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Abstract: Numerical simulations of standard situations in the transition region from gas kinetics
to fluid dynamics at small Mach numbers indicate a clear dependence of the simulation results on
the underlying kinetic model (here: nonlinear and linearized Boltzmann collision operator vs. BGK
relaxation model). We develop an improved mathematical framework (trace theory) to explain these
differences. In particular we reveal certain deficiencies for the classical BKG system as well as for the
standard Navier Stokes approach.
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1. Introduction

Numerical simulations of flows in the transition from the gas kinetic (mesoscopic) to
the fluid dynamic regime (macroscopic) represent a demanding task. On the mesoscopic
side, the collision term operates on the six-dimensional phase space and is very complex.
On the macroscopic side, including a collision term in the fluid dynamic equations makes
the problem become numerically stiff and hard to resolve in time.

In this situation, simplifying models are en vogue. The most popular ones are
systems of BGK type (Bhatnagar–Gross–Krook models, see [1]) which treat mesoscopic
effects applying simple one- or more-parameter relaxation rules. Theoretical models try
to find formulas from asymptotic analysis, taking into account the small mesoscopic
perturbations as terms of an expansion with respect to some small parameter ϵ (Hilbert,
Chapman–Enskog expansion). From this, we find the Euler and the Navier Stokes equations
as zeroth and first order approximations. Improved models, e.g., for a more detailed
refinement of the pressure tensor are expected from higher order terms.

In the course of the present paper we demonstrate that all these models fail in certain
practically relevant situations. E.g., the ϵ-expansion ansatz fails in some condensation-
evaporation problems for a gas mixture (see Section 6.2), leading to some unphysical
ghost effects. The BGK ansatz yields systematic errors even in simple heat layer problems
(Section 6.1). In the following, we propose new ansatz (trace solutions) which works
on the tangent space to the set of all Maxwellians (rather than the classical ansatz

“solution = Maxwellian plus orthogonal perturbation”, supplemented with an exponential
relaxation rule). As a motivation, we discuss the relaxation of a simple local perturbation
problem (see Section 5.2). The crucial feature of the new approach is that (close to the fluid
dynamic limit) the local macroscopic moments are not reflected by the local Maxwellian
but by a specific moment perturbation.

The idea to construct intermediate states between arbitrary density functions and
Maxwellians is not new. E.g., Shakhov [2] proposed such a system which is at present
used for numerical simulations [3]. A comparable intention lies behind the idea of the
extended BGK model with an additional relaxation parameter to match the correct Prandtl
number, or related generalizations [4]. However, a better understanding of the transfer to
fluid dynamics is not a question of parameter matching, and the above approaches do not
yield a theoretical basis and a safe mathematical ground. Proposing a modified structure of
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kinetic solutions, the present paper claims to provide a new attempt to better understand
the passage from the rarefied gas description to the macroscopic limit.

We derive closure relations which take the form of nonlinear first order (rather than
second order) differential terms and thus are completely different from the parabolic second
order terms of the Navier–Stokes system. The results allow one to interpret the differences
in various kinetic models (here: nonlinear and linearized Boltzmann collision operators
and the BGK relaxation operator) in the fluid dynamical limit. As particular results, we
point at a purely nonlinear effect of the Boltzmann collision operator which is not reflected
in the Navier–Stokes approach (Section 5.3), and we demonstrate that the BGK system
produces systematic artificial effects which are non-local and which do not vanish in the
fluid dynamical limit (Section 6.1).

The derivation of the trace ansatz requires some tedious mathematical arguments,
which are necessary for a sufficient understanding of the mathematical framework. The
technical part has been worked out in [5] (with Lea Bold as coauthor who has contributed
the numerical results of Section 5.3 which are crucial for the justification of the trace
ansatz [6]). In the present paper, we have tried to shift the focus from the technical part to
the applications (in particular, Section 6.2), while keeping the paper self-contained.

Having derived the trace ansatz, we have performed numerical simulation studies
for testing and comparing the various models mentioned above. As a numerical tool,
we used discrete velocity models (in the version as described in [7]) on 5 × 5 × 5- and
7 × 7 × 7-velocity grids, respectively, which are sufficient in our cases. These are applicable
in identical form for all of the discussed models. (To implement collision terms on grids
in an efficient manner with valid flow parameters, the application of computer algebra
tools is recommended, as demonstrated in [8].) These systems are well investigated, with
systematic errors in numerical simulations being well understood and under control [9].
Grids of the above size are preferable mainly for small to moderate Mach numbers, creep
flows, etc. The numerical results are in full agreement with the theoretical results.

