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Abstract: We review and extend the theory of ideal, homogeneous, incompressible, magnetohy-
drodynamic (MHD) turbulence. The theory contains a solution to the ‘dynamo problem’, i.e., the
problem of determining how a planetary or stellar body produces a global dipole magnetic field. We
extend the theory to the case of ideal MHD turbulence with a mean magnetic field that is aligned
with a rotation axis. The existing theory is also extended by developing the thermodynamics of
ideal MHD turbulence based on entropy. A mathematical model is created by Fourier transforming
the MHD equations and dynamical variables, resulting in a dynamical system consisting of the
independent Fourier coefficients of the velocity and magnetic fields. This dynamical system has a
large but finite-dimensional phase space in which the phase flow is divergenceless in the ideal case.
There may be several constants of the motion, in addition to energy, which depend on the presence,
or lack thereof, of a mean magnetic field or system rotation or both imposed on the magnetofluid; this
leads to five different cases of MHD turbulence that must be considered. The constants of the motion
(ideal invariants)—the most important being energy and magnetic helicity—are used to construct
canonical probability densities and partition functions that enable ensemble predictions to be made.
These predictions are compared with time averages from numerical simulations to test whether or not
the system is ergodic. In the cases most pertinent to planets and stars, nonergodicity is observed at
the largest length-scales and occurs when the components of the dipole field become quasi-stationary
and dipole energy is directly proportional to magnetic helicity. This nonergodicity is evident in the
thermodynamics, while dipole alignment with a rotation axis may be seen as the result of dynamical
symmetry breaking, i.e., ‘broken ergodicity’. The relevance of ideal theoretical results to real (forced,
dissipative) MHD turbulence is shown through numerical simulation. Again, an important result is a
statistical solution of the ‘dynamo problem’.

Keywords: coherent structure; dynamo; magnetohydrodynamics; statistical mechanics; turbulence

1. Introduction

Our purpose here is to review the statistical mechanics of ideal, homogeneous magne-
tohydrodynamic (MHD) turbulence and to show how this leads to a solution to the so-called
dynamo problem. We also develop new theoretical results in the case of a turbulent mag-
netofluid in which the rotation axis and mean magnetic field are parallel. Numerical
simulation will be used to verify the theory of ideal MHD turbulence and to show how
these results apply to real, i.e., forced and dissipative, MHD turbulence.

Planets and stars generally rotate and possess a strong, quasi-stationary, mostly dipole
magnetic field, i.e., a magnetic coherent structure. Over a hundred years ago, it was
conjectured that internal magnetic fields coupled to fluid motions within the Sun and
the Earth were responsible for creating and maintaining their respective global magnetic
dipole fields [1]. Deducing the mechanism for this came to be called the ‘dynamo problem’.
A heat flux from deep inside induces MHD turbulence in planetary liquid cores and
stellar interiors and because of their large size, the flow has high Reynolds number and
is convectively forced. If such planets and stars are stable for long periods of time, their
interiors, where their global magnetic fields originate, are in states of quasi-equilibrium with
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statistical characteristics that have become quasi-stationary, which warrants the application
of statistical mechanics, as we will do here. These relatively stable interiors may be
contrasted to coronal mass ejections, for example, whose transient nature, if it evolves too
quickly, may not allow equilibrium statistical mechanics to be applied in a global sense.

Almost seventy years ago, it was recognized that for ‘the dynamo problem, that
is . . . the problem of generating and maintaining magnetic fields which draw their en-
ergy from the mechanical energy of the fluid, the nonlinear character of the equations is
altogether essential’, as it produces ‘turbulence, the most conspicuous of the nonlinear
phenomena of fluid dynamics’ [2]. More recently, numerical simulations of the geody-
namo [3–5] established that MHD processes within the Earth’s liquid core were capable of
creating a magnetic field similar to the actual geomagnetic field, including reversals of the
dominant dipole component. There have been many laboratory experiments [6,7] also and
some have shown the growth of self-generated magnetic fields, i.e., dynamo action [8–10].

Even though computer codes based on the MHD equations have been successful in
simulating the geodynamo, and various experiments have shown a dynamo effect, the
fundamental MHD origin of a quasi-steady, dominant, geomagnetic dipole field remained
a theoretical mystery [11]—the so-called ‘dynamo problem’. There have been several ap-
proaches over the years to solve this mystery—that it is purely due to rotation [12]—many,
many unsuccessful attempts to find a kinematic dynamo theory [13–23], and mean-field-
electrodynamics (MFE) [24–26], but MFE is non-viable because it is essentially a circular
argument [27]. It has long been acknowledged [2,28–32] that turbulence is a factor in
dynamo action but the focus was usually on the small-scales of turbulence and the con-
nection with a largest-scale magnetic field was not really understood. We believe that a
true understanding of how turbulence is connected to dynamo action lies in the statistical
theory of MHD turbulence, the details of which will be reviewed here.

To a high order of accuracy, the regions inside planets and stars that contain turbulent
magnetofluid can be modeled as spherical shells. Since planetary and stellar Reynolds
numbers are large, we can initially consider the magnetofluid to be ideal, i.e., without dissi-
pation, although we can add viscosity and magnetic diffusivity later to test the applicability
of ideal theory to reality. We will treat the magnetofluid as incompressible, as is commonly
the case in geodynamo simulations [3–5]. This assumes, of course, that changes in fluid
density do not significantly affect the magnetic field evolution equation (except through
transport coefficients, which are absent in the ideal case) and it is the dynamic magnetic
field that is of primary interest here.

Various boundary conditions (b.c.s) exist and can be applied to a spherical shell but
these are of secondary importance in the ideal case. In the case of the geodynamo, it is
not even clear what the outer core boundaries actually look like [33]. In previous analysis
of ideal MHD turbulence in a spherical shell [34], normal components of both velocity
and magnetic field were assumed to be zero on the boundaries. Velocity and magnetic
fields were expanded in terms of spherical Bessel functions and spherical harmonics.
These expansions involved so-called Chandrasekhar-Kendall (C-K) eigenfunctions [35],
which have been used for analysis [36], as well as for numerical simulations of MHD
turbulence [37,38], although these simulations were, and still are, of very low resolution.
Rather than boundary conditions, which are uncertain, our primary focus is on turbulence
and, in particular, on its statistical description.

As it turns out, ideal MHD turbulence statistical mechanics takes essentially the same
form in spherical shell models as it does in a model magnetofluid that is contained in a
periodic box (where velocity and magnetic fields are represented by Fourier series and
there are no boundaries) [34]. Thus, a periodic box model is a surrogate for a spherical
shell model. A further reason, and one of great practical importance, is that numerical
simulations using Fourier transform methods allow for the much larger grid-sizes needed
to adequately test the statistical theory of ideal MHD turbulence, since it has been shown
that a large-enough grid-size is needed [39,40], but one that is not so large that long-term
MHD processes remain undiscovered .
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Thus, homogeneous, incompressible MHD turbulence in a periodic box with sufficient
resolution is the model we choose to examine. Fourier transformation of the MHD equa-
tions leads to a nonlinear dynamical system with a huge number of interacting Fourier
coefficients, analogous to a gas containing many atoms (except that there is no compress-
ibility). In the case of an ideal gas, statistical methods lead to predictions of equipartition of
energy amongst the atoms. In the case of MHD turbulence, however, a lack of equipartition
can and does occur [41], in which a few largest-scale modes contain much greater energy
than any of the smaller-scale modes [42,43]. A critical difference between an ideal gas and
ideal MHD turbulence is that the former only has one ideal invariant, the energy, while
the latter can have up to two more ideal invariants in addition to energy. Since probability
densities are based on the ideal invariants a system has, the statistical theory of ideal MHD
turbulence differs significantly from that of an ideal gas.

When these largest-scale modes in a turbulent magnetofluid become large enough,
they also become quasi-stationary [42,43] and, if there is rotation, will align themselves
with the rotation axis of the system [27,44,45]. These largest scale modes comprise the
‘dipole’ in MHD turbulence. This is the case for planets and stars which can be rotating, but
have no externally applied constant (mean) magnetic field. If there is an externally imposed
mean magnetic field in an experimental apparatus, however, equipartition can occur, as
long as the mean magnetic field and rotation axis are not parallel; if they are parallel, a
weak dynamo action can occur. In total, there are five Cases of MHD turbulence that are
differentiated by the number and kind of ideal invariants that each Case has; these are
listed in Table 1. Along with the energy E, these ideal invariants may include magnetic
helicity HM, cross helicity HC [46] or parallel helicity HP [47]. These ideal invariants will
be defined presently.

Table 1. Cases with different ideal invariants for ideal MHD turbulence. The ‘parallel helicity’ of
Case IV is HP = HC − σHM and occurs when Ωo = σBo, i.e., Ωo is parallel to Bo.

Case Mean Field Rotation Invariants
I Bo = 0 Ωo = 0 E, HC, HM
II Bo = 0 Ωo ̸= 0 E, HM
III Bo ̸= 0 Ωo = 0 E, HC
IV Bo ̸= 0 Ωo = σBo E, HP
V Bo ̸= 0 Ωo × Bo ̸= 0 E

Here, we will review ideal MHD statistical theory, which predicts [48,49], for Cases I
and II of Table 1, a large-scale magnetic field that is quasi-stationary with a ‘dipole’ energy
ED that is related to the magnetic helicity HM and the wavenumber kmin of the largest-scale
modes, by the expression

ED = kmin|HM|. (1)

The separation of dipole components from turbulent dynamics will also be explicitly seen
in the thermodynamics of ideal MHD turbulence. Equation (1) may be viewed as an ‘ideal
MHD law’ analogous to the ideal gas law; there is a similar result in Case IV, involving
parallel helicity HP and also total energy E, though there appears to be much less ‘dipole’
energy. The turbulent MHD relation (1) may be reminiscent of the relation between total
magnetic energy EM and HM in a relaxed, non-turbulent ‘Taylor state’ [50], where EM
is minimized through dissipation while HM is held constant, so that EM = kmin|HM|;
however, in the ideal result (1), EM does not appear and is not required to be a minimum
with respect to HM (and generally is not). As it turns out, (1) also seems to apply to
dissipative and forced MHD turbulence in which energy and other ideal invariants achieve
quasi-stationarity.

As will be seen, the appearance of a quasi-stationary dipole component of the magnetic
field in the most geophysically and astrophysically pertinent Cases, i.e., I and especially II,
indicates nonergodicity in MHD turbulence, which is very apparent in numerical simula-
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tions and also manifests itself in the Earth’s geomagnetic dipole field. This nonergodicity
can be viewed as being due to a statistically expected symmetry being dynamically broken,
i.e., ‘broken ergodicity’. Again, these results survive the addition of forcing and dissipation
to the magnetofluid as has been shown in previous studies of helically forced, dissipative
MHD turbulence [27,44,45]. We will also present similar evidence here.

Next, we review the mathematical model, statistical mechanics, thermodynamics,
and numerical procedure, as well as present new theoretical results, along with new
computational results drawn from ideal and real 1283 and 643 simulations. These are
followed by a discussion of these results and their great relevance to the dynamo problem.
All this leads to our conclusion that the statistical mechanics of MHD turbulence contains a
solution to the ‘dynamo problem’.

2. Review of Ideal MHD Statistical Mechanics

In this section, we summarize the results that appear in more detail in previous
papers [48,49], which also have further references. With regard to MHD general references,
there are several good books available, if needed [51–53].

2.1. Basic Equations

The non-dimensional form of the 3-D incompressible MHD equations in a rotating
frame of reference with constant angular velocity Ωo and mean magnetic field Bo (i.e., con-
stant in space and time) can be written as

∂ω

∂t
= ∇× [u × (ω + 2Ωo) + j × (b + Bo)] + ν∇2ω, (2)

∂b
∂t

= ∇× [u × (b + Bo)] + η∇2b. (3)

Here, u(x, t) and b(x, t) are the turbulent velocity and magnetic fields, respectively. Velocity
and magnetic fields are solenoidal: ∇ · u = ∇ · b = 0, as is appropriate for laboratory
experiments and the Earth’s outer core [3]. The vorticity ω(x, t) and electric current density
j(x, t) are defined by

ω = ∇× u, j = ∇× b. (4)

Non-dimensional density does not appear in (2) because it equals unity. The symbols
ν in (2) and η in (3) are shorthand for 1/RE and 1/RM, i.e., the inverses of the kinetic
and magnetic Reynolds numbers, respectively. In the dimensional form of the equations,
ν is the kinematic viscosity, while η is the magnetic diffusivity and ν = η = 0 for ideal
MHD turbulence. Again, we avoid the complication of boundary conditions by placing the
magnetofluid in a periodic box and expanding the various fields in terms of Fourier series.

