the contribution of the surface tension term is more strongly
observed. Inside a square domain of 0.008 m ˆ 0.008 m, a circular bubble of low density
grows with a constant mass transfer inside a fluid of higher density, as shown in Figure 25.
This fluid is pushed away outside of the domain, whose boundary conditions are of
homogeneous Neumann type. Inside the bubble, a small zone is set at 0 velocity to prevent
the derivation of the Bubble.

A constant mass transfer of 0.1 kg m−2 s−1 from the vapor phase towards the liquid
phase is set. The initial radius of the bubble is 0.001 m. The benchmark is conducted for the
following fluid properties gathered in Table 3.

This time, the Level Set was reinitialized to avoid important distortions of the Level
Set. The reinitialization is conducted every 0.001 s, thus 10 times during the simulation.
This is high enough to ensure that the Level Set is not too deformed, but low enough to
avoid any systematic error due to the DRT method detailed in [48].
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Figure 25. Description of the Growing Bubble Benchmark.

Table 3. Physical properties of the considered fluids for the Growing Bubble test case.

Density ρ Viscosity η Surface Tension γ0
(kg m−3) (Pa s) (J m−2)

Vapor 1 1.78ˆ 10−5
7ˆ 10−2

Liquid 103 10−3

The case was computed with four mesh sizes: (in m): 2ˆ 10−5, 5ˆ 10−5, 1ˆ 10−4 and
2ˆ 10−4. Four different time steps were set accordingly to maintain a constant CFL value
of 0.025 related to the interface velocity 9m{ρV . With these parameters, the BKZ condition is
roughly respected.

Two studies were conducted: in the first one, the parameter ε was set constant to
2ˆ 10−4 m. In the second one, ε was set consistently with the mesh size h: ε “ 3h.

The considered error is based on the radius R, among N “ 10 sample points:

err “
1
N

iPv1,Nw

ÿ

ˇ

ˇ

ˇ
Ri

simu ´ Ri
an

ˇ

ˇ

ˇ
(53)

The study with constant ε leads to a residual error on the radius, even with the smallest
values of time step and mesh size, as shown in Figure 26.

The reason lies inside the thick nature of the interface. When this parameter is not
negligible in comparison to the curvature of radius R, a bias in the formulation is introduced.
Globally, the amount of mass is conserved, but locally, the 0 isovalue is not properly
convected. This can be shown while expressing analytically the velocity for this benchmark.
The Level Set is here positive in the bubble, and negative outside, with Hα being 1 inside
the bubble, and 0 otherwise. Considering that the Level Set is properly reinitialised, writing

~u “ urprq~er, and integrating ~∇ ¨~u “ 1
r
Brur

Br
“

s
1
ρ

{
´

~9m ¨ ~∇α
¯

δα between R´ ε and r leads to:

ur “

s
1
ρ

{
|~9m|

˜

p1´ Hαq ´
1
r

ż r´R

´ε
Hα dα

¸

(54)

Adding the velocity correction term, the 0 isovalue convection velocity reads:

~uIpα “ 0q “ ´
~9m
ρV
`

s
1
ρ

{ ~9m
R

ż 0

´ε
Hα dα (55)
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Which is not the analytical solution ´
~9m
ρV

. A second order term appears, and is not

negligible when ε is not negligible in regards to the curvature radius R. This shows the
need of an order 2 correction term to account for this effect. If the Level Set is not properly
reinitialised, an order 1 linear approximation leads to a modification of the correction term
thanks to the gradient of the Level Set.
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Ra
di
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Numerical solution - Without 2nd order correction
Numerical solution - With 2nd order correction

Figure 26. Impact of the second order correction term on the LS convection velocity the Growing
Bubble benchmark for ε “ 2ˆ 10´4 m.

The convection equation now reads:

Bα

Bt
`

˜

~u´
ρ

ρVρL
~9m´

s
1
ρ

{
~9m

κα

|~∇α|

ż 0

´ε
Hα dα

¸

¨ ~∇α “ 0 (56)

With κα the curvature that is computed thanks to the divergence of the normal given
by the Level Set, as for the Surface Tension term. The integral can be computed analytically
knowing the analytical expression of Hα.