The paper is organized as follows. Section 2 gives a short review of the above-
mentioned kinetic models. Section 3 introduces the general (non-closed) moment system
derived from gas kinetics and derives the Euler system. Section 4 reinterprets the steps
of the first order Chapman–Enskog approach for the Navier–Stokes system. In this way,
the central point of the procedure can be generalized and becomes applicable to the full
nonlinear collision operator without recourse to a formal series expansion. A new concept
of balanced states is introduced, which are elements of the tangent space to the manifold
of the Maxwellians and which replace (respectively, supplement) the first order terms of
the density function as provided by the Chapman–Enskog procedure. In Section 5, we
introduce the concept of traces of kinetic solutions. Traces are comparable to projections of
kinetic solutions onto the tangent spaces. The differential structure of the underlying
dynamics provides a powerful tool to describe distributions in the neighborhood of
Maxwellians. In order to keep the underlying ideas as concise and understandable as
possible, we restrict theory and numerical example one-dimensional geometries. Section 6
applies the results to the heat layer problem and discusses an evaporation condensation
problem for gas mixtures.

2. Kinetic Models

The most fundamental kinetic model equation for a density function f = f (t, x, v)
(x space-, v = (vξ)

d
ξ=1 velocity parameter) of a single-species gas in phase space lRd × lRd

(d = 2, 3) is the classical Boltzmann equation (see, e.g., [10,11])

(∂t + v∇x) f =
1
ϵ
· CJ f (1)
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The Boltzmann collision operator CJ f = J[ f , f ] is a bilinear operator integrating over all
possible conservative two-particle collisions. It satisfies the conservation laws

⟨l1, CJ f ⟩ = 0 (mass conservation) (2)

⟨v, CJ f ⟩ = 0 (momentum conservation) (3)

⟨v2, CJ f ⟩ = 0 (energy conservation) (4)

The Boltzmann collision operator is ruled by the H-Theorem stating that in a space
homogeneous environment all densities converge for t ↗ ∞ to equilibrium functions
e (these are functions satisfying CJe = 0); all equilibrium functions are Maxwellians,
i.e., functions of the form

e(v) = e[ρ, v, T](v) =
ρ

√
2πT

d · exp
(
−|v − v|2/2T

)
(5)

uniquely determined by its macroscopic moments

ρ = ⟨1, e⟩ (density) (6)

ρv = ⟨v, e⟩ (momentum) (7)

T =
1

d · ρ
· ⟨(v − v)2, e⟩ (temperature) (8)

In the following, we denote by

M = span(1, vξ(ξ = 1, . . . , d), v2)

the space of collision invariants, and by M⊥ its orthogonal complement. We make use
of the following.

(2.1) Decomposition Lemma: Given a nonnegative density f and a Maxwellian e, there
exists a unique decomposition

f = eM · r + f⊥, r = (ri)
d+1
i=0 , f⊥ ∈ M⊥ (9)

with M defined as

M = (1, vξ(ξ = 1, . . . , d), v2) (10)

The decomposition takes the form

f = e + f⊥ (11)

iff e has the same macroscopic moments as f .
(eM · r is a shorthand notation for an element in eM, fully written as e · (r0 + ∑d

ξ=1 rξvξ +

rd+1v2).)

Proof. r can be uniquely determined by calculating mass, momenta and temperature on
both sides.

The set of all Maxwellians is denoted by E . Given e = e[ρ, v, T] ∈ E , the tangent space
in e is defined by

T [e] =

{
e(1 +

d

∑
ξ=1

rξ(v − v)ξ + rd+1(v − v)2), (rξ)
d+1
ξ=1 ∈ lRd+1

}
⊂ eM (12)
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The full tangent space T E is the union

T E =
⋃
e∈E

T [e] (13)

Two simplified alternatives to the nonlinear Boltzmann collision operator are the linearized
collision operator CL and the BGK relaxation model CBGK. Both are based on decomposition
(11). Given f = e + f⊥, the Boltzmann collision operator is

J[ f , f ] = J[e, e] + J[e, f⊥] + J[ f⊥, e] + J[ f⊥, f⊥] = J[e, f⊥] + J[ f⊥, e] + J[ f⊥, f⊥]

Dropping the term which is quadratic in f⊥, we end up with the linearization of CJ around e,

CL f = Le f = Le f⊥ = J[e, f⊥] + J[ f⊥, e] (14)

Le transfers f exponentially in time to its equilibrium e. The well-known properties of Le
are as follows.

(2.2) The linearized collision operator: Write Le f =: K(e−1 f ). Then

(a) ker(K) = (im(K))⊥ = M
(b) K is self-adjoint (e.g., in a weighted L2 space) and negative semidefinite.
(c) The restriction K : M⊥ → M⊥ has an inverse K−1.
(d) The linear system

Leψ = ϕ · e (15)

is solvable iff ϕ · e ∈ M⊥. In this case, the solution is

ψ = L†
e ϕ = eK−1(ϕ · e) (16)

It satisfies

⟨ϕ, ψ⟩ = ⟨ϕ · e, K−1(ϕ · e)⟩ < 0 (17)

For a more thorough treatment of Le, see, e.g., [10,12]. For corresponding results in the case
of Discrete Velocity Models, see [7,13].

The simplest kind of exponential decay of f to its equilibrium e is given by the one-
parameter BGK model

CBGK f = λ · (e − f ) (18)

The solution of the linear system corresponding to (18) follows immediately from calculation.