2.2. Fourier Representation

Discrete Fourier transforms for u and b, connecting x-space to k-space, are[
u(x, t)
b(x, t)

]
= ∑

k

[
ũ(k, t)
b̃(k, t)

]
exp(ik · x)

N3/2 , (5)

[
ũ(k, t)
b̃(k, t)

]
= ∑

x

[
u(x, t)
b(x, t)

]
exp(−ik · x)

N3/2 . (6)

Here, N is the number of grid points in each x-space dimension, so we have a grid of N3

points. The set of positions x and wave vectors (modes) k appearing in (5) and (6) are

x = xx̂ + yŷ + zẑ =
2π

N
(
nxx̂ + nyŷ + nzẑ

)
, (7)

k = kxx̂ + kyŷ + kzẑ. (8)
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The components nj and k j, j = x, y, z, are integers. The nj satisfy 0 ≤ nj < N, while the
integers k j lie in the range −N/2 + 1 and +N/2; thus, there are N3 points in both spaces.
The Fourier coefficients ũ(k, t) and b̃(k, t) are nonzero only for 1 ≤ k ≤ K < N/2, where
k = |k|.

In k-space, the requirements ∇ · u = ∇ · b = 0 become ik · ũ(k, t) = ik · b̃(k, t) = 0.
Thus, ũ(k, t) and b̃(k, t) have two independent complex vector coefficients each, which can
be defined [54,55] as follows: First, determine a coordinate system for each k by starting
with a unit vector ê3(k) = k/k = k̂; then choosing a unit vector ê1(k) orthogonal to ê3(k);
the remaining unit vector ê2(k) is a vector product of the first two, forming a right-handed
orthonormal basis for each k:

ê1(k) · ê3(k) = 0, ê2(k) = ê3(k)× ê1(k),

êi(k) · êj(k) = δij, ê1(k) · ê2(k)× ê3(k) = 1.

In terms of the êj(k) defined above, the Fourier vector coefficients are

ũ(k, t) = ũ1(k, t)ê1(k) + ũ2(k, t)ê2(k), (9)

b̃(k, t) = b̃1(k, t)ê1(k) + b̃2(k, t)ê2(k). (10)

Equivalent, but perhaps more useful, is the helical representation:

ũ(k, t) = ũ+(k, t)ê+(k) + ũ−(k, t)ê−(k), (11)

b̃(k, t) = b̃+(k, t)ê+(k) + b̃−(k, t)ê−(k). (12)

Here, the positive and negative helicity unit vectors and components are

ê±(k) =
1√
2
[ê1(k)± iê2(k)], (13)

ũ±(k, t) =
1√
2
[ũ1(k, t)∓ iũ2(k, t)], (14)

b̃±(k, t) =
1√
2

[
b̃1(k, t)∓ ib̃2(k, t)

]
. (15)

Note that ê∗±(k) = ê∓(k). The orthonormality properties of the ê±(k) are

ê±(k) · ê∗±(k) = 1, ê±(k) · ê±(k) = 0 = ê3(k) · ê±(k). (16)

An important property of the helical unit vectors concerns the curl operation:

ik × ê±(k) = ±kê±(k), (17)

The velocity, vorticity, magnetic field and current are, in helical form,

ũ(k, t) = ũ+(k, t)ê+(k) + ũ−(k, t)ê−(k), (18)

ω̃(k, t) = k[ũ+(k, t)ê+(k)− ũ−(k, t)ê−(k)], (19)

b̃(k, t) = b̃+(k, t)ê+(k) + b̃−(k, t)ê−(k), (20)

j̃(k, t) = k[b̃+(k, t)ê+(k)− b̃−(k, t)ê−(k)]. (21)
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As can be seen, the helical ± components of vorticity ω̃±(k, t) = ±kũ±(k, t) and current
j̃±(k, t) = ±kb̃±(k, t) are directly connected to velocity and magnetic field ± helical
components.

2.3. A Dynamical System

The Fourier-transformed 3-D MHD equations are found by placing expansions for
ω(x, t) and b(x, t) of the form (5) into (2) and (3). The result is a set of coupled, nonlinear
ordinary differential equations that represents a dynamical system in the sense of [56]:

d ω̃(k, t)
dt

= S̃(u, ω; k, t) + S̃(j, b; k, t) + 2i(k · Ωo) ũ(k, t)

+i(k · Bo)j̃(k, t)− νk2ω̃(k, t), (22)

d b̃(k, t)
dt

= S̃(u, b; k, t) + i(k · Bo) ũ(k, t)− ηk2b̃(k, t). (23)

The nonlinear terms denoted by S̃ are vector convolutions:

S̃(u, b; k, t) =
i

N3/2 k × ∑
p+q=k

[
ũ(p, t)× b̃(q, t)

]
. (24)

The double summation in (24) is over all wavevectors p and q inside the truncation volume
in k-space that satisfy p + q = k.

Note that S̃(u, b; k, t) as defined in (24) is a summation that does not include ũ(k, t)
or b̃(k, t); this applies to all of the S̃ appearing in (22) and (23). Thus, the components of
flow in phase space ˙̃ω(k, t) = d ω̃(k, t)/dt and ˙̃b(k, t) = d b̃(k, t)/dt satisfy, for ideal MHD
(ν = η = 0),

∂ ˙̃ω(k, t)
∂ω̃(k, t)

= 0 =
∂ ˙̃b(k, t)
∂b̃(k, t)

. (25)

This result is a ‘Liouville theorem’ and is essential for defining the probability density D in
the phase space of ideal MHD turbulence, as will be seen in Section 4.

2.4. Linear Modes

The dynamic Equations (22) and (23) be can linearized and put into a matrix form:

dU±(k, t)
dt

= iM±U±(k, t), U±(k, t) =
[

ũ±(k, t)
b̃±(k, t)

]
, (26)

M± =

[
±2A B

B 0

]
, A = Ωo · k̂, B = Bo · k. (27)

The eigenmodes of this linear system are

V±(k, t) =

 Ṽ±
1 (k, t)

Ṽ±
2 (k, t)

 = E±
†
TU±(k, t)

(28)

=

 exp[∓iΩ1(k)t] T11 ũ±(k, t) + exp[∓iΩ1(k)t] T12 b̃±(k, t)

exp[∓iΩ2(k)t] T21 ũ±(k, t) + exp[∓iΩ2(k)t] T22 b̃±(k, t)

.
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The matrix elements Tnm, n, m = 1, 2, and eigenfrequencies Ωj(k), j = 1, 2, are

T =

 T11 T12

T21 T22

 =


(

A +
√

A2 + B2
)

/N+ B/N+

(
A −

√
A2 + B2

)
/N− B/N−

, (29)

N± =
[
2
(

A2 + B2 ± A
√

A2 + B2
)]1/2

. (30)

Ω1(k) = A +
√

A2 + B2, Ω2(k) = A −
√

A2 + B2. (31)

Knowing the frequencies allows us to remove sinusoidal behavior from these variables, in
order that the nonlinear dynamics are more clearly seen.

3. Global Quantities

There are various important global quantities that can be expressed as averages over
either x-space or, equivalently, k-space. The volume average of a quantity Φ multiplied by
a quantity Ψ as {ΦΨ}, is

{ΦΨ} ≡ (2π)−3
∫

Φ(x, t)Ψ(x, t)d3x

=
1

N3 ∑
x

Φ(x, t)Ψ(x, t) =
1

N3 ∑
k

Φ̃∗(k, t)Ψ̃(k, t). (32)

Using (32), the volume-averaged energy E, enstrophy Ω, mean-squared current J, cross
helicity HC, magnetic helicity HM, and mean-squared vector potential A (the last two
defined in terms of the magnetic vector potential a, where ∇× a = b, ∇ · a = 0) are

E = EK + EM, EK = 1
2

{
u2
}

, EM = 1
2

{
b2
}

, (33)

Ω = 1
2

{
ω2
}

, J = 1
2

{
j2
}

, A = 1
2

{
a2
}

, (34)

HP = HC − σHM, HC = 1
2{u · b}, HM = 1

2{a · b}. (35)

When ν = η = 0 in (22) and (23), E is always an invariant integral. Referring to Table 1: If
Ωo = Bo = 0, then HC and HM are also ideal invariants of MHD turbulence; this is Case I.
If Ωo ̸= 0 but Bo = 0, then HC is no longer an ideal invariant but HM is; this is Case II. If
Bo ̸= 0 bur Ωo = 0, then HM is no longer be an ideal invariant but HC is. When Ωo = σBo,
the helicity HP is the additional invariant; this is Case IV. If Ωo ̸= 0 and Bo ̸= 0, but
Ωo × Bo ̸= 0, then only E is an invariant. (For hydrodynamic turbulence, HK = 1

2{u · ω}
and E are ideal invariants).

The total energy E, cross helicity HC, magnetic helicity HM, and parallel helicity HP
comprise a set of possible invariants for the Cases in Table 1. They are explicitly represented
in k-space by the quadratic forms:

E = EM + EK, (36)

EM =
1

2N3 ∑
k

[
|b̃+(k, t)|2 + |b̃−(k, t)|2

]
, (37)

EK =
1

2N3 ∑
k

[
|ũ+(k, t)|2 + |ũ−(k, t)|2

]
, (38)

HC =
1

2N3 ∑
k

[
ũ+(k, t)b̃∗+(k, t) + ũ−(k, t)b̃∗−(k, t)

]
, (39)
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HM =
1

2N3 ∑
k

1
k

[
|b̃+(k, t)|2 − |b̃−(k, t)|2

]
, (40)

HP = HC − σHM, (41)

Here and in simulations, these are dimensionless quantities, and we normally set the energy
to E = 1 initially, though this may drift a little bit due to round-off and time-differencing
error in ideal simulations. In forced, dissipative simulations, there is an algorithm that
tries to keep E ≈ 1 be adjusting the energy input at each time step. The quadratic forms
(36), (39), (40), and (41) are used to define the phase space probability density, as will now
be discussed.

4. Statistical Mechanics

Here, we review the statistical mechanics of ideal, homogeneous MHD turbulence. We
draw on standard developments of statistical mechanics, such as may be found in [57–59],
concerning canonical ensembles and expectation values, and of dynamical systems, as
presented by [56]. Equations (22) and (23) are a finite dynamical system with phase space Γ
whose coordinates are the independent real and imaginary components of ũ(k) and b̃(k),
1 ≤ k ≤ K; a phase point in Γ represents a possible state of the dynamical system. Canonical
ensemble expectation values may be taken once we have a probability density for Γ. (Γ
will generally have a large-dimension, in practice, determined by balancing grid-size and
run-time. For example, if N = 128 and the number of independent k is M =459,916, then
the phase space has dimension NΓ = 8M =3,679,328.)

As pointed out by [60], when ν = η = 0, the system has a Liouville theorem, as will
be shown, in a phase space Γ that represents a canonical ensemble where the probability
density depends on constants of the motion. Again, these constants, also known as ideal
invariants, are the energy E, the magnetic helicity HM (if Bo = 0) and the cross helicity HC
(if Ωo = 0), while if Ωo = σBo ̸= 0, the parallel helicity HP is an ideal invariant. Since there
is Liouville’s theorem for ideal MHD turbulence, the phase space distribution function Φ is
a constant of the motion; however, it is also a function of the phase space variables ũ(k, t)
and b̃(k, t). The only way it can be both is that Φ is a function of other constants of the
motion, e.g., Φ = f (E, HC, HM). The only functional form possible for Φ is then

Φ = exp(C − αE − βHC − γHM). (42)

Here, α, β, and γ are initially undetermined constants called ‘inverse temperatures’.
If we normalize Φ with the appropriate choice of C = − ln Z, we have the probability

density function in Γ. The ‘partition function’ Z is

Z =
∫

exp(−αE − βHC − γHM)dΓ (43)

D = Z−1 exp(−αE − βHC − γHM). (44)

Here, E, HC and HM are given by (36), (39) and (40), respectively; for the Cases in Table 1,
I: β, γ ̸= 0; II: β = 0, γ ̸= 0; III: β ̸= 0, γ = 0; IV: γ = −σβ ̸= 0; and V: β = γ = 0.

Using the basic expressions for ũ(k) and b̃(k), (43) and (44) become

D = ∏
k′

D(k) = ∏
k′

Φ′(k)
Z(k)

, δ̂2 = α̂2 − β̂2/4, (45)

Z(k) =
∫

Φ′(k)dũ(k)db̃(k) =
π4

δ̂4 − α̂2γ̂2/k2
, Φ′(k) = exp Ψ(k), (46)

Ψ(k) = −α̂
[
|ũ(k)|2 + |b̃(k)|2

]
− β̂ũ∗(k) · b̃(k)− i

γ̂

k
k̂ · b̃(k)× b̃∗(k). (47)
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In the product ∏k′ above, the notation k′ means that only independent modes k are
included, i.e., if k is included, then −k is not. Also, α̂ = α/N3, β̂ = β/N3 and γ̂ = γ/N3,
i.e., the factors N−3 have been absorbed. Note that the modal phase space volume element
dΓ(k) = dũ(k)db̃(k) is 8-dimensional and the limits on each variable are from −∞ to ∞.

Initially [60], the dynamical system (22) and (23) was thought to be ergodic, an as-
sumption that was unchallenged in the early work on ideal MHD turbulence [41,61,62].
It was finally challenged by [42], when apparent non-ergodicity was first noticed and
reported, and confirmed later [43]. As already mentioned, this non-ergodicity is actually
‘broken ergodicity’ [63]; a review of broken ergodicity for 2-D and 3-D ideal MHD and
hydrodynamic turbulence models is given by [40].

