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Abstract: Using linear elasticity theory, we describe the mechanical response of dry non-cohesive
granular masses of Ottawa sand contained by spherical rubber balloons subject to sudden bursting
in the earliest instants of the event. Due to the compression imposed by the balloon, the rupture
produces a fast radial expansion of the sand front that depends on the initial radius R0, the initial
pressure p originated by the balloon, and the effective modulus of compression Ke. The hydrostatic
compression approximation allows for the theoretical study of this problem. We found a linear
decompression wave that travels into the sand and that induces a radial expansion of the granular
front in the opposite direction with similar behavior to the wave but with a slightly lower speed.

Keywords: granular media; linear elasticity theory; effective modulus of compression; decompression
waves

1. Introduction

Dry cohesionless granular materials can be seen as a cluster of discrete macroscopic
particles interacting by contact. Examples include seeds, sand, coals, pharmaceutical
powders, etc. Despite their apparent simplicity, they show unique bulk properties that are
different from other familiar forms of matter such as solids, gases, or liquids. The unusual
behavior of granular materials is clearly and simply illustrated in various ordinary processes
such as the unique pressure distribution that arises from their storage in bins, known as
the Janssen effect [1–5]. Different works have been carried out to predict the static stresses
in vertical circular silos, which include much more detailed cases such as silos under non-
uniform temperature distributions [6], overall deformation of circular silos [7], or strong
changes in the pressure distribution during emptying regimes caused by defects in the silo
structure [8]. It is worth noting that a linear elasticity approach has been used in previous
referenced works.

While assuming that the granular material under pressure has a linear elastic behavior,
other authors have theoretically analyzed the behavior of the granular medium undergoing
a pressure step within a horizontal cylindrical pipe [9]. In summary, they found an inter-
esting interplay between the stopping front of the grains and the pressure front, i.e., that
the granular front and the pressure front can move with different speeds. Owing to this
finding, it is feasible to predict when the grains will be arrested as well as the resulting
final equilibrium pressure profile. For us, this model is of great interest because of the
occurrence of an acoustic wave propagating at a speed of c = (Ee/ρ)1/2, where Ee is the
effective Young’s modulus and ρ is the bulk density.

Pricking a water-filled balloon is a ludic experiment that reveals surprising effects,
such as the sudden liberation and subsequent breaking up of the mass of water [10]
and the accelerated propagation of the crack vertically along the elastic membrane [11],
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among others. Moreover, pricking an air-inflated balloon features a complex phenomenon
due to the presence of fragmentation patterns of the membrane in a treelike fragmentation
network [12].

However, due to the frictional interaction of each segment with the grains, pricking a
spherical sand-filled rubber balloon with a sharp needle does not produce an overall rupture
of its elastic film. From an experimental point of view, in order to achieve an extensive break
off of the balloon membrane, we directed a flame thrower at it; consequently, the highly
stretched membrane yielded very quickly, inducing a rapid peeling away from the granular
mass. The ensuing sudden decompression of the granular solid induced a decompression
wave traveling inward to the granular mass. As a mechanical response, there is a fast radial
expansion or displacement of the granular material which resembles the fragmentation of
explosively driven expanding granular shells, where the blast wave front and the particle
front travel at different directions and speeds [13].

In the current work, we experimentally and theoretically study the mechanical re-
sponse of a mass of cohesionless granular material having a near spherical shape and
initial mean radius R0 when it is suddenly relieved of the compressive radial pressure
p. The rapid radial expansion changes the volume of the body but does not change its
shape; such a deformation is a hydrostatic compression, and as such a specific theoretical
approach [14] should be used for this elastic deformation. Our goal is to understand how
the granular mass expands elastically as a function of R0, p, and the effective hydrostatic
compression modulus Ke, which is modeled in a simple form. This treatment led us to
the discovery of a linear decompression wave which cannot be visualized; instead, we
experimentally observed the rapid expansion of the spherical mass, which we understand
as a response to the propagation of the elastic wave into the sand mass. The motion of the
grains was experimentally tracked by means of high-speed video recording, allowing us to
determine that the sand displacement front moves at a constant speed. For prolonged time
lapses, gravity dominates and causes the grains to spill, and the model fails to apply.