(2.3) Linear system for BGK: Suppose ϕ · e ∈ M⊥. The unique solution of

CBGKψ = ϕ · e (19)

is

ψ = e ·
(

1 − 1
λ
· ϕ

)
, with ⟨ϕ, ψ⟩ = − 1

λ
· ⟨ϕ, ϕ · e⟩ < 0 (20)

3. The Moment Hierarchy and the Euler System

Taking moments ⟨m, .⟩ (m ∈ M) of the Boltzmann equation or one of its models, and
taking into account that ⟨m, C f ⟩ = 0 for any of the above collision operators we end up
with the following moment hierarchy.
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(3.4) General moment system:

∂tρ +∇ · (ρv) = 0 (21)

∂t(ρvξ) + ∑
η

∂η(ρvξ vη + pξη) = 0 (22)

∂t

(
ρ · |v|2 + d · p

)
+ ∑

ξ

∂ξ

[
ρvξ |v|2 + qξ + 2(Pv)ξ + d · pvξ

]
= 0 (23)

with the macroscopic moments density ρ, moment vector ρ · v and (kinetic) energy E
defined by

E = 0.5⟨|v|2, f ⟩ = 0.5 · (ρv2 + dρT) (24)

(21) to (23) is not a closed system, since it contains the closure moments

P = (pξ,ν)1≤ξ,ν≤d =
(
⟨πξ,ν, f ⟩

)
1≤ξ,ν≤d (pressure tensor) (25)

q = (qξ)
d
ξ=1 = (⟨σξ , f ⟩)d

ξ=1 (heat flux) (26)

described by the centered moments

πξ,ν = πξ,ν(v) = (vξ − vξ)(vν − vν) l ≤ ξ, ν ≤ d (27)

σξ = σξ(v) =
1
2
(vξ − vξ)|v − v|2 (28)

For given e = e[ρ, v, T], ξ ̸= ν, the function πξ,νe ∈ M⊥. For the other centered moments,
the projections onto M⊥ are given by

π̂ξ = πξξ −
1
d ∑

ν

πνν (29)

σ̂ξ = σ̂ξ(v, T) = σξ −
(d + 2) · T

2
· (vξ − vξ) (30)

Define pressure p by

p = d−1⟨|v − v|2, f ⟩ = ρT (31)

The easiest way to close system (21) to (23) is to assume that f is in its local equilibrium
which gives

P = p · I = ρT · I, q = 0 (32)

with the resulting moment system

(3.5) Euler equations:

∂tρ +∇ · (ρv) = 0 (33)

∂t(ρv) +∇ · (ρv ⊗ v) +∇(ρT) = 0 (34)

∂t(ρ|v|2 + d · ρT) +∇ · (ρv|v|2) + (d + 2)∇ · (ρT · v) = 0 (35)

4. Navier–Stokes Equations and Balanced States

A prominent role in the refinement of the Euler system is played by the solutions ψξ,ν

(ξ ̸= ν), ψ̂ξ and ψσ
ξ in M⊥ of the linear equations (with L = Le)

Lψξ,ν = πξ,νe (36)

Lψ̂ξ = π̂ξ,νe (37)

Lψσ
ξ = σ̂ξ e (38)



Fluids 2024, 9, 72 6 of 17

(For the solvability of the equations, see (2.2)(c).)
A convenient way to derive the Navier–Stokes system is the Chapman–Enskog

expansion of first order. We plug the ansatz

f = f0 + ϵ f1

into the Boltzmann equation and set equal the terms of equal power of ϵ. For ϵ−1, we find

J[ f0, f0] = 0

and thus f0 = e ∈ E . For ϵ1 we find

(∂t + v · ∇x)e = Le f1 (39)

For its solution, we perform decomposition (9) on the whole system. The part acting on
M⊥ reads

((∂t + v · ∇x)e)⊥ = Le f1 (40)

with

((∂t + v · ∇x)e)⊥ = (v · ∇xe)⊥
= ρ · ∑

ξ
∑
ν

∂ξ vν

(
vξ∂vν e[1, v, T]

)
⊥ + ρ · ∑

ξ

(
vξ∂Te[1, v, T] · ∂ξ T

)
⊥

=
ρ

T
· ∑

ξ
∑
ν

∂ξvν · πξ,νe +
ρ

T2 · ∑
ξ

∂ξ T · σ̂ξe (41)

The solution of (40) is

f NS
1 =

1
T
· ∑

ξ

[
∑
ν ̸=ξ

∂ξ vν · ψξν + ∂ξ vξ · ψ̂ξ

]
· e +

ϵ

2T2 · ∑
ξ

∂ξ T · ψσ
ξ · e (42)