In general, there is no reason to expect ergodicity in any dynamical system, as this
can only be determined by experimentation or numerical simulation. This is because
ensemble averages are taken over all probable realizations while a single experiment or
simulation only produces one dynamical realization. Remember that ergodicity is defined
as the equivalence of statistical ensemble predictions with statistics drawn from a single
dynamical realization; sometimes this definition is unappreciated and incorrect conclusions
result [64]. In addition, one must use large enough grid-sizes in simulations (see [40])
since turbulence is high-dimensional; otherwise, nonergodic behavior will be missed in the
low-dimensional simulations [65].

Expectation values can be determined using the probability density function (44) once
α̂, β̂, and γ̂ are determined. Given a quantity Q, the expectation value ⟨Q⟩ is defined by

⟨Q⟩ ≡
∫

QDdΓ. (48)

For example, velocity and magnetic field coefficients are predicted to be zero mean
random variables:

⟨ũ(k)⟩ =
〈
b̃(k)

〉
= 0. (49)

The second-order moments
〈
|ũS(k)|2

〉
and

〈
|b̃S(k)|2

〉
, where S = R or I denotes real

or imaginary parts, can also be determined by integration [40,41,43]; these are given in
Table 2. Similarly, the cross terms

〈
ũS(k) · b̃S(k)

〉
and

〈
ãS(k) · b̃S(k)

〉
, which appear in the

cross and magnetic helicity, can also be determined:

〈
ũS(k) · b̃S(k)

〉
= − β̂

2α̂

〈
|b̃S(k)|2

〉
, S = R, I, (50)

〈
ãS(k) · b̃S(k)

〉
=

α̂

γ̂

〈
|ũS(k)|2 − |b̃S(k)|2

〉
. (51)

Note that these expectation values and those in Table 2 depend on α̂, β̂, and γ̂, which are
still undetermined. (Expectation values related to Case IV will presented in Section 6).

In the ideal case, the ideal invariants E, HM (if Bo = 0), and HC (if Ωo = 0) or HP (if
Bo and Ωo are nonzero and parallel), should have time-independent values E , HM, HC
and HK, as the case may be, that are equal to their expectation values:

E = ⟨E⟩, HM = ⟨HM⟩, HC = ⟨HC⟩ HP = ⟨HP⟩. (52)

Requiring that the relations in (52) for the different cases in Table 1 be true, we use these
values to determine the ‘inverse temperatures’ α̂, β̂, and γ̂. While (49) is an ‘ergodic
hypothesis’, (52) is actually an a priori axiom on which the theory of ideal MHD turbulence
is based, though justified by a posteriori numerical results.
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Table 2. Second-order moments, where δ̂2 = α̂2 − β̂2/4 and S = R or I signify the real or imagi-
nary parts, are given here. Moments

〈
ũS(k) · b̃S(k)

〉
related to modal cross helicity and moments〈

ãS(k) · b̃S(k)
〉

related to magnetic helicity are defined in (50) and (51) in terms of the entries below.

Case
〈
|ũS(k)|2

〉 〈
|b̃S(k)|2

〉
I α̂(δ̂2 − γ̂2/k2) α̂δ̂2

δ̂4 − α̂2γ̂2/k2 δ̂4 − α̂2γ̂2/k2

II 1/α̂
α̂

α̂2 − γ̂2/k2

III α̂/δ̂2 α̂/δ̂2

IV α̂(δ̂2 − σ2 β̂2/k2) α̂δ̂2

δ̂4 − σ2α̂2 β̂2/k2 δ̂4 − σ2α̂2 β̂2/k2

V 1/α̂ 1/α̂

5. Cases I, II, III and V

In this section, as alternative to the approach leading to Equation (45), we use a model
covariance matrix Mk to develop the necessary statistical formulation. This is then applied
to Cases I, II, III and V of Table 1; these cases can be treated in a unified manner by analyzing
Case I and then reducing this to Cases II, III and V in a straightforward manner. Case IV is
more involved and will considered in Section 6.

Placing the k-space representation of E, HC, and HM, as given in (36)–(40), into the
PDF (44) gives an expression that contains modal 4×4 Hermitian covariance matrices in
the argument of the exponential:

D = ∏
k′

D(k), D(k) =
exp

[
−ỹ†(k)Mkỹ(k)

]
Z(k)

. (53)

Here, ỹ† = ỹ∗T is the Hermitian adjoint (T means transpose) of the column vector ỹ, where

ỹ(k) = [ũ+(k) ũ−(k) b̃+(k) b̃−(k)]T (54)

The Hermitian (here, real and symmetric) 4×4 covariance matrix Mk is

Mk =


α̂ 0 β̂/2 0
0 α̂ 0 β̂/2

β̂/2 0 α̂ + γ̂/k 0
0 β̂/2 0 α̂ − γ̂/k

. (55)

Again, the circumflex indicates division by N3: α̂ = α/N3, β̂ = β/N3 and γ̂ = γ/N3.
Although the Mk in (55) can also be expressed as 8 × 8 real symmetric matrices and

the ỹ(k) as 8 × 1 real arrays [41], finding eigenvalues and eigenvariables is facilitated by
using the 4 × 4 matrices Mk and 4 × 1 complex arrays ỹ, along with the properties of block
matrices given by [66].

The real, symmetric matrices Mk can be diagonalized (and more easily than the Hermi-
tian matrices used previously [39,40]) to yield the modal PDFs,

D(k) =
4

∏
n=1

Dn(k), Zn(k) =
π

λ̂
(n)
k

, (56)

Dn(k) =
1

Zn(k)
exp

[
−λ̂

(n)
k |ṽn(k)|2

]
. (57)
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The eigenvalues λ̂
(n)
k = λ

(n)
k /N3 are also written with a circumflex to indicate division by

N3, just as for α̂, β̂ and γ̂. When we find the λ̂
(n)
k , the modal partition function Z(k) given

in (45) will be seen to be Z(k) = ∏4
n=1 Zn(k).

Implicit in the form of Dn(k) given above is the transformation ỹ(k) = Ukṽ(k), where
Uk ∈ SU(4) is a unitary transformation matrix (see below). Explicitly, ṽ(k) is

ṽ(k) = [ṽ1(k) ṽ2(k) ṽ3(k) ṽ4(k) ]T . (58)

The energy expectation values for the complex eigenvariables ṽn(k), n = 1, 2, 3, 4, are

En(k) =
〈
|ṽn(k)|2

〉
/N3 = 1/λ

(n)
k . (59)

This energy contains equal contributions from the real and imaginary parts of ṽn(k). The
exact forms of the λ̂

(n)
k and ṽn(k) in terms of α̂, β̂ and γ̂ will be presented next.

5.1. Eigenvariables

The eigenvariables ṽn(k) in (57) can be determined for ideal MHD turbulence through
a modal unitary transformation [34,39,40]. In the general case (nonrotating with zero mean
magnetic field), the transformation matrix Uk and the transformation itself are

Uk =



0 +β̄ζ −
k 0 −ζ +

k

+β̄ζ −
k 0 +ζ +

k 0

0 +β̄ζ +
k 0 +ζ −

k

−β̄ζ +
k 0 +ζ −

k 0


, ṽ(k) = Ukỹ(k). (60)

Using (54), (58) and (60), the results of the transformation are

ṽ1(k) = +β̄ζ −
k ũ−(k)− ζ +

k b̃−(k), (61)

ṽ2(k) = +β̄ζ −
k ũ+(k) + ζ +

k b̃+(k), (62)

ṽ3(k) = +β̄ζ +
k ũ−(k) + ζ −

k b̃−(k), (63)

ṽ4(k) = −β̄ζ +
k ũ+(k) + ζ −

k b̃+(k). (64)

Above, β̄ = sgn β̂ with β̄ = 1 for β = 0; the functions ζ +
k (β̂, γ̂) and ζ −

k (β̂, γ̂) are

ζ ±
k =

1√
2

√
1 ± γ̂

kη̂k
; η̂k =

√
β̂2 +

γ̂2

k2 . (65)

In terms of η̂k, as defined above, the eigenvalues λ̂
(n)
k > 0 (n = 1, 2, 3, 4) are determined by

a similarity transformation of (55) using (60):

Λk = UkMkU
†
k = diag

[
λ̂
(1)
k λ̂

(2)
k λ̂

(3)
k λ̂

(4)
k

]
. (66)

Explicitly, the eigenvalues λ̂
(n)
k , n = 1, 2, 3, 4, are

λ̂
(1)
k = α̂ − 1

2 (η̂k + γ̂/k), λ̂
(2)
k = α̂ + 1

2 (η̂k + γ̂/k), (67)
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λ̂
(3)
k = α̂ + 1

2 (η̂k − γ̂/k), λ̂
(4)
k = α̂ − 1

2 (η̂k − γ̂/k). (68)

Again, we define α̂ = α/N3, β̂ = β/N3 and γ̂ = γ/N3. Using Zn(k) = π/λ̂
(n)
k and

forming the product Z(k) = ∏4
n=1 Zn(k) reproduces Z(k) in (45).

Although it appears that the eigenvalues given above are functions of the undeter-
mined quantities α̂, β̂ and γ̂, there is only one unknown to be determined: φ = φo = ⟨EM⟩.
Summing over the entries in Table 2, and using (50) and (51), tells us that

α̂E + β̂HC + γ̂HM = 4M,

2α̂HC + β̂φ = 0, (69)

(2φ − E) + α̂γ̂HM = 0.

Here, ϱ = M/N3 ≈ 0.2194 for K2 = 2N2/9. From Table 2, it is clear that α̂ > 0 and
E/2 ≤ φ ≤ E ; thus, in the expression for γ̂ we have 2φ − E ≥ 0. The linear Equation (69)
can be solved to yield

α̂ =
2ϱφ

φ(E − φ)−H2
C

,

β̂ = −2
HC
φ

α̂, (70)

γ̂ = −2φ − E
HM

α̂.

Noting that HC and HM are pseudoscalars, we see that β̂ and γ̂ are also pseudoscalars
and that β̂HC ≤ 0 and γ̂HM ≤ 0; thus, the probability density (53) is explicitly invariant
under a parity or charge or time transformation. The Equation (70) pertain to Cases I
(β̂HC < 0 and γ̂HM < 0), II (β̂HC = 0 and γ̂HM < 0), III (β̂HC < 0 and γ̂HM = 0) and V
(γ̂HM = γ̂HM = 0). Again, Case IV, where γ̂ = −σβ̂ and β̂HP < 0, with HP = HC − σHM,
will be treated separately later.

5.2. Entropy

The entropy functional is S(φ) = −⟨ln D⟩; using (53), (57), (67) and (68), we find
(again, M = ∑k′ 1)

S(φ) = 4M(1 + ln π)− ∑
k′

ln
[(

α̂2 − β̂2/4
)2

− α̂2γ̂2/k2
]

. (71)

Above, the sum over k′ means, again, that only independent modes k are included (if k,
then not −k). The fact that there is only one unknown quantity φ in (70) means that the
entropy functional (71) depends only on the one variable φ. As discussed by [57], finding
the (single) minimum of S(φ) gives us the value φ = φo = ⟨EM⟩ that sets the values of α̂, β̂
and γ̂, as well as the system entropy So = S(φo). Note that So must be the minimum of
S(φ) because D = exp(−So) maximizes the probability of the equilibrium states that lie
on the ‘surface of constant energy’ in phase space [57]; hence, S(φ) is called the entropy
functional, while So is called the entropy.

We first consider Case I and describe the procedure for finding a formula for the
approximate value of φ = φo = ⟨EM⟩. From this formula, we can find the one for Case II
by setting HC = 0. Cases III and V both have γ̂HM = 0 and (70) tells us immediately that
φo = E/2 in these cases.

To simplify the upcoming formulas, we will assume that HM > 0, again, implying
that γ < 0. For Case I, the first derivative of the entropy functional (71) with respect to φ is

dS(φ)

dφ
= S′(φ) = 2F(φ)

[
G+(φ) + G−(φ)

]
,

dS(φ)

dφ

∣∣∣∣
φo

= 0, (72)
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F(φ) =
φ3 −H2

C(3φ − E)
φ2
[
φ(E − φ)−H2

C
] > 0, (73)

G±(φ) = ∑
k′

kHM ± φ

kHM
(
1 −H2

C/φ2
)
± (2φ − E)

. (74)

The denominators for the terms in G±(φ) are positive because the arguments of the log-
arithms in (71), as well as α̂ in (70), are all positive; also, from (37) and (40), we see that
φ/HM = kM ≥ kmin. For the Fourier case we are discussing here, kmin = 1, and for the
spherical shell model of the outer core developed by [34], kmin

∼= 1.8638.
For purposes of illustration, let us recall some Case I and Case II examples. In recent

ideal MHD turbulence simulations [48], Case I Run 1 had kM = 4.86, while Case II Runs
2a and 2b had kM = 8.82 and 4.69, respectively. As for real, i.e., forced and dissipative,
MHD turbulence simulations [27], using time averages E, HM, HC for E , HM, HC, in
order to determine φo, we found for Case I run NM02c, kM = 1.10, while for Case II run
NM06c, kM = 1.12. For these ideal MHD runs, EM/φo = 1.00, while for the real MHD
runs, EM/φo = 1.02 and 1.03. (These results indicated that ideal MHD statistical theory is
applicable to Case I and Case II real MHD turbulence).