Doing so, the problem is solved and the error vanishes for the smallest values of time
step and mesh size as shown in Figure 26.

Results of the convergence study are shown in Figure 27.
Now, a proper convergence is observed. An order of convergence close to 2 is coherent

with the former results of the moving interface.
Regarding the convergence study when varying ε, the radius for different time steps

and mesh size are plotted in Figure 28.
The error is not very significant for small h and ∆t, but convergence is slower with

mesh size due to the Dirac discretization that requires a very small mesh size. The order of
magnitude of the error is again the same as the one estimated thanks to our Python code,
explaining the convergence of the scheme for varying ε. This is however an error of relative
small importance for more complex cases, and that can be reduced by raising the number
of discretization points to describe δα.

The mass conservation is also verified in this configuration. We follow the same
approach as in Section 6.5.1, the only difference being that this configuration is 2D: the
outflux has to be computed on all the boundaries of the domain. The different deviations
of the mass estimations for the configuration hmin “ 2ˆ 10´5 m and ∆t “ 5ˆ 10´6 s
are plotted in Figure 29. The masses estimated from the outflux and from the velocity
divergence are still consistent with the absolute mass. This validates further the efficiency
of the system to properly deal with mass conservation.
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Figure 27. Space-time convergence analysis for the Growing Bubble benchmark for ε “ 2ˆ 10´4 m.

Figure 28. Radius for different mesh sizes and time steps for the growing bubble benchmark for ε “ 3h.

Figure 29. Comparison of the analytical and simulated mass of the growing bubble benchmark for
the configuration hmin “ 2ˆ 10´5 m and ∆t “ 5ˆ 10´6 s. The estimations from the outflux and the
velocity divergence are still consistent with the instant mass value.
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7. The Complete Phase Change Solver

All the ingredients are now ready for the complete formulation of a phase change
solver. The mass transfer and change of density are taken into account thanks to the
pseudo-compressible solver along with Level Set convection. The surface mass transfer
vector ~9m is computed thanks to the HFJC method described in Section 3.

Special attention should be paid on the distance function property. The HFJC relies on
a proper distance function, and can run improperly if the Level Set is deformed. To ensure
this, a working distance function used for the HFJC method is created by reinitializing the
Level Set at each time step without modifying α itself.

Two benchmarks are studied to assess the validity of the complete formulation.

7.1. A 1D Benchmark—Compressible Stefan Test Case

The compressible Stefan test case is very similar to the incompressible configuration,
except that the liquid phase is pushed back away from the wall. There is thus a convection
term inside the liquid phase that changes the formulation of the energy conservation
equation, and then the temperature distribution.

In the liquid phase, the new equation reads:

BT
Bt
` uL

BT
Bx
“ DL

B2T
Bx2 (57)

The velocity uL is spatially constant, and determined thanks to the velocity jump at
the interface:

uL “

s
1
ρ

{
|~9m| (58)

Boundary conditions (30) do not change. Interface still initialized at 0.0001 m.
The solution of this new version of Stefan benchmark reads:

Tpx, tq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Tω `
Tsat ´ Tω

erfpχq
erf

ˆ

χ
x

sptq

˙

for x P r0, sptqs

T8 `
Tsat ´ T8

erfc
ˆ

χ
ρV
ρL

c

DV
DL

˙

ˆ erfc

¨

˚

˚

˝

χ

x´
ˆ

1´
ρV
ρL

˙

sptq

sptq

c

DV
DL

˛

‹

‹

‚

for x P rsptq,`8r

(59)

The interface displacement is still proportional to the square root of the time:

sptq “ 2χ
a

DV t (60)

With χ given from the energy conservation at the interface that leads to:

ρVLχ
a

DV `
kVpTsat ´ Tωq e´χ2

?
πDV erfpχq

`
kLpTsat ´ T8q e

´χ2
ρ2

V
ρ2

L

DV
DL

?
πDL erfc

ˆ

χ
ρV
ρL

c

DV
DL

˙ “ 0 (61)

Only one configuration is tested: Tω “ Tsat ` 10 K, T8 “ Tsat ´ 1 K. Then
χ “ 2.52ˆ 10´2. The physical properties are given in Table 4.
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Table 4. Physical properties of the considered fluids for the Compressible Stefan test case.