We now obtain the Navier–Stokes correction to the Euler equations by calculating moment
system (3.4) of the function f = e + ϵ f (1). Taking into account inequalities (17), we find the
correction terms to the closure moments of the Euler system,

pNS
ξ,ξ = −ϵ · µ(1) · d

d − 1
· 1

T
·
(

∂ξ vξ −
1
d
∇ · v

)
(43)

pNS
ξ,ν = −ϵµ(2) · 1

T
·
(
∂ξvν + ∂νvξ

)
(ξ ̸= ν) (44)

qNS
ξ = −ϵ · λ · 1

2T2 · ∂ξ T (45)

with the positive viscosity and heat coefficients

µ(1) = −⟨π̂ξ , ψ̂ξ⟩ (46)

µ(2) = −⟨πξ,ν, ψξ,ν⟩ (47)

λ = −⟨σ̂ξ , ψσ
ξ ⟩ (48)

All the above results are classical and need no further explanation. Here, we find a way to
reinterpret the Chapman–Enskog results and to generalize them, without making use of
the series expansion.

(4.6) Lemma: Let e = e(t0, x0) be a fixed Maxwellian and s = s(t0, x0) = v · ∇xe the
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corresponding flow term. The expansion of first order f0 + ϵ · f1 of Chapman–Enskog is the
unique asymptotic solution (τ ↗ ∞) of the time-homogeneous initial value problem (IVP)

∂τ f + ϵ · s⊥ = Le f , f (t0) = e

Proof. Decompose f uniquely into the form

f (τ) = f∥(τ) + f⊥(τ), f∥(τ) ∈ e ·M, f⊥ ∈ M⊥

Since f∥(τ) ∈ ker(Le) and s⊥ ∈ M⊥, we find

f∥(τ) = e

and f⊥(τ) solution of the IVP in M⊥,

∂τ f⊥ + ϵ · s⊥ = Le f⊥, f⊥(t0) = 0

Since Le : M⊥ → M⊥ is invertible and negative definite, the asymptotics

f ∞
⊥ = lim

τ↗∞
f⊥(τ)

exists and satisfies

ϵ · s⊥ = Le f ∞
⊥

Thus, f ∞
⊥ = ϵ · f (1).

Thus, the Chapman–Enskog procedure as sketched above may be seen as a special
case of the following three-step procedure for the calculation of closure relations.

(4.7) Scheme for closure relations: (1) Let (t0, x0) and f = f (t0, x0) be given and fixed.
Calculate a reduced description f of f containing all information concerning the relevant
moments.
(2) For an appropriate approximation C of the Boltzmann collision operator, solve the IVP

∂τ g + ϵ · (v · ∇xf)⊥ = Cg, g(0) = f (49)

(3) Determine g∞ = limτ↗∞ g(τ) and calculate from this the closure relations for f .
(In the Chapman–Enskog case, f = e and C = Le.) We can interpret (49) as a local

solution to the kinetic equation: Introduce a microscopic time scale τ = (t − t0)/ϵ and
solve the kinetic system. In lowest order in ϵ, we freeze the source term (v · ∇xf)⊥ at τ = 0
and solve the system for τ ↗ ∞. In the following, we call the distributions g∞ balanced
states, since they balance the trend to equilibrium given by the collision operator with the
perturbing effects produced by the streaming term.

5. Traces in Tangent Space
5.1. Traces

Classical theory (linearized collision operator, Chapman–Enskog expansion, etc.) is
usually based on the decomposition of the density function into a Maxwellian e and an
orthogonal perturbation f⊥ with no contribution to the macroscopic moments. In view
of the balance equations described above with source term (vx∂xe)⊥, decomposition (9)
of Lemma (2.1) is more appropriate. For simplicity, we restrict the following to spatially
one-dimensional problems (with space variable x) and with bulk velocities v = (vx, 0)T

and v = (vx, 0, 0)T , respectively.
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Given a triple [ρ, vx, T] with corresponding Maxwellian e = e[ρ, vx, T], the tangent
space T [e] of E in e is defined as the set of all elements in

EM =
⋃
e∈E

e ·M

with the same macroscopic moments [ρ, vx, T] as e. It is a two-dimensional manifold in
EM and takes the form

T [e] = {ê + γ(1) · ê(1) + γ(2) · ê(2), α, β ∈ lR} (50)

ê = e[ρ, v̂x, T̂] (51)

ê(1) =
1
T̂
· (vx − v̂x) · ê (52)

ê(2) =
1

2T̂2
·
(
|v − v̂|2 − d · T̂

)
· ê (53)

with (γ(1), γ(2)) and (v̂x, T̂) connected to (vx, T) via

v̂x = vx − γ(1) (54)

T̂ = T +
1
d
·
(
(γ(1))2 − γ(2)

)
(55)

Elements of T [e] are addressed as

f[γ(1), γ(2)] = ê + γ(1) · ê(1) + γ(2) · ê(2)

The union of tangent spaces is denoted as

T E =
⋃
e∈E

T [e] (56)

In the following, the parameter γ(2) is not relevant in the case of the full Boltzmann collision
operator, since it does not contribute to a change of the pressure tensor which is our main
concern here. Thus, in order to simplify the setting, we set γ(2) = 0, γ(1) := γ and define as
the trace of e in T E the mapping

γ → f(γ) = ê + γ · ê(1) (57)

f(γ) has the same macroscopic moments as e; however, it contributes to the closure
moments as follows.