The important point here is that ideal or dissipative, driven magnetofluids with no
mean magnetic field, i.e., Cases I and II of Table 1, tend to have 1 < kM ≪ K. Here, for
ideal MHD, we will assume that 1 < kM <

√
2 for simplicity, as it is the k = 1 terms that

are critical. There are 3 independent Fourier modes with smallest wavenumber k = 1, so
the summation G−(φ) can be broken up into the following:

G−(φ) = − 3HM(kM − 1)
|HM|

(
1 −H2

C/φ2
)
− (2φ − E)

(75)

+ ∑
|k′ |̸=1

HM(k − kM)

kHM
(
1 −H2

C/φ2
)
− (2φ − E)

.

Above, the first term on the right is negative, while all the rest are positive because k >
kM = φ/HM for k ≥

√
2. (Even if kM >

√
2, so that there were a few more negative terms,

the following development would still be valid). Also, all the terms in G+(φ) are positive.
In the limit that M → ∞,

lim
M→∞

G+(φ) =
M(

1 −H2
C/φ2

) ,

(76)

lim
M→∞

G−(φ) = G+(φ)− 3(φ −HM)

HM
(
1 −H2

C/φ2
)
− (2φ − E)

.

Requiring that s′(φ) = 0 is equivalent to requiring that G+(φ) + G−(φ) = 0; from the
relations given above, we see that three of negative terms (the “dipole” part, corresponding
to the smallest wavenumber, k = |k| = 1) must balance a very large number 2M− 3 of
positive terms. (For a spherically symmetric shell, there are also three independent modes
at k = kmin [34]; the following results apply with the substitution HM → kminHM).

Putting the expressions in (76) into G+(φ) + G−(φ) = 0 leads to

3(φ −HM)

HM
(
1 −H2

C/φ2
)
− (2φ − E)

∼=
2M(

1 −H2
C/φ2

) . (77)

Defining the small quantity ϵ = 3/(2M), we obtain the cubic equation,

φ2(2φ − E −HM) +HMH2
C + ϵ(φ −HM)

(
φ2 −H2

C

)
∼= 0. (78)
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We always have E/2 ≤ φ ≤ E , but in the non-rotating Case I (Ωo = 0, Bo = 0), we also
have 0 ≤ H2

C ≤ φ(E − φ), so that (approximately) E/2 ≤ φ ≤ 1
2 (E +HM) if HM < E/2;

or HM ≤ φ ≤ 1
2 (E +HM) if HM ≥ E/2.

Equation (78) can be solved by a perturbation expansion φ = φ(0) + ϵφ(1), where φ(0)

will be the root of a cubic polynomial and φ(1) a rational function of φ(0). For Case I, the
procedure can be implemented analytically or numerically, but we will forgo this here.
Instead, we now consider the rotating Case II (Ωo ̸= 0, Bo = 0) which applies to essentially
all planets and stars. In this case, (78) becomes much easier to solve once we set HC = 0.

5.3. Case II, Rotating MHD

First, we show explicitly that the entropy functional (71) for Case II has a minimum at
φo. We use (72)–(74) with HC = 0 to find that the second derivative of (71) at φ = φo is

d2S(φ)

dφ2

∣∣∣∣
φo

= 8(E − φo)∑
k′

(kHM + E)(2φo − E)[
k2H2

M − (2φo − E)2
]2 > 0. (79)

It can be shown that S(φo) is the only minimum of S(φ) in the range 1
2E < φ < E and is

thus unique.
Second, setting HC = 0 in (78) leads, to first order in a small parameter ϵ,

φo ∼= 1
2 (E +HM)− 1

4 ϵ(E −HM), ϵ =
3

2M . (80)

This approximation is used here for theoretical development, but when exactness is re-
quired, φo is determined from (77) by numerically finding the minimum of S(φ) corre-
sponding to E and HM for a given run, as well as HC if Ωo = 0.

From the expression (80) for φo = ⟨EM⟩, we can also determine the expectation
value of the kinetic energy, ⟨EK⟩ = ⟨E − EM⟩ = E − φo, as well as of the difference
⟨EM − EK⟩ = ⟨2EM − E⟩ = 2φo − E :

E − φo ∼= 1
2

(
1 + 1

2 ϵ
)
(E −HM). (81)

2φo − E ∼= HM − 1
2 ϵ(E −HM). (82)

We will now use these results to show how the k = 1 positive magnetic helicity
eigenvariable ṽ4(k̂) has an energy expectation value of

〈
|ṽ4(k̂)|2

〉
/N3 ∼= HM/3, which is

independent of M; all of the other eigenvariables have expected energies
〈
|ṽn(k)|2

〉
/N3 ∼

M−1. This will allow us to explain the large-scale coherent magnet structures (i.e., quasi-
stationary dipole fields) that spontaneously arise within a turbulent magnetofluid such as
is found in the Earth’s outer core.

5.4. Temperature

In a rotating frame of reference, Case II of Table 1, HC = 0 so that β̂ = 0, for which
β̄ ≡ 1. Assuming HM > 0, so that γ̂ < 1 and thus ζ +

k = 0 and ζ −
k = 1, (61)–(64) become:

ṽ1(k, t) = ũ−(k, t), ṽ2(k, t) = ũ+(k, t),

(83)

ṽ3(k, t) = b̃−(k, t), ṽ4(k, t) = b̃+(k, t).

Remember that the dynamical variables ũ−(k, t) and ũ+(k, t) carry negative and posi-
tive kinetic helicity, respectively, while b̃−(k, t) and b̃+(k, t) carry negative and positive
magnetic helicity, respectively. If the magnitudes of (83) are constant, they are essentially
the same as the linear modes (see Section 2.4) for Case II. For Case III, (29) and (61)–(64)
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become Elsässer variables [2], while in Case V, the two sets of eigenvariables are generally
different, though Elsässer variables may be associated with certain values of k, i.e., those
with k · Ωo = 0. In Case V, the expectation values of all the variables (83) are the same.

For Case II, we take the limit β̂ → 0, so η̂k = |γ̂|/k and the eigenvariables are as given
in (83), while the eigenvalues (67) and (68) become

λ̂
(1)
k = λ̂

(2)
k = α̂, λ̂

(3)
k = α̂ + |γ̂|/k, λ̂

(4)
k = α̂ − |γ̂|/k. (84)

In the rotating case, α̂ and γ̂ are determined by putting φ = φo from (80) into their respective
expressions as given in (70) with HC = 0; the result is

α̂ =
2ϱ

E − φo
, γ̂ = −2φo − E

HM
α̂, α̂E + γ̂HM = 4ϱ. (85)

Using (81) and (82), as well as ϱ = M/N3, α̂ = α/N3 and γ̂ = γ/N3, we have

α =
4M

(E −HM)
(

1 + 1
2 ϵ
) , γ = −

HM − 1
2 ϵ(E −HM)

HM
α. (86)

The first equation above tells us that the temperature T = 1/α of the system is, using
ϵ = 3/2M,

T =
E −HM
4M− 3

. (87)

Thermodynamically, T−1 = (∂S/∂E)V,N ; here, we have V = (2π)3 and N = 8M. How-
ever, we can express our results thermodynamically as well as statistically, showing the
origin of (87).

Using (81), (82) and (84), as well as setting HM > 0,

S(φo) = 4M(1 + ln π)−
K2

∑
k2=1

n(k2) ln

[
4

∏
n=1

λ̂
(n)
k

]
. (88)

We now remove the constant terms and define the equilibrium entropy S as

S ≡ (4M− 3) ln(E −HM) + 3 lnHM −
K2

∑
k2>1

µ(k2)n(k2), µ(k2) = ln
(

k2 − 1
k2

)
. (89)

Here, the µ(k2) are ‘chemical potentials’ and the n(k2) are the number of independent k
that satisfy |k|2 = k2. The numbers n(k2) jump around as k2 increases; for example,

n(1) = 3, n(2) = 6, n(3) = 4, n(4) = 3,
n(5) = 12, n(6) = 12, n(7) = 0 · · ·
n(3628) = 36, n(3629) = 552, n(3630) = 264, n(3631) = 0,
n(3632) = 60, n(3633) = 144, n(3634) = 144 · · ·

(90)

Furthermore, we have n(k2) = 0 whenever k2 = 4a(8b + 7), a, b = 0, 1, 2, . . . [67].
The differential of (88), taken as a function of E and HM (the n(k2) and µ(k2) are

numerical constants) is

dS =
∂S
∂E dE +

∂S
∂HM

dHM =
1
T

dE − χP
T

dHM, (91)

T =
E −HM
4M− 3

, χM =

(
HM − 1

2 ϵE
)

HM
. (92)
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Here, T is temperature and χM is the ‘helicon-magnetic-susceptibility’. In the next section
we will see that HM is the ‘dipole energy’ ED, so that E − HM is the turbulent energy
ER. Setting Boltzmann’s constant kB = 1, the average energy per degree of freedom is
manifestly 1

2 T = ER/(8M− 6), i.e., the turbulent energy ER divided by N = 8M minus
six degrees of freedom, these six being b̃S

+(k̂), k̂ = x̂, ŷ, ẑ and S = R, I, which are those
associated with the dipole, and not part of the turbulent dynamics.

5.5. Energy Expectation Values

Here, we will see that this energy ED = HM goes into six (dipole) components. Using
(85), along with (81), (82), and (84), gives us the unnormalized eigenvalues λ

(n)
k , up to

leading order:

λ
(1)
k = λ

(2)
k =

4M
E −HM

, λ
(3)
k =

k + 1
k

4M
E −HM

, k ≥ 1; (93)

λ
(4)
1 =

3
HM

, λ
(4)
k =

k − 1
k

4M
E −HM

, k > 1. (94)

The eigenvariables have real (R) and imaginary (I) parts, i.e., ṽn(k, t) = ṽR
n (k, t) + iṽI

n(k, t),
with real and imaginary parts having the same expectation values. The associated energies
of the real (R) and imaginary (I) parts are〈

ER,I
n (k)

〉
=
〈
|ṽR,I

n (k)|2
〉

/N3 =
1

2λ
(n)
k

, (95)

⟨En(k)⟩ =
〈

ER
n (k) + EI

n(k)
〉
=

1

λ
(n)
k

. (96)

As defined in (83), the index n = 1 refers to negative and n = 2 to positive kinetic helicity
coefficients; similarly, the index n = 3 refers to negative and n = 4 to positive magnetic
helicity coefficients. The relations (93) and (94) tell us that the expected energies with
respect to helicity are

〈
E±

K (k)
〉

= ⟨E1,2(k)⟩ =
E −HM

4M , k ≥ 1, (97)

〈
E−

M(k)
〉

= ⟨E3(k)⟩ =
k

k + 1
E −HM

4M , k ≥ 1, (98)

〈
E+

M(k)
〉

= ⟨E4(k)⟩ =
k

k − 1
E −HM

4M , k > 1, (99)

〈
Ed

M(k̂)
〉

=
〈

E4(k̂)
〉

=
HM

3
, k = 1. (100)

The sum of these over independent modes k is E plus a term ∼O(ln K). An important
result can be seen in (100): summing over the three k = 1 modes tells us where the non-
turbulent energy HM goes: into what we will call the ‘dipole’ energy ED; summing up all
the remaining modal energies (97)–(99) gives the residual turbulent energy ER:

ED = HM, ER = E −HM. (101)

Thus, in a compact, rotating, turbulent magnetofluid with no mean magnetic field, the
energy in the dipole is equal to the magnetic helicity. (In a spherical shell model, the dipole
energy is ED = kminHM [34]; here, kmin = 1 since the components of k ̸= 0 are integers as
defined in Section 2.2).
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Again, for cubical periodic boxes or symmetrical spherical shells, the three lowest-
wavenumber modes are expected to have the same energy. However, for the non-rotating
case, and especially for the rotating case, there is always some dynamical symmetry
breaking so that one of the lowest-wavenumber modes dominates dynamically, as will be
discussed further shortly.

The statistical results given above are directly related to Case II of Table 1, but also
apply approximately to Case I if HC is small compared to HM. In Case III, HM is not an
ideal invariant but HC is and the predictions for the energies of the eigenvariables (61)–(64),
which are now Elsässer variables, are

⟨E1(k)⟩ = ⟨E4(k)⟩ =
E + 2|HC|

4M , ⟨E2(k)⟩ = ⟨E3(k)⟩ =
E − 2|HC|

4M . (102)

Here, we have used (70) along with φo = 1
2E . In Case V, all the eigenvariables are predicted

to have the same energy, which is given in (102) by setting HC = 0. The statistical
predictions for Case IV are discussed in the next section.