The division of this work is as follows. In Section 2, we describe and characterize the
materials used in our experiments. In Section 3, we report a series of experiments involving
the systematic bursting of sand-filled balloons of different sizes and provide measurements
of the radial displacement of the sand mass as a function of time. In Section 4, we present
the theoretical model of the decompression and its solution in terms of a linear wave.
In Section 5, we provide data for Ke, used in the computation of the decompression waves,
based on a statistical model proposed by Walton [15], Kew, and a new estimation based on
the elastic approach discussed later on, Ke; plots of the propagation of the elastic wave are
presented as well. Finally, in Section 6 we provide the main conclusions of this work.

2. Materials

Rubber balloons were filled using the following procedure: first, we filled a bottle
with a specific mass M of Ottawa sand (average diameter 0.93 × 10−3 m [16], bulk density
ρ = 1670 kg/m3, packing factor or volume fraction η = 0.63, angle of repose θr = 0.58 rad),
which is a standard specially-graded natural silica sand composed of rounded quartz
grains with Young’s modulus E = 110 ± 5 GPa, density ρg = 2650 kg/m3, coefficient of
restitution COR ≈ 1 for velocities lower than 1.6 m/s [17], and Poisson’s ratio σ = 0.08.
These last properties were measured elsewhere [18]; see Figure 1a. Simultaneously, we
inflated the balloon to a desired average radius R0 by blowing air through the nozzle
of a compressor. Then, we attached the mouth of the inflated balloon to the bottleneck,
which was kept standing up on top of a table. Then, by rotating the bottle–balloon system
180◦, the grains were allowed to flow as driven by gravity, filling the balloon to the brim.
Finally, it was sealed and gently formed into a spherical shape. This procedure was used to
obtain sand-filled balloons of different average radius and specific mass. The section of the
laboratory in which the experiments were carried out was climate controlled (298.2 ± 1 K
and 40 ± 10% R.H.).
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The value of the absolute pressure exerted by the balloon against the mass of sand
when the balloon reaches a given radius R = R0 must be determined. Additional exper-
iments were carried out to determine the pressure as a function of the balloon’s radius.
We performed measurements of the pressure within the balloon when it was inflating
using a Dwyer D1635 pressure transducer, which operates within an absolute pressure
range between 0 and 103.24 kPa and operating temperature between 256.15 and 473.15 K,
compatible with both liquids and gases. For data acquisition, it was necessary to develop a
LabVIEW program, and we used a National Instruments SCB-68 data acquisition module.
Figure 1b shows a typical plot of the inflation pressure p as a function of the stretched R
during the inflation of a given balloon. Values of the pressure p(R) from this plot, are used
in the upcoming computations to determine the corresponding pressure p(R = R0) for a
balloon of a given radius R0. Incidentally, plots of this type are typical for near-spherical
and cylindrical rubber balloons [19–21].

The physics of the inflation of rubber balloons evinces a number of interesting facts.
The pressure–deformation curve in spherical balloons quickly reaches the maximum pres-
sure (as in this stage the pressure depends on the inverse of the balloon’s radius, which
initially is very small); this part of the curve is the first increasing branch. Upon further
inflation, the pressure decreases, because the balloon’s radius increases (such a region is
the first decreasing branch), after which pressure increases rapidly again until the bursting
point. The second ascending branch is due to the ultimate stiffening effect as a result of the
influence of the molecular chain structure [21].

In our experiments, when we filled the balloons, the air volume allowing the radius
R0 to be reach was exchanged for the sand volume, and we assumed that the respective
inflation pressure p(R = R0) acts on the granular mass instead. In this sense, the plot in
Figure 1b is useful.