(5.8) Closure relations for trace: The closure moments of the trace elements (in relation to
the macroscopic moments vx, T of f(γ)) are

⟨π̂x(v), f(γ)⟩ = −d − 1
d

· ργ2 (58)

⟨σ̂x(v, T), f(γ)⟩ = −ργ3 (59)

Proof. These formulas follow from

⟨π̂x(v), f(γ)⟩ =
d − 1

d
· ρ ·

(
(v̂x − vx)

2 + 2γ · (v̂x − vx)
)
= −d − 1

d
· ρ · (v̂x − vx)

2

and

⟨σ̂x(v, T), f(γ)⟩ = −ρ · v̂x − vx

2
·
(

d − 2
d

(v̂x − vx)
2 + (d + 2) · (T̂ − T)

)
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Given f(γ), we denote as e(γ), π̂x(γ) and σ̂x(γ) the Maxwellian and the closure
moments corresponding to the parameters v̂x = −γ and T̂ = T + γ2/d. The normed
vectors nπ and nσ are for a given γ to be interpreted according to the formulas

π̂x(γ) · ê(γ) = ∥π̂x(γ)ê(γ)∥ · nπ (60)

σ̂x(γ) · ê(γ) = ∥σ̂x(γ)ê(γ)∥ · nσ (61)

Furthermore, we define as the local tangent plane the affine linear space

f(γ) + span(nπ , nσ) (62)

Given z ∈ span(nπ , nσ), the angle Φz defined by

z = cos(Φz) · nπ + sin(Φz) · nσ (63)

describes the position of f(γ) + z in the local tangent plane.
We collect some results concerning the local structure of f(γ), which can be proved by

straightforward calculations and by Taylor expansion.

(5.9) Differential structure of trace: (a) f is differentiable with derivative

∂γf = ∥∂γf∥ · n∂f = − γ

T̂2
· ∥π̂x(−v̂x) · ê∥ · nπ +

2γ2

d · T̂3
· ∥σ̂(−v̂x, T̂) · ê∥ · nσ (64)

(b) The leading order approximation of f(γ) for |γ| ≪ 1 in the local tangent plane (γ = 0) is

f[γ] = e ·
(

1 − γ2

2 · T2 · π̂x(0) +
2γ3

3d · T3 · σ̂x(0, T)
)

(65)

(c) For |γ| ≪ 1,

tan(ϕ∂f(γ)) = − 2γ

d · T̂
· ∥σ̂x ê∥
∥π̂x ê∥ =: −C∂f · γ +O(γ2) (66)

Φ∂f =

{
−C∂f · γ +O(γ2) for γ < 0

π − C∂f · γ +O(γ2) for γ > 0
(67)

Thus, at γ = 0 the curve f(γ) is not differentiable and thus not a regular parametrization.

Proof. (a) follows from straightforward calculations (using the definition (57) of f(γ) and
Equations (54) and (55) which yield

∂γ ê =

(
−γ

T̂
− vx − v̂x

T̂
+

γ

d · T̂2
· (v − v̂)2

)
· ê (68)

and

∂γ

(
γ · vx − v̂x

T̂

)
=

γ

T̂
+

(
1
T̂
− 2γ2

d · T̂2

)
· (vx − v̂x) (69)

(b) is obtained by integrating (64) and using f(0) = e and ∂γf(0) = 0.

For the derivation of closure moments for the nonlinear collision operator, it is useful
to follow the trace of CJ along f(γ) which is defined as the projection of CJ given by

CJf(γ) = ⟨CJf(γ), n∂f⟩ · n∂f

= cos(ϕ∂f)⟨CJf(γ), nπ⟩ · n∂f + sin(ϕ∂f) · ⟨CJf(γ), nσ⟩ · n∂f (70)
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(5.10) Trace of nonlinear operator: (a) With aJ
π,π = −⟨J[ê(1), ê(1)], nπ⟩,

CJf(γ) = sign(γ) · cos(ϕ∂f) · γ2 · aJ
π,π · n∂f (71)

(b) Under the approximations of (5.9)(b),(c) for small γ,

CJf(γ) = −γ2aJ
π,π · nπ +O(γ3)

and the solution f(γ(t)) of the homogeneous trace Boltzmann equation

∂tf(γ(t)) = CJf(γ(t)) (72)

is in lowest order given by

∂tγ = −λγ, λ = aJ
π,π · T2 · ∥π̂xe∥−1 (73)

Proof. (a) From the definition of f(γ) (57) and the fact that ê(1) ∈ ker(Lê), it follows that

CJf(γ) = γ2 · J[ê(1), ê(1)]

In a coordinate system centered around v̂, J[ê(1), ê(1)] is an even function with respect to v.
Thus, scalar products with odd moments in v vanish; in particular,

⟨σ̂x(v̂, T̂), J[ê(1), ê(1)]⟩ = ⟨nσ, J[ê(1), ê(1)]⟩ = 0

(b) follows from inserting approximations (5.9)(b),(c).