Density ρ Specific Heat Capacity cp Thermal Conductivity k Viscosity η Latent Heat L
(kg m−3) (J kg−1 K−1) (W m−1 K−1) (Pa s) (J kg−1)

Vapor 5.97ˆ 10−1 2.030ˆ 103 2.48ˆ 10−2 1.20ˆ 10−5
2.26ˆ 106

Liquid 9.584ˆ 102 4.216ˆ 103 6.76ˆ 10−1 2.8ˆ 10−4

The test case is computed for an unstructured non uniform 2D mesh of dimension
2ˆ 10−4 by 2ˆ 10−3 m2 with a maximum of 50.000 elements whose mesh size h at the
interface varies among 5 values (in m): 1ˆ 10−6, 2ˆ 10−6, 4ˆ 10−6, 7ˆ 10−6 and 1ˆ 10−5.
Five different time steps were set accordingly to maintain a constant CFL value of 0.2
related to the initial interface velocity 9mpt “ t0q{ρV . The initial position of the interface is
this time 1ˆ 10−4 m. The interface thickness is set to 3h with an extension zone of size 4h.

Results of interface position and mass transfer rate values versus time are plotted in
Figures 30 and 31.

Figure 30. Position of the interface for different mesh sizes and time steps for the compressible Stefan
problem benchmark.

Figure 31. Mass transfer for different mesh sizes and time steps for the compressible Stefan prob-
lem benchmark.

The convergence is considered regarding the error on the interface position, computed
with (35) with N “ 100 sample points. The convergence is plotted in Figure 32.
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Figure 32. Space-time convergence analysis for the compressible Stefan problem benchmark.

The convergence is well observed, with an order 1 that is coherent with the prediction
of (16). The computed errors are above the order of magnitude of the one caused by the
discretization of the Dirac, explaining why it does not disturb the convergence. This may
appear for smaller time steps and mesh sizes.

The mass conservation is once again verified. We strictly follow the same approach
as in Section 6.5.1. The different mass deviations for the configuration hmin “ 2ˆ 10´6 m
and ∆t “ 2ˆ 10´5 s are plotted in Figure 33. The masses estimated from the outflux and
from the velocity divergence are still consistent with the absolute mass, though the error is
a little higher but still below 1%.

Figure 33. Comparison of the analytical and simulated mass of the compressible Stefan benchmark
for the configuration hmin “ 2ˆ 10´6 m and ∆t “ 2ˆ 10´5 s. The mass deviations are higher at the
beginning of the simulation due to the error in mass transfer that is higher at higher heat fluxes.

7.2. A 1D Benchmark—Adiabatic Problem

We propose to tackle a complementary study with adiabatic boundary conditions
inspired by the work of Santiago et al. [39]. This allows to challenge differently the respect
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of the energy conservation. It consists of setting an arbitrary temperature field on a domain
with both liquid and vapor separated by a planar interface, and to let the system evolve to
the steady state – either one of the phase vanishes, or the system temperature tends to Tsat.
In our consideration, the vapor is blocked by the wall at x “ 0, and the liquid is allowed to
move with an initial right boundary at x “ L0 “ Lpt0q, as shown in Figure 34.

Figure 34. Schematic description of the adiabatic problem.