Figure 1. (a) Plot of the cumulative percentage undersize and oversize. The average diameter of the
grains is taken to be the median (vertical straight line), which is the value separating the higher half of
the size distribution from the lower half. Thus, the average diameter of the grains of Ottawa sand is
0.0093 m. (b) Plot of the inflation pressure p as a function of the average stretch R of a near spherical
rubber balloon; measurements were performed at room temperature Troom = 298.2 K. Notice the
strong nonlinear behaviour of the pressure as a function of R.

3. Experiments

The fast decompression of the granular mass was experimentally visualized and
measured using high-speed photography and digital image processing. We employed a
Red Lake model HG-100K/HG-LE high-speed camera to video record the burst of the
balloon at 1600 frames per second. In the experiments, rubber balloons were filled with
different masses of Ottawa sand, as indicated in Table 1, which also provides the mean
radii (R0) reached by the balloons when a certain amount of mass was introduced. After
the balloons were filled with sand, they were laid to hang (see Figure 2) and then burst by
exposure to an intense flame produced by a plumber’s blow torch (butane/propane gas).
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The hottest point was approximately 1372.2 K, though the actual temperature a heated
component can attain is much lower than this, and depends on the burner along with the
thermal properties of the component and its surroundings. After any burst, we immediately
collected the sand manually and no sensitive temperature change was noticed. In the same
line, we highlight that if air warming occurs then its density decreases; thus, the ratio of
ρg/ρair must be larger than ρg/ρair = 2240 which was computed at Troom = 298.2 K. A large
value of this quotient indicates that the grain dynamics dominate the air dynamics [22].

Table 1. Mass of sand in the balloons and their respective initial mean radii R0. From the plot in
Figure 1b, the initial compression pressures p can be determined graphically. The rate of deformation
provides the velocity of the radial deformation of the dense granular front at the earliest times
of decompression.

Mass (kg) R0 (m) p (kPa) Rate Deformation (m/s)

0.50 4.15 × 10−2 6.30 0.66
0.60 4.45 × 10−2 6.00 0.58
1.00 5.30 × 10−2 4.52 0.46

Figure 2. Experimental setup for high-speed video recording of the bursting sand balloon.

Taking, for instance, a sand filled balloon with a mass of 1.00 kg, upon rupture after
exposure to the flame an accelerated peeling of the rubber film from the granular mass
takes place. Figure 3b–d shows a sudden radial expansion of the granular mass, which
we assume to be due to a decompression wave that penetrates into the a mass. As shown
in Figure 3b, a dense front of expansion was measured, while in Figure 3d a very dilute
grain cloud can be appreciated. The time range for all of the snapshots in Figure 3 is
lower than 0.02 s. Later, we show that for characteristic times tc < 0.02 s the inertial force
dominates the hydrostatic compression. In contrast with water balloon bursting, where a
vertical crack is observed [11], in sand-filled balloon bursting the principal curvature radii
are near the same, and consequently the crack of the rubber film can propagate along any
direction. It is possible that the relatively large size of the interaction region between the
flame and the balloon may have some contribution to the indeterminate/unpredictable
nature of the crack.

The sudden peeling of the rubber film from the spherical granular masses is so sudden
that the effect of gravity (i.e., the downward motion of the center of the cluster mass) was
not perceived and can be neglected. Thus, we measured the displacement of the granular
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front to quantify the expansion produced by the decompression wave when the pressure p
of the rubber film is instantly released at t = 0.

Figure 3. Example of a series of snapshots at the very early time instants of a bursting balloon of
mass M = 1.00 kg: (a) t = 0 s, (b) t = 3.75 × 10−3 s, (c) t = 1.00 × 10−2 s, and (d) t = 2.18 × 10−2 s.
In (a), the balloon is laid to hang and an accelerated peeling of the rubber film occurs. From (b) to (d),
decompression occurs simultaneously as a dense granular front (measured in the plot in Figure 4)
and as a dilute front of non-interacting single grains (measured in the plot in Figure 5).