6. Case IV, Parallel Helicity

MHD turbulence with mean magnetic field parallel to rotation axis, for which parallel
helicity HP is an ideal invariant, has been investigated before. Parallel helicity was first
introduced [47] as part of a general study of all the Cases in Table 1. After this its relation
to weak turbulence [68], two-fluid effects [69] and inverse cascades [70] was studied. Here,
we fully develop the statistical mechanics of Case IV MHD turbulence for the first time.

φo for Case IV in Table 1 can be determined by first setting γ = −σβ where σ = Ωo/Bo;
we will also set HP > 0, so that β < 0. In this Case, Equation (69) become

α̂E + β̂HP = 4ρ, 2α̂HC + β̂φ = 0, σβ̂HM − (2φ − E)α̂ = 0. (103)

The invariant parallel helicity is, again, HP = HC − σHM and the variable whose value
we must determine is φo = ⟨EM⟩. Solving Equation (103), we get, instead of the simpler
looking set in Equation (70),

α̂ =
4ϱ

E − zHP
> 0, z =

∣∣∣∣∣ β̂α̂
∣∣∣∣∣; R(φ) =

√
H2

P−2φ(2φ−E), (104)

z = z± =
2(2φ − E)
HP ± R(φ)

=
HP ∓ R(φ)

φ
> 0. (105)

The denominator for α̂ above must be positive: E − z|HP| > 0. This leads to two inequalities:

z = z− → |HP|(3E − 4φ) > ER(φ), 1
2E < φ < 3

4E , (106)

z = z+ → |HP|(4φ − 3E) < ER(φ), 3
4E < φ < E . (107)

These strict inequalities as we cannot allow φ = 3
4E , at which value H2

P = 3
4E , and we

would have α̂ → ∞. Other limits can be found by squaring both sides in (106) and (107)
to get

H2
P(3E − 4φ)2 ≷ E2R2(φ) → φ ≷ φP =

4EH2
P

E2 + 4H2
P
→ H2

P ≶ 3
4E

2. (108)

Here, the upper symbol of ≷ or ≶ corresponds to z = z− and the lower symbol corresponds
to z = z+. The limits on φ corresponding to z− and z+ are then

max
(

φP, 1
2E
)
< φ < 3

4E , H2
P < 3

4E
2 for z = z−, (109)
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3
4E < φ < φP < E , 3

4E
2 < H2

P for z = z+. (110)

For Case IV, γ = −σβ where σ = Ωo/Bo; here, for definiteness, we will choose σ > 0;
we will also choose HP > 0, so that β < 0 and thus γ > 0. The eigenvalues (67) and (68)
then become

λ̂
(1)
k = α̂

(
1 − 1

2 zQ+
k

)
, λ̂

(2)
k = α̂

(
1 + 1

2 zQ+
k

)
, (111)

λ̂
(3)
k = α̂

(
1 + 1

2 zQ−
k

)
, λ̂

(4)
k = α̂

(
1 − 1

2 zQ−
k

)
. (112)

We have used (65) here, so that Q±
k =

√
1+ σ2/k2 ± σ/k; the Q±

k have no z or φ dependence.
The exact value of φ = φo = ⟨EM⟩ must be determined by numerically finding the

minimum of the entropy functional (71), which we write here as

S(φ) = 4M(1 + ln π)− ∑
k′

4

∑
i=1

ln λ̂
(i)
k . (113)

The evaluation of dS(φ)/dφ = 0 analytically to find a good approximation for φo would
seem complicated since the z± that appear in the eigenvalues (111) and (112) are themselves
function of φ. However, consider the z± that appear in (105) and take their derivatives with
respect to φ:

dz−
dφ

=
(HPz− + E)

φR(φ)
> 0,

dz+
dφ

= − (HPz+ + E)
φR(φ)

< 0. (114)

Clearly dz−/dφ ̸= 0 and dz+/dφ ̸= 0 within their respective ranges of φ. We then have

dS(φ)

dφ
=

dS(φ)

dz
dz
dφ

= 0 → dS(φ)

dz
= 0 at φ = φo. (115)

Thus, we can use dS/dz = 0 instead of dS/dφ = 0 to find zo = z(φo). Note that the
requirement dS/dφ = 0 means that HP and φ are implicit functions of each other and that
one φ = φo corresponds to one HP.

We can now find an approximate value for φo by differentiating (113) and using α̂
from (105), along with (111) and (112):

dS
dz

= − 1
N3 ∑

k′

4

∑
i=1

d ln λ̂
(i)
k

dz

= −∑
k′

 4HP
E − zHP

+ ∑
c∈{+,−}

(
1
2 Qc

k

1 + 1
2 zQc

k

−
1
2 Qc

k

1 − 1
2 zQc

k

)
=

−1
(E − zHP)

∑
k′

∑
c∈{+,−}

(
HP + 1

2EQc
k

1 + 1
2 zQc

k

+
HP − 1

2EQc
k

1 − 1
2 zQc

k

)
. (116)

This derivative cannot equal zero unless one or more of the terms within parentheses
is negative. Since the denominators must always satisfy 1 ± 1

2 zQ±
k > 0, some of the

numerators must be negative. The values of k for which HP − 1
2EQ+

k becomes negative
satisfy (since Q+

k =
√

1 + σ2/k2 + σ/k, σ > 0)

1 ≤ k < ko =
4σEHP

4H2
P − E2

, if HP > 1
2E . (117)
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If HP < 1
2E , then the first term within the parentheses of (116) is negative for all k, while if

HP < 1
2EQ−

k , then all the last terms are also negative for all k; the middle two terms are
clearly always positive.

However, if ko ≳ 1, then there are only a few negative first terms to negate the ∼ M
positive terms within the parentheses, in which case at least one of the negative terms must
be very large. This must be the first term at k = 1, because it has the smallest possible
denominator of all the terms; this leads to

1 − 1
2 zQ+

1 ∼ 1
M ≈ 0 → z = zo(1 − δ), zo =

2
Q+

1
, δ ∼ 1

M . (118)

We can find δ by putting the approximate zo in (118) into (116) an using the fact that Q±
k → 1

as k → ∞, and solving for δ to get

δ =
σϵ

2
(E − zoHP)(
HP − 1

4 zoE
) > 0, zoHP < E < 4HP/zo. (119)

Again, ϵ = m/2M, where m = 3, and this result applies only when HP > 1
2E .

Again, ignoring constant terms and terms of order ϵ, we define the equilibrium entropy
S for HP > 1

2E as

S = 4M ln(E − zHP)−
K2

∑
k2=1

µ(k2)n(k2). (120)

µ(1) = ln
[
1 − 1

4 z2(Q−
1
)2
]
, (121)

µ(k2) = ln
([

1 − 1
4 z2(Q+

k
)2
][

1 − 1
4 z2(Q−

k
)2
])

, k2 > 1. (122)

The differential of (123) gives us (remember that ∂S/∂z = 0)

dS =
1
T

dE − z
T

dHP −
K2

∑
k2=1

n(k2)µ′(k2)dσ, µ′(k2) =
∂µ(k2)

∂σ
, (123)

T =
E − zHP

4M , µ′(1) =
1
2 z2(Q−

k
)2

√
1 + σ2

[
1 − 1

4 z2
(
Q−

1
)2
] , (124)

µ′(k2) =
1
2 z2(Q−

k
)2

√
k2 + σ2

[
1 − 1

4 z2
(
Q−

k
)2
] − 1

2 z2(Q+
k
)2

√
k2 + σ2

[
1 − 1

4 z2
(
Q+

k
)2
] . (125)

Here, we see that the temperature T = 1/α = (∂S/∂E)−1, and that as HP increases, T and
S decrease.

Referring to (59), along with (111) and (112), we see that the energies of the eigenmodes are

E1(k) =
[

N3α̂
(

1 − 1
2 zQ+

k

)]−1
, E2(k) =

[
N3α̂

(
1 + 1

2 zQ+
k

)]−1
, (126)

E3(k) =
[

N3α̂
(

1 + 1
2 zQ−

k

)]−1
, E4(k) =

[
N3α̂

(
1 − 1

2 zQ−
k

)]−1
. (127)

Now, using (118) and (119), these expressions become,

E1(k̂) =
HP − 1

4 zoE
3σ

, k = 1, (128)
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E′
1(k) =

E − 2HPQ−
1

4M(1 − Q+
k Q−

1 )
, 1 < k ≤ K, E′

1(k̂) = 0, (129)

E2(k) =
E − 2HPQ−

1
4M(1 + Q+

k Q−
1 )

, 1 ≤ k ≤ K, (130)

E3(k) =
E − 2HPQ−

1
4M(1 + Q−

k Q−
1 )

, 1 ≤ k ≤ K, (131)

E1(k) =
E − 2HPQ−

1
4M(1 − Q−

k Q−
1 )

, 1 ≤ k ≤ K. (132)

We can sum these over the respective ranges, assuming that K and thus M are very, very
large, using the fact that limk→∞ Q±

k = 1, to get, for the ‘dipole energy’ ED and the residual,
‘non-dipole energy’ ER, the following:

ED = ∑̂
k

E1(k̂) =
HP − 1

4 zoE
σ

, (133)

ER = ∑
k′

[
E′

1(k) + E2(k) + E3(k) + E4(k)
]

=
E − zoHP

σzo
. (134)

Algebraic manipulation of (133) confirms that ED = E − ER:

ED =
E − E + zo(HP − 1

4 zoE)
σzo

=
(1 − 1

4 z2
o)E − (E − zoHP)

σzo

= E − (E − zoHP)

σzo
= E − ER. (135)

This result follows because 1 − 1
4 z2

o = σzo.
Now, in analogy with Case II, looking at (104) and (86), we might think of identifying

ED = zHP, but using (133) above, we see that this only happens if σ → ∞, in which case
σzo → 1 and zoHP → HM, i.e., Case IV becomes Case II.

7. Broken Ergodicity and Broken Symmetry

Here, we discuss the differences between the k = 1 eigenvariables ṽ4(k̂, t) and all the
other eigenvariables ṽn(k, t) with regard to their dynamical behavior. Broken ergodicity
is expressed when some of the k = 1 variables have very large mean values dynamically
compared to their standard deviations, which obviously gives rise to a coherent structure
in x-space; broken symmetry is expressed as the random orientations that this coherent
structure can take. This creation of larg-scale coherent structure is essentially a dynamo
process that is inherent in MHD turbulence. Because of its relevance for rotating planets
and stars, we will focus on Case II, where Ωo ̸= 0 and Bo = 0, so that HC ≡ 0.
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7.1. Broken Ergodicity, Case II

We continue with the results developed in Section 5.3, where β̂ = 0 and we chose
HM > 0 and γ̂ < 0. The expectation values (97)–(100) yield rms values |ṽn(k, t)|rms ≡〈
|ṽn(k, t)|2

〉 1
2 , so that

(a)
|ṽ4(k̂, t)|rms

N3/2 =

(
HM

3

)1/2
, n = 4, k = 1;

(136)

(b)
|ṽn(k, t)|rms

N3/2 ≈ (E −HM)1/2

2M1/2 , all others.

Looking at (83), we see ṽ1,2(k, t) = ũ−,+(k, t) and ṽ3,4(k, t) = b̃−,+(k, t). In (b), the expected
magnitude is just the standard deviation because the associated mean of ṽn(k, t) may be
taken as zero. In (a), however, the expected magnitude may represent the magnitude of the
mean of b̃+(k̂, t), rather than its standard deviation, since it becomes quasi-stationary for
the following reasons.

Consider the modal dynamic Equation (22) with ν = 0 and (23) with η = 0:

d ω̃(k, t)
dt

= S̃(u, ω; k, t) + S̃(j, b; k, t) + 2i(k · Ωo) ũ(k, t) (137)

d b̃(k, t)
dt

= S̃(u, b; k, t) + i(k · Bo) ũ(k, t). (138)

Again, the nonlinear terms denoted by S̃ are vector convolutions:

S̃(j, b; k, t) =
i

N3/2 k × ∑
p+q=k

[
j̃(p, t)× b̃(q, t)

]
. (139)

Now, assume that HM is very large so that the variables ṽ4(k̂, t) = b̃+(k̂, t) in (136) are also
very large. The dipole field and associated current will be

bd(x) =
1

N3/2 ∑̂
k

b̃+(k̂, t)ê+(k)eik·x, (140)

jd(x) = ∇× bd(x) (141)

=
1

N3/2 ∑̂
k

b̃+(k̂, t)ik̂ × ê+(k)eik·x (142)

=
1

N3/2 ∑̂
k

b̃+(k̂, t)ê+(k)eik·x = bd(x) (143)

The remainder, or random, parts of b(x) and j(x) are

br(x) = b(x)− bd(x), jr(x) = j(x)− jd(x). (144)

In Case II, all the ũ±(k, t) and all the b̃±(k, t) except for b̃+(k̂, t) are random variables of
magnitude ∼ M−1/2 and zero-mean value.

Thus, in (137), because jd(x, t)× bd(x, t) = 0, we have S̃(jd, bd; k, t) = 0 and can then
use (139) to write

S̃(j, b; t) = S̃(jd, br; k, t) + S̃(jr, bd; k, t) + S̃(jr, br; k, t) (145)
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Using (136a,b) as size estimates, we see that the rms values of the first two terms on the
right are ∼ M1/2 larger than the third term S̃(jr, br; k, t), which is of the same size as
S̃(u, ω; k, t) in (22).