If the initial temperature field Tp0 ă x ă L, t0q and the initial interface position
s0 “ spt0q are set so that the steady state is a mixture of liquid and vapor at Tsat, then the
available thermal energy E over a section S reads:

E “ SρVcpV

ż s0

0
pTpx, t0q ´ Tsatqdx´ SρLcpL

ż L0

s0

pTsat ´ Tpx, t0qqdx (62)

Over the conditions that E is positive, meaning that there is an excess of energy
regarding the steady state at Tsat for the same proportion of liquid and vapor, all this energy
is transformed to vaporise a portion of liquid:

E “ ρVSLps8 ´ s0q “ ρVSL∆s (63)

with s8 “ spt Ñ8q the final interface position.
Thus, for a given initial temperature field that fulfills theses conditions, the final

displacement of the liquid vapor interface is:

∆s “

˜

ρVcpV

ż s0

0
pTpx, t0q ´ Tsatqdx ´ρLcpL

ż L0

s0

pTsat ´ Tpx, t0qqdx

¸

{pρVLq (64)

This is related to a certain amount of liquid that vaporizes, leading to the liquid
interface displacement:

∆L “
ˆ

1´
ρV
ρL

˙

∆s (65)

In our study, the initial temperature profile considered reads:

Tpx, t0q “

$

’

’

&

’

’

%

pTsat ´ Tωq

ˆ

x
s0

˙2
` Tω for x P r0, s0s

pTsat ´ T8q
ˆ

L0 ´ x
L0 ´ s0

˙2
` T8 for x P rs0, L0r

(66)

with Tω “ 1100 °C and T8 “ 99.9 °C. The liquid vapor interface is set at s0 “ 0.5 mm from
the wall, and the liquid boundary is initially at L0 “ 1 mm from the wall. The material
properties of liquid and water are taken from Table 4.
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The test case is computed for an unstructured non uniform 2D mesh of dimension
2ˆ 10−4 by 2ˆ 10−3 m2 with a maximum of 25.000 elements whose mesh size hmin at the
interface is set to 2ˆ 10−6 m. The end of the liquid interface is represented by another Level
Set to enable its movement. To guaranty adiabatic conditions, the rest of the domain (x ą L)
is set with a reduced conductivity (1ˆ 10−6 W m−1 K−1). This way the temperature gradient
is approximately null at the liquid boundary. A time step of 1ˆ 10−5 s is set. The simulation
runs until a time t8 “ 5 s to ensure that it reaches the steady state.

The liquid vapor interface and the liquid boundary position are plotted in Figure 35.
First of all, the steady state is consistent with the analytical value. The absolute final error
on both interface positions is around 5ˆ 10−6 m, which is of the order of magnitude of the
minimum mesh size, and three orders of magnitude lower than the system lengthscale,
proving a proper respect of the energy conservation. It is also interesting to notice that the
system vaporises too much before condensing to reach the steady state, which is consistent
with the difference of diffusivity between the liquid and the vapor phases. The vapor phase
diffusivity being higher, conduction inside the vapor is stronger and the steady state is
reached faster. Thus, all the thermal potential energy of vapor is given to the interface
before the liquid recovers part of it.

Figure 35. Comparison of the simulated liquid vapor interfaces and liquid boundary positions
compared with the steady state analytical solution of the adiabatic problem.

8. Conclusions and Perspectives

In this article, an extension of an existing Finite Element solver based on the Continu-
ous Surface Force approach and adapted to phase change systems has been developed. In
comparison to other phase change approaches, it has the advantage of an easy and light
numerical implementation. The main conclusions are gathered hereafter:

• This methods has been tested and validated on several analytic tests and isochoric
Stefan Problem without and with subcooling.

• Then a remeshing algorithm has been added and good results are showed for the
combination of these two methods on a stiffer Stefan problem.

• A Navier–Stokes solver embedding a source term in the mass conservation equation
has been developed and coupled with a new formulation of the Level Set convection
equation to account for a density change during phase change. This framework has
been tested and validated on simple 1D and 2D benchmarks. The discretization of the
interface has been shown to be a critical feature to control for a proper behavior of
the method.
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• Finally, these two frameworks have been merged to create a complete phase change
solver. It has been tested on a compressible Stefan problem. The conclusion is that this
solver is valid for stable configurations where no phase is overheated or undercooled.