Figure 4. Plot of the radial displacement of the dense granular front as a function of time due to the
sudden decompression of the granular masses. Three different masses with different radio were
experimentally studied.

Essentially, as previously reported in [23], we used a method to first detect the edge
of the balloon R0 in order to measure of the deformation of spherical mass core, then
measured the front of the granular mass r(t) resulting from the burst given its efficiency



Fluids 2024, 9, 49 6 of 13

for granular flows. This method allowed us to track the mean displacement of the granular
expanding mass as

displacement = r(t)− R0 (1)

with measurements made around a horizontal line originating from the center of mass
and reaching to the granular front r(t). Figure 4 shows the plot of the radial displacement
for the bulk mass in Table 1 as a function of time, with data provided for the first 30 frames
(0.018 s) in all cases. The lines fitting the symbols indicate the stage of deformation; note
that in these cases there is a certain temporal delay after the instant of rupture t = 0 s. The
deformation rate for each dataset can then be obtained from the slope of the linear fit, as
provided in Table 1.

From Figure 1b and Table 1, we highlight that increasing mean radii of the sand
balloons produce lower mean pressures, as the radius is in the region of the first decreasing
branch of the inflation pressure. In the plot of Figure 4, the flat part of each radius R0
refers to the average displacement (provided by the sloped straight lines) starting after a
given time, i.e., there is a delay time depending on the radius. This means that the delay
time increases for larger masses; in Section 5 we describe how this behavior can be directly
associated with the decompression waves that move inward towards the granular masses,
which also present temporal delays.

Figure 5. Plot of particle positions as a function of time during the bursting of the balloon. The radial
motion of single grains (particles 1 and 2 in the inset) is visible through their tracks. As a reference,
we show data for the displacement versus time, as was provided in Figure 4 (green symbols). The
measurements correspond to the bursting of a balloon with M = 1.00 kg, and the average velocity of
the grains was vg = 1.43 ± 0.07 m/s (magenta dash line).

The radial expansion observed in snapshots in Figure 3 indicates interesting behaviors
similar to those occurring in the explosive dispersal process [24]. An expansion develops
close to the free surface during the early time points of sudden decompression, and the
dynamics range from a dense granular expansion, as provided by the measurements in
Figure 4, to a dilute gas–solid mixture (η very low), as shown in the inset of Figure 5.
In this latter case, the particles are discrete and far from each other and the probability of a
particle–particle collisions is very low; hence, the interactions between the particles can
be neglected.

Figure 5 shows that certain particles in the dilute regime (particles 1 and 2 in the inset)
rapidly acquire a similar motion to that of the decompression wave except in an opposite
direction to the wave itself, whereas large particles respond more slowly due to their larger
inertia, as shown in Figure 4. This phenomenon is explored further in Section 5. It is very
possible that the more external and smaller particles of our sand samples could be part of
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the dilute regime, both of which reach an average velocity vg = 1.43 ± 0.07 m/s. We return
to this matter later in order to better understand various aspects of the decompression wave.

A last issue concerning the inner structure of the granular mass is related to the
possible existence of force chains, which are typical in granular masses subjected to strong
compression stresses [25–30]. Chain forces in two-dimensional granular materials have
been found experimentally through photoelasticity [25–27], force sensors [28], and the use
of DEM and lattice Boltzmann simulations [25,27].

Transparent materials with a non-crystalline molecular structure are optically isotropic
when unstressed, i.e., the polarization of the incident light is not altered by the material.
However, such materials become optically anisotropic (birefringent) when placed under
stress. The polarization of the incident light in the stressed material is changed in a way
similar to the behavior of birefringent crystals. After unloading, the material becomes
optically isotropic again.