In (138), S̃(u, b; k, t) can be written as

S̃(u, b; k, t) = S̃(u, bd; k, t) + S̃(u, br; k, t) (146)

Again using (136a,b), we also see that the rms value of the first term on the right is ∼ M1/2

larger than the second term.
Using these estimates, the rms sizes of the right sides of (137) and (138) appear to be

|S̃(j, b; k, t)|rms

N3/2 ∼ |S̃(u, b; k, t)|rms

N3/2 ∼ 1
M1/2 ,

|S̃(u, ω; k, t)|rms

N3/2 ∼ 1
M . (147)

From these and (136), we obtain

d ln |ṽ4(k̂, t)|rms

dt
=

d ln |b̃+(k̂, t)|rms

dt
∼ 1

M1/2 , (148)

d ln |ṽn(k, t)|rms

dt
∼ 1, all others, n = 1, 2, 3, 4. (149)

What this implies dynamically is that, in equilibrium, the ‘dipole’ eigenvariables
b̃+(k̂, t) = ṽ4(k̂, t), when they are large, have, on average, fluctuations in magnitude com-
parable in size to the other ṽn(k, t), which are, on average, all very small. In particular, the
fluctuations of these other ṽn(k, t) are of the same size as their rms magnitudes and so they
behave like zero-mean random variables, as expected. However, the rms values of one or
more of the b̃+(k̂, t) are so large compared to their fluctuations that they exhibit nonergodic
behavior, i.e., they have relatively large mean values over very long durations, i.e., the
exhibit ‘broken ergodicity’. This phenomenon will be made clearer in the next subsection,
where we discuss ‘broken symmetry’.

7.2. Broken Symmetry

Again, we use the results developed in Section 5.3, where β̂ = 0 and we chose
HM > 0 and γ̂ < 0. In Section 5.3, we saw that, dynamically, the magnitudes of a ‘dipole’
eigenvariables ṽ4(k̂, t) = b̃+(k̂, t), where k̂ ∈ {x̂, ŷ, ẑ}, could become very large. Now we
show that at least one of the ṽ4(k̂, t) becomes effectively constant over a long time because
fluctuations in its component values are very small. Often, one of the b̃+(k̂, t), for k̂ = x̂,
ŷ or ẑ does not become as large as predicted by (99). These predictions are just average
values over the ensemble and to see what is really going on we must consider the sum of
the expectation values b̃+(k̂, t). Again, the smallest wavenumber kmin = |k̂| = 1 occurs
for the wavevectors k̂ = x̂, ŷ or ẑ. The ensemble prediction (100) tells us that the three
complex vector coefficients b̃+(k̂, t) are very large and unique from those with k > 1; using
the b̃+(k̂, t), we can define a six component vector in a 6-D real space or a three component
vector in a complex 3-D space; for compactness, we define a vector ṽd and dot product
|ṽd|2 = ṽ†

d ṽd in a 3-D complex space:

ṽd =
1

N3/2

 b̃+(x̂, t)
b̃+(ŷ, t)
b̃+(ẑ, t)

,
〈
|ṽd|2

〉
= HM. (150)

The endpoint of ṽd is, for the reasons given in Section 7.1, a quasi-stationary point on
the surface of the hypersphere of radius

√
HM in a 6-D subspace of the 8M-D phase

space Γ. Thus, although (136a) predicts that all b̃+(k̂, t), for HM > 0, will have the same
magnitude, this is an ensemble average and does not take into account that ṽd will become
quasi-stationary. Once it is quasi-stationary, a unitary transformation of phase space can
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point ṽd in any direction in its 6-D space that we choose, at least for the non-rotating Case
I; in the rotating Case II, of course, there is a preferred direction due to axisymmetry and
dipole alignment with the rotation axis although with small fluctuations. To reiterate,
canonical ensemble predictions can give us mean-squared expectation values (100), but
cannot predict the direction of ṽd in Case I; broken ergodicity occurs because of dynamically
broken symmetry. The appearance of broken ergodicity has been noted many times
before [40,42,43,71], as has the phenomenon of broken symmetry [71]; here, we see how
these aspects of MHD turbulence are connected.

In equilibrium, the magnitudes of the b̃+(k̂, t), for k̂ = x̂, ŷ and ẑ, are often not that
different from each other in non-rotating ideal MHD Case I but may vary appreciably when
rotation is imposed, i.e., Case II, where the eigenfunction b̃+(k̂, t) with k̂ parallel to Ωo
has essentially all the dipole energy, as we have consistently seen numerically. In the real
case of forced, dissipative MHD turbulence, this phenomenon is also observed numerically,
although some mechanisms of forcing and dissipation may disrupt this process, as seen in
Figure 7 of [27].

The generation of quasi-stationary, energetic dipole magnetic fields, along with dipole
moment alignment with the rotation axis, seems fairly ubiquitous in numerical simulations,
as well as in planets and stars. The theory of ideal MHD turbulence and its relevance to real
MHD turbulence at the largest scales appears to be a viable explanation of these planetary
and stellar phenomena.

8. Numerical Procedure

A Fourier spectral transform method based on the Fast Fourier Transform (FFT)
algorithm [72] was used on an N3 grid with either N = 128 or N = 64. The minimum
wave number is k = |k| = 1 and the maximum wave number is K =

√
3640 ≃ 60.34

for N = 128 and K =
√

910 ≃ 30.17 for N = 64. In the ideal runs, de-aliasing [73]
was performed, but not in the forced, dissipative runs. Time-integration was performed
with a third-order Adams–Bashforth–Adams–Moulton method [74] with a time-step of
∆t = 0.0005 for N = 128 and ∆t = 0.001 for N = 64. Initial, non-equilibrium magnetic and
kinetic modal energy values (spectra) were EM(k2) ∼ EK(k2) ∼ k4 exp(−k2/k2

o), where
ko = 6. Viscosity ν and magnetic diffusivity η are set to zero in the ideal runs and typically
ν = η = 0.003 in the forced, dissipative runs. A maximum grid size of 1283 was used so
that a single-core MHD run could be completed in a reasonable amount of time with the
resources available, which was the Hopper Cluster at George Mason University, where
each 1283 simulation ran at ≈ 11 sec per ∆t for an ideal run and ≈ 6.3 sec/∆t for a forced,
dissipative run, while each 643 simulation ran at ≈ 0.91 sec/∆t for an ideal run and
≈ 0.52 sec/∆t for a forced, dissipative run. Thus, a single 1283 ideal run of 2 × 106∆ts
requires about 36 weeks of cpu time, for example. The ratio in run-times between the 1283

and 643 per ∆t is 12.1, which is very close to the expected ratio for an FFT transform method
of (128 ln 128)3/(64 ln 64)3 = 12.7.

The computer simulations covering the five Cases in Table 1 are identified in Tables 3–5.
The ideal invariants associated with each Case are quadratic forms (global quantities) with
terms that are scalar products of the vector Fourier coefficients ũ(k, t) and b̃(k, t), with
0 < k ≤ K, as defined in Section 3. The partial differential equations for MHD in x-space
are given by (2) and (3), while the transformed set of ordinary differential equations in
k-space are given by (22) and (23). The set of equations in k-space is a finite dynamical
system as discussed in Section 2.3. The k-space Equations (22) and (23) were numerically
integrated to advance the ũ(k, t) and b̃(k, t), as described above.
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Table 3. Time averages and standard deviations (avg±std) for various global quantities over the last
half of each run are given below for six ideal MHD turbulence long-time 1283 runs 1, 2a, 2b, 3, 4,
and 5. These global quantities are: energy E, kinetic energy EK , magnetic energy EM (compared with
⟨EM⟩), mean squared vector potential A, kinetic helicity HK , magnetic helicity HM, cross helicity HC,
parallel helicity HP, enstrophy Ω and mean squared current J. The ‘dipole angle’ θD, defined in (155),
shows alignment with the rotation axis; it would be 54.74◦ if all components were equal.

Run: 1 2a 2b 3 4 5

tend: 2174 2222 2134 1836 2023 1535
Ωo 0 10ẑ 10ẑ 0 2ẑ 1ẑ
Bo 0 0 0 1ẑ 1ẑ 1

2 ŷ
θD 53.2◦ 14.5◦ 11.1◦ 73.9◦ 66.2◦ 67.5◦

Eavg 1.0162 × 100 1.0177 ×100 1.0183 × 100 1.0514 × 100 1.0549 × 100 1.0139 × 100

Estd 1.9291 × 10−3 2.0941 × 10−3 2.2766 × 10−3 7.4256 × 10−3 7.7264 × 10−3 1.8739 × 10−3

⟨EM⟩ 5.6602 × 10−1 5.3976 × 10−1 5.6990 × 10−1 5.2609 × 10−1 5.2867 × 10−1 5.0674 × 10−1

Eavg
M 5.6540 × 10−1 5.3930 × 10−1 5.6958 × 10−1 5.2569 × 10−1 5.2851 × 10−1 5.0693 × 10−1

Estd
M 1.0178 × 10−3 1.1017 × 10−3 1.1575 × 10−3 3.7371 × 10−3 3.8773 × 10−3 9.9942 × 10−4

Eavg
K 4.5082 × 10−1 4.7843 × 10−1 4.4874 × 10−1 5.2567 × 10−1 5.2638 × 10−1 5.0692 × 10−1

Estd
K 1.0064 × 10−3 1.0911 × 10−3 1.1927 × 10−3 3.7318 × 10−3 3.8869 × 10−3 1.0036 × 10−3

Havg
K 5.0035 × 10−3 2.2347 × 10−4 4.7310 × 10−5 5.6336 × 10−4 3.0836 × 10−2 −7.9270 × 10−4

Hstd
K 2.1927 × 10−2 2.3255 × 10−2 2.2283 × 10−2 2.5948 × 10−2 2.5484 × 10−2 2.4622 × 10−2

Aavg 1.1570 × 10−1 6.0833 × 10−2 1.2070 × 10−1 4.2864 × 10−4 2.2403 × 10−3 4.1321 × 10−4

Astd 5.2465 × 10−6 1.4829 × 10−5 6.5841 × 10−6 3.3116 × 10−6 2.5063 × 10−5 2.1741 × 10−6

Havg
C 5.6091 × 10−2 1.4595 × 10−6 1.6540 × 10−6 5.2791 × 10−2 −1.2758 × 10−1 6.6435 × 10−5

Hstd
C 9.6277 × 10−5 3.7541 × 10−4 3.9550 × 10−4 1.0709 × 10−4 2.8772 × 10−4 3.0929 × 10−4

Havg
M 1.1570 × 10−1 6.0846 × 10−2 1.2070 × 10−1 1.2006 × 10−6 2.2474 × 10−3 3.3116 × 10−7

Hstd
M 1.8639 × 10−14 4.8467 × 10−6 2.2428 × 10−14 1.5512 × 10−5 2.9626 × 10−5 1.5650 × 10−5

Havg
P · · · · · · · · · · · · −1.3207 × 10−1 · · ·

Hstd
P · · · · · · · · · · · · 2.6514 × 10−4 · · ·

Ωavg 9.8207 × 102 1.0448 × 103 9.7999 × 102 1.1480 × 103 1.1493 × 103 1.1071 × 103

Ωstd 2.2688 × 100 2.4469 × 100 2.6440 × 100 8.1783 × 100 8.5013 × 100 2.2815 × 100

Javg 9.8262 × 102 1.0454 × 103 9.8053 × 102 1.1480 × 103 1.1499 × 103 1.1071 × 103

Jstd 2.2710 × 100 2.4677 × 100 2.6451 × 100 8.1898 × 100 8.5455 × 100 2.2476 × 100

Table 4. Bo = 0 here, so that none of these runs has an invariant HP. Time averages and standard
deviations (avg±std) for various global quantities over the 15% near the end of these 1283 forced
dissipative runs, where ν = η = 0.003 for each. F2

K and F2
M are the squares of the relative forcing

amplitudes, i.e., the relative amount kinetic and magnetic energy injected to keep the total energy
E ≈ 1; the wavenumber at which energy is injected is k f . The global quantities below are: energy
E, kinetic energy EK , magnetic energy EM (compared with ⟨EM⟩), mean squared vector potential A,
kinetic helicity HK , magnetic helicity HM, cross helicity HC, parallel helicity HP, enstrophy Ω, and
mean squared current J. The ‘dipole angle’ θD, defined in (155), shows alignment with the rotation
axis; it would be 54.74◦ if all components were equal.

Run: FD4 FD9 FDAa FDB GD2 GD6

tend: 1022 1013 1146 1613 1161 1589
Ωo 0 0 10ẑ 0 0 10ẑ
F2

K 0.5 0.99 1.0 0.01 0.5 0.5
F2

M 0.5 0.01 0.0 0.99 0.5 0.5
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Table 4. Cont.