• The model is based on several simplifications : the fluids are considered incom-
pressible, only thermal energy variations are prevailing, the interface is in thermal
equilibrium, and the viscous dissipation is negligible. This framework is then appli-
cable only in those conditions. Thus, violent thermal shock waves are not modeled,
which can be troublesome when dealing with boiling modeling. Furthermore, second
order effects due to the compressibility of vapor are not taken into account, and the
simulation can under-estimate hydrodynamical effects.

Future works are expected to deal with 3D tests and add a suitable wetting model.
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Abbreviations
The following abbreviations are used in this manuscript:

LS Level Set
CSF Continuous Surface Force
t Time (s)
~u Velocity (m¨s´1)
P Pressure (Pa)
T Temperature (K)
~q Heat flux (W¨m´2)
~9m Surface mass transfer rate vector (kg¨s´1¨m´2)
s Interface position (m)
R Radius (m)
M Mass (kg)
d 9M Local mass transfer rate (kg¨s´1)
~uI Interface velocity (m¨s´1)
dS Infinitesimal surface (m2)
dV Infinitesimal volume (m3)
ρ Density (kg¨m´3)
η Dynamic viscosity (Pa¨s)
cp Specific heat capacity at constant pressure (J¨K´1¨kg´1)
k Thermal conductivity (W¨m´1¨K´1)
Tsat Saturation temperature of the fluid at atmospheric pressure (K)
L Specific enthalpy of vaporization at saturation temperature (J¨kg´1)
D Thermal diffusivity (m2¨s´1)
γ0 Surface tension coefficient (J¨m´2)
~g Gravity (m¨s´2)
9ε Strain rate tensor (s´1)
χ Stefan constant (∅)
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L Liquid
V Vapor
ω Wall
8 Far from the interface
~n Normal vector of the liquid-vapor interface
d Distance function
α Level Set function
Hα Heaviside function
δα Dirac function
ε Characteristic length of the smoothed interface
~∇ Gradient operator
~∇¨ Divergence operator
λ Diffusivity of the extension solver
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21. Sato, Y.; Ničeno, B. A sharp-interface phase change model for a mass-conservative interface tracking method. J. Comput. Phys.

2013, 249, 127–161. [CrossRef]
22. Khalloufi, M.; Valette, R.; Hachem, E. Adaptive Eulerian framework for boiling and evaporation. J. Comput. Phys. 2020,

401, 109030. [CrossRef]
23. Kumar Singh, N.; Premachandran, B. A coupled level set and volume of fluid method on unstructured grids for the direct

numerical simulations of two-phase flows including phase change. Int. J. Heat Mass Transfer 2018, 122, 182–203. [CrossRef]

http://doi.org/10.2172/4175511
http://dx.doi.org/10.1021/i260019a023
http://dx.doi.org/10.1115/1.3450610
http://dx.doi.org/10.1016/B978-0-85295-175-0.50013-8
http://dx.doi.org/10.1115/1.3248153
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.03.032
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.040
http://dx.doi.org/10.1142/9789814460286_0004
http://dx.doi.org/10.1115/1.4026808
http://dx.doi.org/10.1063/5.0058987
http://dx.doi.org/10.1115/1.2830042
http://dx.doi.org/10.1016/S0301-9322(97)00050-5
http://dx.doi.org/10.1006/jcph.2000.6481
http://dx.doi.org/10.1023/A:1011178417620
http://dx.doi.org/10.1016/j.jcp.2006.07.003
http://dx.doi.org/10.1016/j.jcp.2006.07.035
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.07.027
http://dx.doi.org/10.1016/j.jcp.2013.04.035
http://dx.doi.org/10.1016/j.jcp.2019.109030
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.01.091


Fluids 2023, 8, 233 37 of 37

24. Hachem, E.; Rivaux, B.; Kloczko, T.; Digonnet, H.; Coupez, T. Stabilized finite element method for incompressible flows with
high Reynolds number. J. Comput. Phys. 2010, 229, 8643–8665. [CrossRef]

25. Unverdi, S.O.; Tryggvason, G. A Front-Tracking Method for Viscous, Incompressible, Multi-fluid Flows. J. Comput. Phys. 1992,
100, 25–37. [CrossRef]

26. Sussman, M.; Smereka, P.; Osher, S. A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows.
J. Comput. Phys. 1994, 114, 146–159. [CrossRef]

27. Osher, S.; Fedkiw, R. Level Set Methods and Dynamic Implicit Surfaces; Applied Mathematical Sciences; Springer: Berlin/Heidelberg,
Germany, 2004; Volume 153.