Measurements show that spatially extended and strong force chains (much larger than
the mean force) occur when the applied stresses are large (although these are exponentially
rare [29]); conversely, short and weak force chains are produced for small stresses [25,27].
Moreover, the force–force spatial distribution function and contact point radial distribution
function indicate that the spatial correlations between the contact forces and positions of
the contacts extend out only to approximately three particle diameters. This shows that
force correlations dissipate quickly in the bulk and that the force transmission network
propagates locally before rapidly becoming diffuse [30]. Taking all this into account along
with the fact that the typical inflation pressures involved in our experiments are relatively
small (Table 1) and that the decompression wave only penetrates small distances with
respect to the free surface before the action of gravity begins to play an important role (see
Section 5), it is possible that effect of the chain force on the decompression wave could
be marginal.

4. Decompression Model
4.1. Expansion Wave

The experiments described above indicate that the deformation mainly causes a change
in the volume of the body of sand with no change in its shape. Such a deformation is a
hydrostatic compression [14]. We propose that under these conditions the granular medium
can be treated as an effective elastic medium. Attempts to do this in more general conditions
exist in the literature; see [15,31–35]. What follows is a simplified account specialized for
the problem at hand. This approach is partially justified by the qualitative agreement
between its predictions and our experiments.

In the initial state, before the rubber film is broken, the medium is subjected to a
uniform compression p, which is assumed to be instantly released when the film disappears.
Calling u(x, t) the displacement of the medium subsequent to the suppression of the
rubber film, the variation of the stress tensor relative to that of the compressed medium is
σij = Ke∇ · u δij, where Ke is the effective compressibility modulus, ∇ · u is the trace of the
strain tensor, and δij is the identity tensor. Only longitudinal elastic waves exist in these
conditions. With spherical symmetry, leaving out the effect of gravity in the early stages of
the expansion, we have u = u(r)er, where r is the distance to the balloon center and er is a
unit vector in the local radial direction. Then, ∇ · u = r−2∂

(
r2u

)
/∂r and the wave satisfies

the following equation (see, e.g., [14]):

ρ
∂2u
∂t2 = Ke

∂

∂r

[
1
r2

∂

∂r

(
r2u

)]
, (2)

where ρ is the effective density of the medium, the product of the density of the spheres’
material and their volume fraction.

An order-of-magnitude estimation of the time for which the decompression occurs in
a fast manner (in the absence of gravity) is obtained through Equation (2). If the inertial
force dominates the hydrostatic compression when the granular mass has a size r = R0,
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then ρu/t2 > Keu/R2
0, meaning that t <

√
ρR2

0/Ke. Therefore, our theoretical analysis is
valid for times that fulfills such a condition.

Equation (2) is solved subject to the boundary conditions

r = 0 : u = 0 and r = R0 : σrr = p H(t), (3)

where H is the Heaviside step function, defined as H(t) = 0 if t < 0 and H(t) = 1 if t ≥ 0.
These consist of the symmetry condition at the center of the balloon and the condition that
the pressure of the rubber film is instantly released at t = 0. The initial conditions are

t → −∞ : u =
∂u
∂t

= 0. (4)

At short times, the expansion wave originating at r = R0 when the initial compression
is released has only travelled a small distance inward compared with the radius R0 of the
balloon. In terms of the variables ξ = r − R0 and t, Equation (2) can be simplified to the
wave equation

∂2u
∂t2 = c2 ∂2u

∂ξ2 with c2 =
Ke

ρ
, (5)

which is solved for ξ < 0 with the following conditions:

ξ = 0 : Ke
∂u
∂ξ

= p H(ct), ξ → −∞ : u = 0, t → −∞ : u =
∂u
∂t

= 0. (6)

The solution of (5) is of the form u = f (ξ + ct). The first condition (6) requires
Ke f ′(ct) = p H(ct), which together with the second condition determines f (ξ + ct) =
(p/Ke)(ξ + ct)H(ξ + ct).

Undoing the change of variables and rearranging slightly, we have

u(r, t) =
p

Ke
[ct + (r − R0)]H

(
t +

r − R0

c

)
, (7)

which represents a wave moving towards the center of the balloon at a constant speed
c =

√
Ke/ρ. Clearly, this solution depends on the effective compressibility modulus Ke,

which is analyzed in the following section.