Run: FD4 FD9 FDAa FDB GD2 GD6

k f 32 32 32 32 16 16
θD 82.2◦ 88.4◦ 16.5◦ 87.6◦ 80.4◦ 17.9◦

Eavg 1.0396 × 100 1.0510 × 100 1.0759 × 100 1.0212 × 100 1.1056 × 100 9.7867 × 10−1

Estd 1.6653 × 10−2 4.0345 × 10−3 1.6038 × 10−2 3.3366 × 10−2 5.8135 × 10−3 4.1622 × 10−2

⟨EM⟩ 9.1644 × 10−1 9.1841 × 10−1 9.4130 × 10−1 8.8157 × 10−1 8.9965 × 10−1 8.7473 × 10−1

Eavg
M 9.9863 × 10−1 9.7579 × 10−1 1.0355 × 100 9.7570 × 10−1 9.1065 × 10−1 9.3158 × 10−1

Estd
M 1.3718 × 10−2 8.6832 × 10−3 1.3907 × 10−2 7.4074 × 10−2 8.7982 × 10−3 3.2373 × 10−2

Eavg
K 4.0912 × 10−2 7.5265 × 10−2 4.0386 × 10−2 4.5492 × 10−2 1.9492 × 10−1 4.7090 × 10−2

Estd
K 1.0606 × 10−2 6.3219 × 10−3 2.7487 × 10−3 4.2247 × 10−2 1.1427 × 10−2 1.3039 × 10−2

Havg
K 7.9380 × 10−1 1.4759 × 100 1.2754 × 100 8.7401 × 10−1 3.0340 × 100 7.7653 × 10−1

Hstd
K 2.0240 × 10−1 9.2255 × 10−2 9.0125 × 10−2 1.3279 × 100 1.8428 × 10−1 1.8628 × 10−1

Aavg 8.2436 × 10−1 8.2437 × 10−1 8.6520 × 10−1 7.7865 × 10−1 −9.6305 × 10−3 7.7024 × 10−1

Astd 1.3306 × 10−2 5.7503 × 10−3 1.5585 × 10−2 1.2860 × 10−1 3.4050 × 10−2 1.3820 × 10−2

Havg
C 2.2219 × 10−3 5.3461 × 10−3 −1.2698 × 10−3

2.0878 × 10−3 −9.6305 × 10−3
2.7003 × 10−4

Hstd
C 5.6676 × 10−3 4.9668 × 10−3 1.3124 × 10−3 1.5190 × 10−2 3.4050 × 10−2 1.0062 × 10−2

Havg
M 7.9336 × 10−1 −7.8584 × 10−1 −8.0628 × 10−1

6.9376 × 10−1 −7.7518 × 10−1
7.7217 × 10−1

Hstd
M 1.1188 × 10−2 2.2650 × 10−3 5.6840 × 10−3 9.2302 × 10−2 3.8369 × 10−3 6.0669 × 10−3

Ωavg 2.9845 × 101 5.1779 × 101 4.3556 × 101 3.6576 × 101 6.3108 × 101 2.7860 × 101

Ωstd 7.9464 × 100 3.1420 × 100 3.3795 × 100 3.4916 × 101 3.0484 × 100 9.3346 × 100

Javg 4.7987 × 101 4.1317 × 101 2.5546 × 101 4.7803 × 101 6.8532 × 101 4.7025 × 101

Jstd 5.2631 × 100 2.8164 × 100 2.3989 × 100 3.1422 × 101 2.8496 × 100 1.6379 × 101

Table 5. Parallel helicity runs. Time averages and standard deviations (avg±std) for various global
quantities for the 1283 forced dissipative run GDpar; for comparison, the statistics for ideal Run
4 are also given below; also, the statistics for 643 ideal Run P0 (averaged over the last half of the
run) and those for 643 forced, dissipative Run P1 (averaged over t = 3000 to 3100) are given. These
global quantities are: energy E, kinetic energy EK , magnetic energy EM (compared with ⟨EM⟩), mean
squared vector potential A, kinetic helicity HK , magnetic helicity HM, cross helicity HC, parallel
helicity HP, enstrophy Ω and mean squared current J. The ‘dipole angle’ θD, defined in (155), shows
alignment or not with the rotation axis; it would be 54.74◦ if all components were equal.

Run: 4 GDpar P0 P1

tend: 2023 2370 1000 6000
Ωo 2ẑ 1ẑ 2ẑ 2ẑ
Bo 1ẑ 1ẑ 1ẑ 1ẑ
F2

K 0 0.99 0 0.99
F2

M 0 0.01 0 0.01
k f · · · 32 · · · 16
θD 66.4◦ 2.95◦ 8.33◦ 27.7◦

Eavg 1.0384 × 100 1.0190 × 100 1.0135 × 100 1.0526 × 100

Estd 2.1854 × 10−2 3.1492 × 10−3 2.7084 × 10−3 2.4742 × 10−3

⟨EM⟩ 5.2636 × 10−1 8.2395 × 10−1 5.9374 × 10−1 9.4420 × 10−1

Eavg
M 5.2051 × 10−1 8.3443 × 10−1 5.9371 × 10−1 9.6959 × 10−1

Estd
M 1.0682 × 10−2 1.8535 × 10−3 1.5745 × 10−3 3.9825 × 10−3
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Table 5. Cont.

Run: 4 GDpar P0 P1

Eavg
K 5.1793 × 10−1 1.8463 × 10−1 4.1978 × 10−1 8.2975 × 10−2

Estd
K 1.1444 × 10−2 1.5637 × 10−3 1.6780 × 10−3 1.6539 × 10−3

Havg
K 3.2559 × 10−2 1.2883 × 100 3.6031 × 10−2 4.3567 × 10−1

Hstd
K 4.3226 × 10−2 3.8252 × 10−2 2.6972 × 10−2 1.3323 × 10−2

Aavg 2.3231 × 10−3 7.9320 × 10−1 1.8422 × 10−1 8.9152 × 10−1

Astd 5.9947 × 10−4 6.6001 × 10−4 5.5147 × 10−4 8.0233 × 10−3

Havg
C −1.2660 × 10−1 3.1297 × 10−1 −1.4027 × 10−1 −1.9290 × 10−1

Hstd
C 3.4290 × 10−3 8.0896 × 10−3 1.0815 × 10−3 1.9398 × 10−3

Havg
M 2.4753 × 10−3 −7.8900 × 10−1 1.8421 × 10−1 8.9913 × 10−1

Hstd
M 1.5885 × 10−3 9.1099 × 10−4 5.4973 × 10−4 7.8610 × 10−3

Havg
P −1.3155 × 10−1 1.1020 × 100 −5.0869 × 10−1 −1.9912 × 100

Hstd
P 7.0649 × 10−4 8.2375 × 10−3 8.9799 × 10−5 1.7325 × 10−2

Ωavg 1.1298 × 103 4.9146 × 101 2.2404 × 102 6.3509 × 100

Ωstd 3.5140 × 101 1.0724 × 100 9.3576 × 10−1 3.7255 × 10−1

Javg 1.1303 × 103 4.4035 × 101 2.2460 × 102 7.0514 × 100

Jstd 3.5090 × 101 1.8410 × 100 9.4783 × 10−1 5.4692 × 10−1

As seen in Table 1, the ideal invariants of ideal MHD turbulence are the volume-
averaged energy E and magnetic helicity HM when Bo = 0, as well as the cross helicity
HC when Ωo = 0 and HP when Ωo = σBo ̸= 0. In a numerical simulation of ideal MHD
turbulence, these ideal invariants typically have a standard deviation of less than 1% per
million time-steps, while kinetic helicity HK, though an invariant for ideal hydrodynamic
turbulence [75], falls to zero very quickly and then has small fluctuations about that value,
as Table 3 shows. However, if there is strong helical kinetic forcing, HK can become
relatively large, as Table 4 shows.

8.1. Forcing and Dissipation

Forcing is implemented at wavenumber k = k f , specifically at wavevectors

k f ∈
{
±k f x̂,±k f ŷ,±k f ẑ

}
, by setting the kinetic and magnetic coefficients ũ f (k f ) and

b̃ f (k f ) to have, at each time-step, the form:

ũ f (k f êj) = cσKeiϕFK(ên + iσKêm) (151)

b̃ f (k f êj) =
√

1 − c2e−iψFM(ên + iσMêm). (152)

The indices j, n, and m are cyclic permutations of x, y, and z. These coefficients are
set independently of the time-integration scheme applied to the k-space versions of (2)
and (3), by prescribing their values in the manner above. The factors σK and σM are
+1 for positive and −1 for negative kinetic or magnetic helicity forcing. The factor
F = 3

√
2 exp[30(1.1 − E)] adjusted itself at each time-step to keep the total energy density

close to unity. The forcing wavenumber k f was set to 32 (or 16) as this seemed large
enough to allow Fourier modes at the smallest wavenumber (largest length-scale) to de-
velop naturally, while providing enough modes with k > k f for a direct cascade to smaller
length-scales and ultimate dissipation to occur. The phases in (151) and (152) were ϕ = 2πt
and ψ = −2πt, i.e., linear with time with a period of unity.

Dissipation is introduced by setting ν in (22) and η in (23) to nonzero values. These
values were usually set to ν = η = 0.003 but were changed and then reset for one run
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(GDpar), as discussed in the next section, to see the effects this disruption might cause. The
level of forcing and dissipation must, of course, come into balance and this typically occurs
after a short period of adjustment.

9. Computational Results

For each run in Table 3, the quantities that are supposed to be conserved were, in fact,
conserved. These runs are fully turbulent and their transition to turbulence was described
previously [48,49]; here, the run-times are considerably extended. There are two further
sets of runs whose statistics are given in Tables 4 and 5 that will also be discussed.

For all the runs presented here, the values of all the ũ(k, t) and b̃(k, t) with k2 ≤ 3
were saved every 0.1 units of simulation time t (i.e., every 200 ∆ts for the 1283 runs and
every 100 ∆ts for 643 runs). From the saved data, components of the vectors ũ(k, t) and
b̃(k, t) can be transformed into helical components ũ+(k, t), ũ−(k, t), b̃+(k, t) and b̃−(k, t),
as discussed in Section 2.2. These are useful, but can be further transformed into cyclic
linear modes whose non-cyclic factors are Ṽ+

1 (k, t), Ṽ+
2 (k, t), Ṽ−

1 (k, t) and Ṽ−
2 (k, t), as

defined in Section 2.4. If there were no nonlinear interactions in the MHD equations,
the Ṽ±

1,2(k, t) would be complex constants; however, the MHD equations are nonlinear,
so the Ṽ±

1,2(k, t) may wander around with time. Since we have recorded data that can
give us the time-histories of these for k2 ≤ 3, we can plot their trajectories on a complex
plane and clearly see the nature of ideal (or real) MHD turbulence, at least at the larger
length-scales (i.e., smaller wave numbers k). These ‘phase portraits’ are projections of the
dynamical trajectory in the high-dimensional phase space onto a 2-D plane which enables
us to visualize the concepts of coherent structure, broken ergodicity, and broken symmetry
(please see Section 7 for a review of these concepts). For the runs discussed here, some
phase portraits are shown in Figures 1–3. Next, we discuss Figures 1 and 2, while Figure 3
will be discussed a little later.
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Figure 1. Ideal 1283 Run 5 k2 = 2 coefficient trajectories with initial values signified by a black dot:
(a) Ṽ+

2 (k)/N3/2, k = (1, 1, 0); (b) Ṽ−
2 (k)/N3/2, k = (1, 1, 0). The black circles indicate the predicted

standard deviation and the darker parts of the trajectories indicate the last 5% of the run time and the
+ sign indicates the origin (0,0). These phase plots represent the initially expected behavior of Fourier
coefficients as zero-mean random variables.
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Figure 2. Broken ergodicity and broken symmetry as evidenced in |k̂| = 1 coefficient trajectories
from ideal 1283 Runs (a) 1 and (b) 2b; trajectories all begin near the origin (0,0). These are clearly
nonzero-mean random variables, a phenomenon that was unexpected but which can be understood
theoretically; the black circles indicate the predicted standard deviations of these k2 = 1 coefficients;
for each trajectory, the expected standard deviation is equal to

√
kmin|HM|/3.
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Figure 3. Phase plots of trajectories of k2 = 1 eigenvariables Ṽ±(k̂) from the 1283 parallel helicity
Run GDpar for (a) k̂ = x̂; (b) k̂ = ŷ; and k̂ = ẑ. The trajectory of Ṽ+(ẑ) in (c) has become large and
circular motion indicates that the coherent structure is in translation across the periodic box with a
period of T ≈ 200. (Note that these are not normalized by dividing by

√
1283). Black circles indicate

stanard deviations predicted for these random varibles and the + indicates the origin, i.e., (0,0), for
each 2-D plot.

In Figure 1 we show some k2 = 2 trajectories for Run 5 of Table 3; these trajectories
settle into expected behavior for zero-mean random variables. In Figure 2 we show k2 = 1
trajectories for Runs 1 and 2b of Table 3; these trajectories do not exhibit the expected
behavior of zero-mean random variables but instead show broken ergodicity and symmetry
at the largest length-scale, i.e., they give evidence of the inherent dynamo within MHD
turbulence whose existence is explained in Section 4.