28. Feng, Q.; Johannsen, K. Experimental results of maximum transition boiling temperature during upflow in a circular tube at
medium pressure. Exp. Therm. Fluid Sci. 1991, 4, 90–102. [CrossRef]

29. Ebrahim, S.A.; Chang, S.; Cheung, F.B.; Bajorek, S.M. Parametric investigation of film boiling heat transfer on the quenching of
vertical rods in water pool. Appl. Therm. Eng. 2018, 140, 139–146. [CrossRef]

30. Liscic, B.; Tensi, H.M.; Luty, W. Theory and Technology of Quenching; Springer: Berlin/Heidelberg, Germany, 1992.
31. Kim, J.; Benton, J.F.; Wisniewski, D. Pool boiling heat transfer on small heaters: effect of gravity and subcooling. Int. J. Heat Mass

Transfer 2002, 45, 3919–3932. [CrossRef]
32. Ikkene, R.; Koudil, Z.; Mouzali, M. Pouvoir de refroidissement des solutions de trempe à base de polymères hydrosolubles.

Comptes Rendus Chim. 2008, 11, 297–306. [CrossRef]
33. Kopun, R.; Škerget, L.; Hriberšek, M.; Zhang, D.; Stauder, B.; Greif, D. Numerical simulation of immersion quenching process for

cast aluminium part at different pool temperatures. Appl. Therm. Eng. 2014, 65, 74–84. [CrossRef]
34. Hachem, E.; Feghali, S.; Codina, R.; Coupez, T. Immersed stress method for fluid–structure interaction using anisotropic mesh

adaptation: a monolithic approach to fluid–structure interaction. Int. J. Numer. Meth. Engng 2013, 94, 805–825. [CrossRef]
35. Aslam, T.D. A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys. 2004, 193, 349–355.

[CrossRef]
36. Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Series in Computational Methods in Mechanics and Thermal Sciences;

Hemisphere Publ. Co.: New York, NY, USA, 1980.
37. Hachem, E. Stabilized Finite Element Method for Heat Transfer and Turbulent Flows Inside Industrial Furnaces. Ph.D. Thesis,

Ecole Nationale Supérieure des Mines de Paris, Paris, France, 2009.
38. Hachem, E.; Kloczko, T.; Digonnet, H.; Coupez, T. Stabilized finite element solution to handle complex heat and fluid flows in industrial

furnaces using the immersed volume method. Int. J. Numer. Meth. Fluids 2012, 68, 99–121. [CrossRef]
39. Santiago, R.D.; Hernández, E.M.; Otero, J.A. Constant mass model for the liquid–solid phase transition on a one-dimensional Stefan

problem: Transient and steady state regimes. Int. J. Therm. Sci. 2017, 118, 40–52. [CrossRef]
40. Chaurasiya, V.; Singh, J. An analytical study of coupled convective heat and mass transfer with volumetric heating describing

sublimation of a porous body under most sensitive temperature inputs: Application of freeze-drying. Int. J. Heat Mass Transf.
2023, 214, 124294. [CrossRef]

41. Chaurasiya, V.; Singh, J. Numerical investigation of a non-linear moving boundary problem describing solidification of a phase
change material with temperature dependent thermal conductivity and convection. J. Therm. Stress. 2023, 46, 799–822. [CrossRef]

42. Chaurasiya, V.; Jain, A.; Singh, J. Numerical Study of a Non-Linear Porous Sublimation Problem With Temperature-Dependent
Thermal Conductivity and Concentration-Dependent Mass Diffusivity. ASME J. Heat Mass Transf. 2023, 145, 072701. [CrossRef]