4.2. Effective Compressibility Modulus

Ottawa sand grains are mostly well-rounded but not fully spherical; however, in this
section we use theoretical results obtained for spheres in an attempt to express the effective
compressibility modulus Ke approximately in terms of the radius of the spheres (a) and the
elastic properties of the material they are made of (E and σ). The following is a simplified
version of the more complete analysis of [15] with adaptations to the assumptions made in
previous sections for the problem at hand.

During contact between two elastic spheres, leaving out shear stresses (as mentioned
before), the relation between the deformation of their surfaces h = 2a—the distance between
centers and the force F opposing the deformation (see, e.g., [14]) is

F =

√
2

3
E

1 − σ2 a1/2h3/2. (8)

As this is not a linear relation, an elastic response of the granular medium can be
expected only in the first stages after the breakdown of the rubber film (assumed to be
instantaneous), when the variations of h and F are small compared with their initial values
h0 and F0. Thus, the relation (8) can be linearized as follows:
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F − F0 ≈ dF
dh

∣∣∣∣
h0

(h − h0) =
1√
2

E
1 − σ2 a1/2h1/2

0 (h − h0). (9)

The force F and its variation δF = F − F0 follow the direction of the line joining the
centers of the spheres, the orientation of which is arbitrary. If this line makes an angle
α with a given direction in space, say x, then the x-component of δF is δFx = δF cos α,
while its mean value, assuming that all the orientations of the line of centers are equally
probable, is

⟨δFx⟩ =
1

2π

∫ π/2

0
δF cos α 2π sin α dα =

δF
2

, (10)

where the limits of the integral, α = 0 and α = π/2, reflect the condition that the center of
one of the spheres is at a point with x > 0 and the center of the other is at the image point
relative to the point of contact, where x < 0.

The variation of the distance between the centers accompanying the variation of the
force is δh = h − h0, for which the projection on the x axis is δhx = δh cos α. This is the
contribution of the contact considered to the deformation of the medium over a distance
2a cos α. Averaging over α, we have

⟨δhx⟩ =
∂ux

∂x
1

2π

∫ π/2

0
4πa cos α sin α dα =

∂ux

∂x
a, (11)

where ∂ux/∂x is the xx component of the effective strain tensor.
If there are N spheres per unit volume of the medium and if each sphere is in contact

with a mean number Nc of neighboring spheres, then the mean number of contacts in
a slab of width a and unit area perpendicular to the x axis is aNNc/2, where the factor
1/2 accounts for the fact that two spheres are required per contact. Adding over all these
contacts, the variation of the total force per unit area perpendicular to the x axis is

aNNc

2
⟨δFx⟩ =

NNc

2
√

2
E

1 − σ2 a3/2h1/2
0 ⟨δhx⟩ =

NNc

2
√

2
E

1 − σ2 a5/2h1/2
0

∂ux

∂x
. (12)

Identifying with the general expression of the stress tensor for a hydrostatic compres-
sion used in the previous section, we obtain

Ke =
NNc

2
√

2
E

1 − σ2 a5/2h1/2
0 . (13)

Equation (13) can be rewritten in terms of the initial compression using (8) particu-
larized at the initial state (h = h0, F = F0) for a contact with the line of centers aligned
radially, then writing p = aNNc⟨F0⟩ with ⟨F0⟩ = F0/2. Introducing the volume fraction of
the spheres η = 4

3 πa3N, we find that

Ke =
3

24π2/3 (ηNc)
2/3

(
E

1 − σ2

)2/3
p1/3, (14)

which differs from Walton’s result [15] of

KeW =
1

2 × 32/3π2/3 (ηNc)
2/3

(
E

1 − σ2

)2/3
p1/3 (15)

only by the numerical factor 35/3/23 ≈ 0.78.