In our context, the most significant difference between the nonlinear collision operator
on the one side, and the linearized and BGK operator (shortly termed as “relaxation
operators”) on the other side is that

CJf(γ) =
γ2

T̂2
· J[(vx − v̂x) · ê, (vx − v̂x) · ê] (74)

is centered around ê (with the asymptotics e “unvisible”), while the Maxwellian e appears
in the definition of the relaxation operators and thus marks it as their asymptotic end
point. For the same reason, we find closed formulas for the solutions of the homogenous
equations in the relaxation case,

f (t) = e + exp(tLe) · ( f0 − e) (linearized equation) (75)

f (t) = e + exp(−λt) · ( f0 − e) (BGK equation) (76)

while we only can formulate the solution of the homogeneous nonlinear equation in
differential form.

5.2. Relaxation Problems

Consider the initial value problem

∂t f = C f , f (0) = f0 = ê + ϵ · ϕ

with C being one of the collision operators discussed above. Depending on ϕ, there exists a
unique Maxwellian e with the same macroscopic moments as f0, which is the asymptotic state
of the solution for t ↗ ∞. In the linearized cases, we have exponential decay to e, (75), (76).
The dynamics of the nonlinear solution is more detailed, depending on the form of ϕ.

Suppose

ϕ = ê · m + ϕ⊥, m ∈ M, ϕ⊥ ∈ M⊥ (77)
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Then

J[ f0, f0] = J[ê, ê] + ϵ · (J[ê, mê] + J[mê, ê]) + ϵ · (J[ê, ϕ⊥] + J[ϕ⊥, ê]) +O(ϵ2) (78)

with

J[ê, ê] = 0 (79)

J[ê, mê] + J[mê, ê] = Lêmê = 0 (80)

J[ê, ϕ⊥] + J[ϕ⊥, ê] = Lêϕ⊥ (81)

For the short-time behaviour, we may neglect the O(ϵ2)-terms. Thus, the initialization
phase (initial layer) is dominated by the exponential relaxation of ϕ⊥ to the “wrong”
equilibrium ê. What follows is a dynamics in T E which runs on a slower time scale and
in which the initial function ê(1 + ϵm) approaches its new equilibrium e. The difference
between fast exponential decay for the linearized model and of the slower approach to
equilibrium for the nonlinear system can be easily verified, e.g., running simulations with
Discrete Velocity Models (DVMs). Figure 1a,b display the relaxation rates for randomly
perturbed initial conditions in case 1, ϕ ∈ M⊥, and case 2, ϕ ∈ ê · M. Case 1 exhibits
exponential decay, with rates within a narrow band. This situation can be reasonably well
imitated with a BGK model (straight line).

Figure 1. Relaxation in time of random initial perturbation, measured in a suitable norm. (a) m = 0,
(b) ϕ⊥ = 0.

Case 2 is more complex and we may recognize three phases. Phase I represents the
relaxation of the perturbation ϕ to (1 + ϵm)ê, phase II (“convex phase”) the transition from
(1 + ϵm)ê to e and phase III the exponential relaxation to e. In the special case ê · m = ê(1),
phase II marks the transition of the trace element f(ϵ) to f(0) = e. The slope of phase III is
given by the parameter λ of (73). As a special feature, we notice that the life time of the
moment perturbation ϵmê is much larger than for a model with relaxation rates based on
the mean free path. The BGK model is not capable of covering this situation and we have
to decide whether to match to the initial Maxwellian or the final Maxwellian, depending
on whether we want to simulate the short-time or the long-time behaviour.

5.3. Relaxation with Source, Balanced States

In view of the equations to be solved for the closure relations, let us have a look at
solutions of the equation with source,

∂t f + ϵs = C f , f (0) = e, s = σ̂x · e (82)
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and in particular their asymptotic states f (∞) for t ↗ ∞ (balanced states). For the relaxation
systems, we easily find

fBGK(t) = e − ϵλ−1 · s · (1 − exp(−λt)) ↗ f ∞
BGK = e − ϵλ−1 · s

fL(t) = e + exp(tLe) f (0) + ϵ · (1 − exp(tLe))ψ
σ
x

↗ f ∞
L = e − ϵψσ

x (ψσ
x solution of Leψσ

x = σ̂x · e, see Section ...)