43. Chaurasiya, V.; Upadhyay, S.; Rai, K.; Singh, J. A temperature-dependent numerical study of a moving boundary problem with variable
thermal conductivity and convection. Waves Random Complex Media 2023, 1–25. . [CrossRef]

44. Kim, D.G.; Jeon, C.H.; Park, I.S. Comparison of numerical phase-change models through Stefan vaporizing problem. Int. Commun.
Heat Mass 2017, 87, 228–236. [CrossRef]

45. Denis, R. Modélisation et Simulation de l’effet Leidenfrost dans les Micro-Gouttes. Ph.D. Thesis, Université de Grenoble,
Grenoble, France, 2014.

46. Ramezanzadeh, H.; Ramiar, A.; Yousefifard, M. Numerical investigation into coolant liquid velocity effect on forced convection
quenching process. Appl. Therm. Eng. 2017, 122, 253–267. [CrossRef]

47. Khalloufi, M.; Mesri, Y.; Valette, R.; Massoni, E.; Hachem, E. High fidelity anisotropic adaptive variational multiscale method for
multiphase flows with surface tension. Comput. Methods Appl. Mech. Eng. 2016, 307, 44–67. [CrossRef]

48. Shakoor, M.; Scholtes, B.; Bouchard, P.O.; Bernacki, M. An efficient and parallel level set reinitialization method—Application to
micromechanics and microstructural evolutions. Appl. Math. Model. 2014, 39, 7291–7302. [CrossRef]

49. Denner, F.; van Wachem, B.G. Numerical time-step restrictions as a result of capillary waves. J. Comput. Phys. 2015, 285, 24–40.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jcp.2010.07.030
http://dx.doi.org/10.1016/0021-9991(92)90307-K
http://dx.doi.org/10.1006/jcph.1994.1155
http://dx.doi.org/10.1016/0894-1777(91)90023-K
http://dx.doi.org/10.1016/j.applthermaleng.2018.05.021
http://dx.doi.org/10.1016/S0017-9310(02)00108-4
http://dx.doi.org/10.1016/j.crci.2007.09.005
http://dx.doi.org/10.1016/j.applthermaleng.2013.12.058
http://dx.doi.org/10.1002/nme.4481
http://dx.doi.org/10.1016/j.jcp.2003.08.001
http://dx.doi.org/10.1002/fld.2498
http://dx.doi.org/10.1016/j.ijthermalsci.2017.04.011
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124294
http://dx.doi.org/10.1080/01495739.2023.2203174
http://dx.doi.org/10.1115/1.4057024
http://dx.doi.org/10.1080/17455030.2023.2186772
http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.07.013
http://dx.doi.org/10.1016/j.applthermaleng.2017.05.008
http://dx.doi.org/10.1016/j.cma.2016.04.014
http://dx.doi.org/10.1016/j.apm.2015.03.014
http://dx.doi.org/10.1016/j.jcp.2015.01.021

	Introduction 
	Phase Change Modeling
	Mathematical Framework — Level Set Method
	Continuous Description of Phase Change

	Heat Flux Jump Computation
	Description of the Extension Method
	The Disc Case
	Determination of Heat Flux Jumps over a Smooth Interface
	Precision of the Method

	Two-Phase Thermal Solver
	Thermal Equations
	Stabilization
	Numerical Method and Mesh

	The Isochoric Stefan Problem
	Reminders of the Problem
	Studied Cases
	Case 1: Without Subcooling
	Case 2: With a Small Subcooling
	Case 3: With a High Subcooling

	Results
	Precision and Accuracy Order

	Multiphase Pseudo-Compressible Framework
	Pseudo-Compressible Navier–Stokes Solver
	Numerical Method
	A 2D Benchmark—The Pseudo-Compressible Square
	Combination with the Level Set method
	A 1D Benchmark—Moving Interface
	Constant 
	Varying 

	A 2D Benchmark—Growing Bubble

	The Complete Phase Change Solver
	A 1D Benchmark—Compressible Stefan Test Case
	A 1D Benchmark—Adiabatic Problem

	Conclusions and Perspectives
	References