4.3. Values of the Effective Elastic Parameters

Measurements of the Young’s modulus E and Poisson’s ratio σ for Ottawa sand single
grains have been recently reported in [18] as E = 110 GPa and σ = 0.08.
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Using these values along with Nc = 6, which was obtained for sand from discrete
element method (DEM) simulations [36], and η = 0.63, which corresponds to random close
packing of identical spheres [37], we found the values of Ke and the speed of the wave
c =

√
Ke/ρ shown in Table 2 for the values of the initial compression p in Table 1.

Table 2. Effective compressibility modulus Kew and speed of the decompression wave cw obtained
using the Walton formula (Equation (15)) and effective compressibility modulus Ke and speed of the
decompression wave c using our formula (Equation (14)).

Mass (kg) Kew (kPa) cw (m/s) Ke (kPa) c (m/s)

0.50 16.46 3.14 12. 84 2. 77
0.60 16.20 3.11 12. 63 2. 75
1.00 14.74 2.97 11. 49 2.62

The rendered values of Kew (Ke) are compatible with the fact that the ratio is p/Ke < 1,
which corresponds to small deformations of the sand masses [14].

5. Plots of the Decompression Waves

Now, we show plots of Equation (7) derived from the values of p, R0, and Ke in
Tables 1 and 2. Specifically, in plots of Figures 6 and 7 we use the values of Ke for our model
in Table 2, as the propagation speeds of the waves c in each of the three balloons used in
the experiments are slightly lower than when the values of Kew (also provided in Table 2)
were used.

Here, we must remember the result in Section 4, which states that an order-of-
magnitude estimation of the time for which the decompression occurs obeys the in-

equality t <
√

ρR2
0/Ke. For the balloon of radius R0 = 4.15 × 10−2 m, this results

in t < 1. 50 × 10−2 s, similar to the balloon with radius R0 = 4.45 × 10−2 m, for which
t < 1.60 × 10−2 s, and the balloon with radius R0 = 5.30 × 10−2 m, for which t < 2 s.
Times longer than those previously computed imply that the granular masses cease being a
connected network of grains.

It is possible to explain the behavior of the elastic waves provided by Equation (7)
graphically. Figure 6 shows the behavior of the decompression waves u(r, t) for r =constant.
in Figure 6a (for r = 0.03 m) and in Figure 6b (for r = 0.04 m) this latest value is closer to any
initial radius of the balloon compressing the sand, with the initial radii indicated in the inset
of each plot. The flat parts in the plots shown in Figure 6 indicate that the decompression
wave arrived at the radial positions r = 0.03 m and r = 0.04 m at different times larger
than t = (R0 − r)/c; this relationship is obtained from Equation (7) when the argument
β = ct + (r − R0) is equal to zero in order to obtain u = 0. For instance, considering the
balloon of radius R0 = 5.30 × 10−2 m, we find that the wave arrives at r = 0.03 m after
t = 8.77× 10−3 s, as is observed in the green dashed line in Figure 6a, while when r = 0.04
m the wave reaches the same radial position after t = 4. 96 × 10−3 s, as is seen in the green
dashed line in Figure 6b. These times are shortest for smaller balloons.

Similarly, the plots of u(r, t) for t = constant are provided in Figure 7. The flat parts
occur again if β = 0 in this case, we used the formula r = R0 − ct which provides the limit
at which u = 0. Consequently, for time t = 0.019 s and R0 = 5.30 × 10−2 m, the previous
formula produces r = 3 × 10−3 m, meaning that the wave is flat between r = 0 m and
between r = 3 × 10−3 m and u = 0 m, as can be seen in Figure 7a. In Figure 7b, when
t = 0.020 s, u = 0 m between r = 0 m and r = 0.6 × 10−3 m. Finally, it can be observed that
the other waves have no plane parts.
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Figure 6. Plots of the decompression wave u(r, t) (Equation (7)) moving towards the center of the
balloon at constant speed c (the values of which are provided in Table 2). Here, the plots are computed
for the inner radial positions (a) r = 0.03 m and (b) r = 0.04 m. We remark, by reference to Table 1,
that for each radius R0 in the inset there is a corresponding mass M.