Both solutions satisfy the orthogonality relation

⟨ f (∞), π̂x⟩ = 0

This is no surprise, since the source is even with respect to vx, and L maps even into
even functions, while σ̂x is odd. So it is remarkable to observe that orthogonality is not
given for the nonlinear solution, as can be seen in Figure 2. (This observation was made
in [6].) To understand this phenomenon, it helps to look at trace solutions. We easily see
that γ = 0 is a balanced solution to the trace version of (82). However, it is not stable in
the sense of dynamical systems, and there is another solution. The following orthogonality
relation is necessary and sufficient for balancing solutions

⟨s − Cf(γ)⟩ ⊥ ∂γf(γ) (83)

and

⟨s, n∂f⟩ = ⟨CJf(γ), nπ⟩ (84)

which in leading order leads to

ϵ · ∥∂γf(γ)∥−1 · 2γ2

d · T3 · ∥σ̂xe∥2 = γ2 · aJ
π,π (85)

With ∥∂γf∥ = O(γ), we finally end up with

Figure 2. Evolution of scalar product ⟨π̂x, f (t)⟩ of IVP (36), nonlinear and linearized Boltzmann
collision operator.

(5.11) Balanced state (Relaxation with source): Under the smallness assumptions for γ in
(5.9) and with an appropriate constant Cσ > 0, the leading order term of the stable solution
is given by

γbs = ϵ · Cσ (86)
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The solution f(γbs) has an additonal contribution to the pressure tensor of the order O(ϵ2)
as given in (58).

This example is an indicator that the concept of traces is relevant for the investigation
of the structure of kinetic solutions in the context of closure relations. We can generalize
the above principle to other sources and kinetic models.

(5.12) Balancing condition: Suppose given a source ϵs and a collision operator C f with
traces

ϵ · s(γ) = ϵ · sπ · nπ + ϵ · sσ · nσ (87)

Cf(γ) = cπ · nπ + cσ · nσ (88)

γ marks a balanced state if and only if the orthogonality condition

ϵ · s − Cf ⊥ ∂γf = dπ · nπ + dσ · nσ (89)

is satisfied which is equivalent to the balancing condition

(ϵ · sπ − cπ) · dπ = −(ϵ · sσ − cσ) · dσ (90)

6. Applications
6.1. Heat Layers with Zero Flow

We consider the steady flow between two totally reflecting walls at different temperatures
T0 = T(x = −1) > T1 = T(x = 1) with a temperature difference ∆T = T0 − T1 > 0. Since
v = 0, the moment equations read

∂x pxx = 0

∂xqx = 0

The closure moments for the solution are determined from the asymptotic solution fcorr for
the model at hand of

∂t fcorr +
ϵ

2T2 · σ̂x = C f

In the Navier–Stokes description, fcorr contains no contribution to π̂x, and from Equations (43)
to (45) we find the heat layer solution

pxx = p = ρ · T = const

λ(T) · ∂x(T−1) = const

Comparing the temperature profiles of numerical simulations for the nonlinear and
the BGK system (Figure 3) we find that the BGK profile is considerably flatter than that
of the nonlinear case. The latter one is close to the constant gradient profile (solid line)
linearly connecting the wall temperatures. An explanation for the difference is given by
comparing the closure moments ⟨π̂x, fcorr⟩ for both models (Figure 4). In Figure 4a, we find
a small, almost constant contribution (maybe weakly dependent on the temperature) in
the nonlinear case. Zooming into Figure 4b confirms this. However, for BGK we find a
distinct, almost constant gradient over the whole field of calculation. An explanation for
this is again provided by the trace description which allows one to draw a rough picture
pointing out the differences between the nonlinear collision operator and BGK model. A
full discussion of the trace solutions for both models in the fluid dynamic limit is provided
in [5]. We do not repeat the tedious calculations of [5] but explain via a short argument why
the BGK system does not provide the correct temperature gradient in the fluid dynamic
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limit. Suppose t[γ] = e + Φ is the steady solution of the balance equation for the BGK
system,

ϵ · vx∂x(e + Φ) = λ · (e − t[γ]) (91)

The first term on the left hand side represents in the limit a finite heat flux modeled by some
term of the form B · σx · e. For small γ, we may use approximation (65) for t[γ] denoted
in brief as (aγ2 · πx + bγ3 · σx) · e. Furthermore, vx∂xΦ yields an unknown contribution
A · πxe which comes out as a solvability condition for the above equation,

ϵ · (Aπx + Bσx) = λ(aγ2 · πx + bγ3 · σx) (92)

Its solution is

γ = ϵ1/3 · (B/(λb))1/3 =: c · ϵ1/3 (93)

and

A = λacϵ−1/3 (94)

Thus, under the above assumptions A is singular in the limit ϵ ↘ 0 which is not realistic.
The only way out is that c and also B are ϵ-dependent and vanish in the limit. This explains
qualitatively the flattened curve for the temperature profile of the BGK model. In the limit,
it is supposed to yield a constant temperature profile.

Figure 3. Heat layer for nonlinear collision operator and BGK model. Temperature profiles.

Figure 4. Pressure closure moment for heat layer. (a) Nonlinear collision and BGK operators, (b) zoom
into nonlinear operator.
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Remark: The results show that trace theory does not fit into the classical series
expansion ansatz since it contains fractional powers of ϵ.