In addition to the ideal runs of Table 3, sixteen relatively long-time forced, dissipative
1283 runs without parallel helicity were computed. Statistics for six of these Case I and II
runs are shown in Table 4 as a representative set; the method of forcing and dissipation is
described in Section 8.1. With regard to Case IV of Table 1, we gather together Run 4 of
Table 3 with three other Case IV runs: GDpar (1283), along with P0 and P1, both 643.

For all the runs in Tables 3–5, the values of all the ũ(k, t) and b̃(k, t) with k2 ≤ 3 were,
again, saved every 0.1 units of simulation time t (i.e., every 200 ∆ts for the 1283 runs and
every 100 ∆ts for 643 runs). From this numerical data we can calculate a time history of the
modal energies:

EK(k, t) = N−3|ũ(k, t)|2, E(k)
K (t) = ∑

k=|k|
EK(k, t), (153)
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EM(k, t) = N−3|b̃(k, t)|2, E(k)
M (t) = ∑

k=|k|
EM(k, t). (154)

In Figures 4–6, we see how the k = 1 magnetic energies EM(k̂, t), k̂ = x̂, ŷ, ẑ, vary with
time compared to their expected values.

0 500 1000 1500 2000

10
−1

10
0

(a) Run 1

t

EM (x̂)/HM

EM (ŷ)/HM
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Figure 4. Numerical verification of E(1)
M = ∑k̂ EM(k̂) = ED = kmin|HM| in ideal 1283 Runs (a) 1;

(b) 2a; and (c) 2b; again, in the Fourier case, kmin = 1.

In Figure 4, a numerical verification of the essential result (1), i.e., ED = kmin|HM|, is
presented for ideal 1283 Runs 1, 2a and 2b. Figure 5 shows that numerical verification that
(1) also applies to forced, dissipative runs, using Runs FD-9 (Case I), FD-Aa (Case II) and
FD-B (Case I) as examples. As can be seen in Table 4, these runs differ in the relative values
of the forcing magnitudes FK and FM, and Figure 5 indicates that either predominantly
kinetic or predominantly magnetic forcing, as long as they are helical, produces a large
value of |HM|; a coherent structure also arose, similar to that seen in Figure 2. Although
the chosen form of numerical forcing can affect the evolution of the dynamical system, the
basic law ED = kmin|HM| and coherent structure appear, independent of any reasonable
method of forcing chosen [27,44,45].
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Figure 5. Numerical verification of E(1)
M = ∑k̂ EM(k̂) = ED = kmin|HM| in forced, dissipative 1283

Runs (a) FD-9; (b) FD-Aa; and (c) FD-B; again, in the Fourier case, kmin = 1. Numerical forcing can
affect the evolution of the dynamical system, but the basic law ED = kmin|HM| appears independent
of any reasonable method of forcing chosen.
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EM (ŷ)/ED
EM (ẑ)/ED

E
(1)
M /ED

0 200 400 600 800 1000
0.9

0.92

0.94

0.96

0.98

1

1.02

(b) Run P0

t

EM (ẑ)/ED
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Figure 6. Here, we see numerical verification of E(1)
M = ∑k̂ EM(k̂) = ED = (HP − 1

4 zoE)/σ in the

ideal 643 parallel helicity Run P0: (a) first, all EM(k̂) and E(1)
M ; and (b) second, a close up of EM(ẑ)

and E(1)
M .

In Table 3, Run 4 is the sole run with parallel helicity HP = −0.13207 ± 0.00027. In
the case of Run 4, this low value does not satisfy the requirement (117) that |HP| > E/2 =
0.51753 by which a coherent structure might be expected. To test the ideal theory for
|HP| > E/2, we added 643 ideal Run P0 and 643 forced, dissipative Run1 P1, along with
the 1283 forced, dissipative Run GDpar to our collection. Their statistics are, again, given
in Table 5, along with ideal Run 4 from Table 3 for comparison. In addition to the ideal
Run P0, the statistics of the forced, dissipative Runs P1 (643) and GDpar (1283) are also
given in Table 5. In Figure 6, we see numerical verification from Run P0 of the theoretical
prediction (133), i.e., ED = (HP − 1

4 zoE)/σ, in the ideal 643 parallel helicity Run P0 for
which HP = 0.50869 ± 0.00009. A coherent structure also arises in Case IV runs, as long
as |HP| > E/2, as seen, for example, in Figure 3, where k = 1 phase portraits from Run
GDpar are shown.

In Figure 7, we present a numerical verification of (133) in the forced, dissipative,
parallel helicity, 1283 Run GDpar. In this figure, the values of the k2 = 1 magnetic energies
EM(k2), defined in 156, divided by the predicted value (133) of ED, are given, as well as
the sum of these, E(1)

M /ED. Verification of (133) follows because E(1)
M /ED → 1 with time,

indicating the applicability of ideal results to real MHD turbulence. Figure 7 also indicates
that a change of parameters causes a disruption after which the system regains equilibrium.

The dipole angle θD appearing in Tables 3–5 is defined by

θD ≡ tan−1

√
|b̃(x̂)|2 + |b̃(ŷ)|2

|b̃(ẑ)|2
. (155)

In Case II runs (Bo = 0, Ωo = Ωoẑ ̸= 0), this angle is generally small, as seen in the Tables
mentioned, indicating alignment with the rotation axis.

The definitions of averaged MHD turbulent spectra ĒM(k2) and ĒK(k2) are

ĒM(k2) =
1

n(k2)

|k|2=k2

∑
k

|b̃(k)|2
N3 , (156)

ĒK(k2) =
1

n(k2)

|k|2=k2

∑
k

|ũ(k)|2
N3 . (157)

Here, n(k2) is the number of independent k that satisfy |k|2 = k2. The number n(k2) jumps
around as k2 increases, as shown in (90). The full energy spectra is n(k2)ĒM,K(k2) at each
value of k2 and thus jumps wildly as k2 increases because n(k2) does, which is why we
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prefer to look at the average energy spectra (156) and (157), as in Figure 8. (However, its
running average over near neighbors n̄(k2) is well approximated by n̄(k2) = πk).
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Figure 7. Numerical verification of Equation (133), i.e., ED = (HP − 1
4 zoE)/σ, in the forced, dissi-

pative, parallel helicity 1283 Run GDpar. This figure indicates that a change of parameters causes a
disruption after which the system regains equilibrium. The yellow dotted line indicates when a given
ratio has a value of one.
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Figure 8. Equilibrium magnetic energy spectra EM compared with associated ideal and the Kol-
mogorov predictions for three 1283 forced, dissipative Runs: (a) GD2 and (b) GD6 of Table 4, along
with (c) parallel helicity Run GDpar of Table 5. The forcing wave number was k f = 16 for GD2 and
GD6, while it was k f = 32 for GDpar.

Using the results in Table 2, we find that the ideal expectation values of ĒM(k2) and
ĒK(k2) are

〈
ĒM(k2)

〉
=

2
N3

α̂δ̂2

δ̂4 − α̂2γ̂2/k2
, (158)

〈
ĒK(k2)

〉
=

2
N3

α̂(δ̂2 − γ̂2/k2)

δ̂4 − α̂2γ̂2/k2
. (159)

Here, δ̂2 = α̂2 − β̂2/4 and α̂, β̂ and γ̂ are the normalized inverse temperatures related to
inverse temperatures appearing in the phase space probability density (44); please see
Section 4 for details. Tables 3–5 list the average values of E, HC, HM and HP, during a
run; using these, as needed in (71) for the ideal values E , HC, HM and HP, the normalized
inverse temperatures α̂, β̂ and γ̂ are determined by numerically finding the minimum of
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the entropy functional (71) using a bisection method [76] with the proviso that, for Case
II runs, β̂ = 0; for Case III runs, γ̂ = 0; for Case IV runs, γ̂ = −σβ̂; and for Case V runs,
β̂ = γ̂ = 0. The values of α̂, β̂, and γ̂ for the runs in Tables 3–5 are given in Table 6.

In Figure 8, equilibrium magnetic energy spectra for 1283 forced, dissipative Runs
(a) GD2 and (b) GD6 of Table 4, along with (c) 1283 forced, dissipative, parallel helicity
Run GDpar of Table 5 are presented, along with associated ideal prediction (158) and
the Kolmogorov prediction. The associated ideal spectra are, again, found using Table 4
average values: Eavg, Havg

C and Havg
M for GD2; Eavg and Havg

M for GD6; and Eavg and Havg
P

for GDpar. The forcing wave number was k f = 16 for GD2 and GD6, while it was k f = 32
for GDpar. The correlation of ‘inertial range’ spectra with the Kolmogorov prediction
E(k) ∼ k−5/3 for spectra integrated over wave number; for the spectra shown in Figure 8,
what is plotted is the averaged value at each k2, for which the Kolmogorov prediction
becomes E(k)/k2 ∼ k−11/3. The results shown in Figure 8 are consistent with what we
find in all the forced, dissipative runs we have carried out, so they appear robust and
indicate that an inertial range has been resolved in these numerical simulations of real
MHD turbulence.

Table 6. Values of the inverse temperatures α̂, β̂, and γ̂ for the Runs in Tables 3–5, remembering that
for Case II runs, β̂ ≡ 0; for Case III, γ̂ ≡ 0; and for Case V, β̂ ≡ 0 and γ̂ ≡ 0. When needed, E , HC,
and HM took their values from Eavg, Havg

C and Havg
M , respectively, in the Tables mentioned. [The need

for precision here is due to the possible smallness of the denominators in (158) and (159)].

Table Run α̂ β̂ γ̂

Table 3

1 0.99078516013 −0.19837547796 −0.98084304500
2a 0.92168445878 0 −0.92166079071
2b 0.98388128912 0 −0.98386939908
3 0.83881629327 −0.17608431628 0
4 0.90195599886 0.42568629498 −0.85137258997
5 0.86630471441 0 0

Table 4

FD4 3.27912769063 −0.02609471857 −3.27906118215
FD9 3.46598587465 −0.05001568999 3.46579090492
FDAa 3.26172159760 0 3.26170739087
FDB 3.72159781235 −0.06722825259 −3.72128000673
GD2 12.61030587791 −0.88846308423 −12.59464339709
GD6 3.38523799747 0 −3.38522321872

Table 5
GDpar 8.17370700063 6.77131925643 −6.77131925643
P0 1.13764321597 −0.53711057048 1.07422114095
P1 13.37536713221 −6.31498607282 12.62997214565

Finally, let us point out the connection between MHD turbulence and the geodynamo.
The magnetic field in the Earth’s outer core manifests itself in the latest International
Geomagnetic Reference Field (IGRF) [77], which is comprised of the Gauss coefficients of the
geomagnetic field, as determined by processing surface and satellite measurements. It has
been shown that magnetic energy spectra from forced, dissipative numerical simulations,
similar to those presented here, match closely with outer core magnetic spectra derived
from IGRF data, as long as the electrical conductivity of the Earth’s mantle is taken into
account [78]. This can be viewed as compelling evidence that MHD turbulence exists in the
rotating outer core and, as we have reviewed herein, that rotating MHD turbulence, per se,
is the dynamo that creates the quasi-stationary, energetically dominant, dipole magnetic
field of the Earth. Thus, we have a solution to the ‘dynamo problem’.

10. Conclusions

Five different Cases of MHD turbulence have been defined in Table 1, based on the
ideal invariants associated with each Case. The primary result that we wish to emphasize
here is that all of the Case II simulations (and to a good approximation, Case I simula-
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tions) of ideal and real MHD turbulence in equilibrium that we have presented verify
the ‘ideal MHD law’ (1). We have also developed an analogous result for Case IV, i.e.,
Equation (133), when parallel helicity HP is an ideal invariant. In these Cases, both ideal
and real simulations show the emergence of largest-scale coherent structure.

Case II of Table 1 is perhaps the most pertinent one related to planets and stars. For the
Earth, in particular, which possesses an outer core that can be approximated as a rotating,
turbulent magnetofluid in equilibrium, the theory described here—verified by numerical
results—strongly suggests that we have found a solution to the ‘dynamo problem’ first
posed by Joseph Larmor just over a hundred years ago. As there appear to be no other
viable extant solutions, this would seem to be an important discovery, and we hope it will
be recognized as such.

Concerning ergodicity, some researchers have stated that fluid turbulence is ergodic [79]
and others that there are cases of nonergodicity [80]; more recently, it has been said that
‘the as yet unproven general ergodic theorem states that time averages are the same as
ensemble averages, assuming the fluctuations are stationary (the ergodic theorem has been
proven under certain conditions)’ [81]. With regard to ‘certain conditions’, if the influence of
magnetic helicity is not taken into account, and thus assumed to be insignificant, ergodicity
may be expected [82]Ḣowever, the discovery that we made long ago [42]—also discussed
here—that there is nonergodicity due to nonzero magnetic helicity in a turbulent mag-
netofluid, implies that there is no general ergodic theorem for all cases of fluid turbulence.
This is our essential result here: in MHD turbulence, nonzero magnetic helicity causes
nonergodicity, which is expressed as a coherent largest-scale structure.
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