Figure 7. Plots of the decompression wave u(r, t) (Equation (7)) moving towards the center of the
balloon at constant speed c (the values of which are provided in Table 2). Here, the plots were
computed for times: (a) t = 0.019 s and (b) t = 0.020 s. We remark, by using the Table 1, that for each
radius R0 in the inset there is a corresponding mass M.

Now, we can compare the plots in Figure 4 for the displacements of the granular fronts
as the time evolves with the plots in Figure 6b; both plots can help us to understand that
the decompression wave penetrates into the sand mass as a linear wave, while in response
the dense sand front evolves in a similar way in the opposite direction and with a reduced
velocity. In addition to the dense front, there is a dilute flow of fine particles that is ejected
radially; see Figure 5. In this figure, it can be observed that the particles have a mean radial
velocity of vg = 1.43 ± 0.07 m/s, which is similar to the velocity of the decompression
wave of the front, which from Equation (7) is v f = pc/Ke. For a balloon inflated at
R0 = 5.30 × 10−2 m, we have v f = 1.03 m/s, i.e., both velocities are of the same order
of magnitude, despite the value of v f being obtained through a series of physical and
mathematical approximations used in the theoretical models of the decompression and
effective compressibility modulus.

Notably, it is apparent that the dense fronts provided by plots in Figure 4 occur in
response to the decompression wave; moreover, they have rate deformations of around
0.5 m/s in order of magnitude but maintain approximately similar forms to the correspond-
ing decompression waves (comparing the data in Figure 4 with those in Figure 6b, the delay
times are very similar). These facts lead us to propose the heuristic hypothesis that the rate
deformation of the front could be proportional to ηv f = ηpc/Ke, as it yields rate deforma-
tions with values of 0.85 m/s for R0 = 4.15 × 10−2 m, 0.82 m/s for R0 = 4.45 × 10−2 m,
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and 0.64 m/s for R0 = 5.30 × 10−2 m. Obviously, our proposal is very simple and needs
many more careful experimental studies before being accepted or denied.

6. Conclusions

In this work, we have experimentally and theoretically shown that the problem of
sand balloon bursting is physically interesting and complex. Through the current study, our
main purpose was to show that the sudden release of the initially confined granular mass
behaves as a genuine elastic body, producing a linear decompression wave that travels
into the granular material at the earliest times of the pressure release, and that the sand
generates a complex expansion front in response. In order to provide a consistent theoretical
treatment, we have proposed a new model to compute the effective compression modulus,
which is used in plots shown in Figures 6 and 7. This treatment results in waves 12% slower
than those computed using the Walton effective compression modulus [15]. Similarly,
by assuming spherical balloons, a theoretical model based on the hydrostatic compression
approach has allowed us to analytically find radial decompression waves, which generate
radial granular fronts with physical characteristics very similar to those of the elastic wave.
Due to the opacity of the granular mass, we could not observe the decompression waves
and were only able to detect the effects of the waves through the displacement of the front.
For instance, for three balloons of different sizes, it was found that the granular fronts
expand in a similar manner to the respective decompression wave; the fronts move at a
constant velocity (rate of deformation in Table 1) after delay times very similar to those
of the waves. Through Figure 5 we found that the front is simultaneously composed of a
dense front and a dilute front. At the free surface, it is possible to compute the velocity
of the granular front induced by the decompression wave as v f = pc/Ke. Incidentally,
in terms of the order of magnitude, such a velocity appears to be more adequate for the
most external radially expelled single grains. We characterized the velocity of the dense
front experimentally using the rate of deformation and found it to be slower than v f . Due to
this, we have proposed, through a heuristic hypothesis, that the velocity of the dense front
could simply be equal to the factor ηv f as it is of the same order of magnitude as the rate of
deformation. Clearly, such a hypothesis merits further theoretical and experimental studies.
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