6.2. Gas Mixtures: An Evaporation Condensation Problem

The initial motivation for the present work came from the study of a gas mixture
problem. The two-component gas consists of vapor (species A) which can evaporate or
condensate at the flat confining walls of an infinite strip, and of some noncondensable
component (species B) which is totally reflected (with energy exchange) at the walls. Given
a pressure difference, the gas is attracted by one of the walls, and some portion of species
A condenses, which results in a flow through the wall. Suppose there is only a small
(almost negligible amount of species B in the mixture. Calculating the fluid dynamic limit
applying standard expansion techniques (here: Hilbert expansion) leads to a ghost effect:
an infinitely thin boundary layer of the noncondensable completely cuts down the flux of
species A, although in the limit the flow velocity of the ensemble is zero. Details of this
example are described in [14] and the literature cited there. In [15], we demonstrated that
the reason for the confusion lies in some bifurcation structure of the solution space in the
case of small velocities. We are now able to present the full solution to the above problem
using the trace theory approach.

Deriving a trace theory for a gas mixture could closely follow the lines developed in
the preceding sections. We will not do this here but restrict ourselves to a subproblem. We
have numerically simulated the evaporation condensation problem and ended up with
results, part of which is given in Figure 5. Here we find some boundary layer close to
the left wall (which is large scale and thus not a kinetic boundary layer). Far apart from
the wall, the whole ensemble seems to tend to some equilibrium state. This cannot be a
common Maxwellian, since Species A and B exhibit different velocities and temperatures.
Such an equilibrium state does not exist in classical theory. However, the trace theory
approach results in a common balanced state (fA, fB) of the mixture far on the right of the
perturbing wall. In particular, we find the dependence of the condensation rate for A on
the interaction between both species, and on the energy exchange of species B on the left
wall. Here, we roughly sketch the corresponding calculations.

Suppose the restrictions fA and fB to their species have moments (ρA,−vA, TA
) and

(ρB, 0, TB
) with corresponding Maxwellians ρAeA and ρBeB. Constructing f, we assume

that both fA and fB are trace elements of their respective Maxwellians, fA = tA[γA] and
fB = tB[γB], with corresponding parameters given by Formulas (54) and (55),

T̂S = TS
+ d−1(γS)2, v̂S = vS − γS, S ∈ {A, B} (95)

Compatibility conditions are the equalities T̃A = T̃B =: T̃ and ṽA
x = ṽB

x =: ṽx, i.e.,

γB = γA − vA
x , d · (TA − TB

) = vA
x · (vA

x − 2γA) (96)

These fix γB once γA is given, and the temperature difference in relation to the velocity of
A. Both trace elements are now represented by and perturbations of the same Maxwellian
ẽ = e[ṽx, T̃].

Let a nonlinear two-species collision operator be given as

J[f, f] = JA[fA, fA] + JAB[fA, fB] + JBA[fA, fB] + JB[fB, fB] (97)

with restrictions to the species being

J[f, f]|A = JA[fA, fA] + JBA[fB, fA] (98)

J[f, f]|B = JAB[fA, fB] + JB[fB, fB] (99)



Fluids 2024, 9, 72 16 of 17

Figure 5. Degenerate gas mixture: Boundary layer in half space [0, ∞).

The operators JA and JB are the usual one-species collision operators, while JAB and
JBA represent the interspecies interactions. The above trace construction is a balanced
solution with respect to this operator, if it satisfies the balance conditions

⟨ J[f, f]|A, πA
x ⟩ = 0 (100)

⟨ J[f, f]|B, πB
x ⟩ = 0 (101)

where the closure moments πS
x have to be taken relative to their corresponding bulk

velocities vS
x . From this, we extract conditions of the form

αAρA(γA)2 = ρBβA, αBρB(γB)2 = ρAβB (102)

with αS and βS being positive constants to be derived from the collision operator. (For αS,
compare (71). βS can be derived similarly from the interspecies operators.) From the first
condition, we can calculate γA; the second one relates the velocity vA

x to the temperature T̃.

7. Conclusions

In certain situations, it is necessary to put fluid dynamical problems on a safe ground
derived from gas kinetic models. In this situation, one ends up with a non-closed moment
system of the form (3.4) which has to be supplemented with closure relations for the
pressure tensor and the heat flux. We have shown that the most popular models like
expansion techniques (Hilbert, Chapman–Enskog) or relaxation systems (BGK or related
extensions) fail in certain situations. (See Section 6.1 for the heat layer problem and
Section 6.2 for an evaporation condensation problem for gas mixtures).

In the present paper, we introduced an alternative approach which avoids mysteries
(“ghost effect”) and some of the deficiencies of standard theory. The reason is that the trace
ansatz allows portions of the flow to coexist at the same place with different temperatures
or bulk velocities. This may be the case, e.g., close to interfaces (outgoing/reflected flows,
different species of a mixture etc.). In such situations, our method is superior to the classical
schemes. In fact, we do not know of any theoretical ansatz successfully attacking e.g., the
evaporation condensation problem in the fluid dynamic limit.
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