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Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal
accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in
pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory
network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts.
The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially
expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2,
FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1,
AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional
characterization revealed involvement in TGF-β, PI3K, FOXO, and MAPK signaling pathways.
Additionally, this study identified regulatory interactions between sequences of hub mRNAs and
lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989,
and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1,
and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial
signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways,
non-small cell lung cancer, and AMPK signaling pathways.

Keywords: LncRNA; mRNA; meta-analysis; lung fibroblasts; idiopathic pulmonary fibrosis

1. Introduction

Idiopathic pulmonary fibrosis (IPF) constitutes a chronic, progressive, and irreversible
disease of still unknown etiology [1]. It is predominantly observed in adults over 60, with a
higher incidence in males. This disease carries a high mortality rate, with a life expectancy
of 3 to 5 years after diagnosis [1–3]. This is because IPF is usually detected in advanced
stages, as it is generally asymptomatic in its early stages, lacks distinctive biomarkers, and
has limited therapeutic options [4,5] Currently, only two antifibrotic drugs—pirfenidone
and nintedanib—are approved for the treatment of IPF, however they fail to reverse disease
progression completely [6].

It is characterized by the chronic accumulation of extracellular matrix (ECM) in lung
tissue, which gradually deforms the alveolar architecture, hinders gas exchange, and ulti-
mately leads to death [3,7,8]. The pathophysiology is not clear; apparently, environmental
exposures represent the main stimulus of damage in an aging dysfunctional lung epithe-
lium. However, genetic and epigenetic factors are necessary to predispose the onset of the
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fibrotic process. Therefore, it has been proposed that the onset and development of IPF is
multifactorial, since the synergy of various external and internal factors are necessary [7,9].

Fibroblasts are the key effector cells of IPF that, in response to profibrotic molecules
present in the pulmonary microenvironment, are differentiated into myofibroblasts that
synthesize and accumulate exacerbated components of the ECM in the pulmonary tissue,
causing the clinical characteristics of the events [10]. Within the profibrotic molecules, RNA
molecules have also been associated, both coding (mRNA) and different biotypes of non-
coding RNA (ncRNA) [11,12]. Long ncRNAs (lncRNAs) are abundant and heterogeneous,
with a length of more than 200 nucleotides [13]. lncRNAs have the ability to interact with
other RNA biotypes, DNA, proteins, peptides, and some low molecular weight compounds,
which allows them to participate in multiple molecular processes, including the regulation
of gene expression at epigenetic, transcriptional, and post-transcriptional levels through
different molecular mechanisms directly or indirectly [14].

For example, studies have suggested that the expression of lncRNA LINC01140 is
upregulated in lung biopsies from patients diagnosed with IPF and in fibroblasts isolated
from these patients. Furthermore, functional knockdown investigations have shown that
LINC01140 acts as a positive regulator of proliferation in both control fibroblasts and
those from IPF patients. Moreover, deletion of LINC01140 has been observed to result
in an increased inflammatory response, particularly exacerbated in the context of IPF
compared with control fibroblasts [15]. On the other hand, recent studies have shown
an over-expression of lncRNA SNHG1 (lnc-SNHG1) in fibrotic lung tissues of murine
models and in fibroblasts treated with TGF-β1. Furthermore, investigations involving
manipulation of the functional expression of lnc-SNHG1 have revealed that its high ex-
pression facilitates fibroblast migration and invasion, as well as the secretion of molecules
associated with fibrosis. In contrast, low expression of lnc-SNHG1 exerts opposite effects
on these processes [16]. These findings imply that lncRNAs may play a significant role
as regulators in the cellular and molecular processes underlying the development of IPF.
Therefore, further research is required to delve deeper into these mechanisms and gain a
better understanding of the pathogenesis of IPF.

Technological progress has led to the development of revolutionary tools such as RNA
sequencing (RNA-seq) that have made it possible to explore the expression profiles of cells
and tissues under physiological and pathological conditions. However, with increasing
use, it has been observed that expression patterns are often inconsistent (even in studies of
the same type) due to technical and biological variability, so it is necessary to implement
studies that integrate data from multiple studies and allow a more detailed and integrated
understanding of the cellular and molecular processes underlying this disease. In this
study, we implemented a meta-analysis of three independent studies of RNA-seq data from
pulmonary fibroblasts from IPF to identify profiles of lncRNA and mRNA by means of
bioinformatics tools performing their functional characterization.

2. Results
2.1. Study Selection

In the initial search, we collected 63 published high-throughput sequencing expression
profiles published in the GEO database through 31 March 2022. We excluded 4 duplicates
and 42 studies because they did not meet the inclusion criterion. The remaining 17 studies
were further evaluated, and 14 studies were excluded, including 1 study based on methyla-
tion profiles, 3 studies using commercial cell lines, 9 studies using lung fibroblasts with
treatments, 1 study lacking normal or healthy controls, and 1 study that had a sample size
of less than 3 per group. Finally, three studies from the GEO database that met the inclusion
criteria for the meta-analysis were selected (GSE99621, GSE180415, and GSE185492). The
schematic flowchart of the meta-analysis is illustrated in Figure 1.

In these 3 studies, study 1 (GSE99621) used the Illumina HiSeq 2500 platform (Homo
sapiens) and contained 18 IPF samples and 8 controls; study 2 (GSE180415) used the
Illumina HiSeq 4000 platform (Homo sapiens) and contained 5 samples of IPF and 4 controls;
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and study 3 (GSE185492) used the Illumina NovaSeq 6000 platform (Homo sapiens) and
contained 12 IPF samples and 12 controls, obtaining a total of 35 IPF samples and 24 control
samples (Table 1).
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Figure 1. PRISMA flowchart for selecting eligible RNA-seq GEO datasets for transcriptional meta-
analysis of primary fibroblasts isolated from lungs of IPF patients and their respective controls.

Table 1. Selected studies from the GEO database.

Study ID_GEO Platform
Sample Size

IPF Control

Study_1 GSE99621 Illumina HiSeq 2500 18 8
Study_2 GSE180415 Illumina HiSeq 4000 5 4
Study_3 GSE185492 Illumina NovaSeq 6000 12 12

Total sample size 35 24
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2.2. Differentially Expressed Gene

RNA-seq data from the three studies were analyzed independently using a consistent
bioinformatics workflow to better integrate the results and decrease the variability that
the bioinformatics analyses might contribute (Figure 2). Study 1 identified a total of
1383 differentially expressed (DE) RNAs (DERNAs), of which 509 were under-expressed
and 874 were over-expressed (Figure 3); study 2 identified a total of 440 DERNAs, of which
249 were under-expressed and 191 were over-expressed (Figure 4); and study 3 yielded
493 DERNAs, of which 290 were under-expressed and 203 were over-expressed (Figure 5).
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Figure 3. Differentially Expressed Genes in Study 1. The volcano plot illustrates the transcripts
identified in study 1. Each dot on the graph represents a transcript; blue dots indicate underexpressed
transcripts, red dots indicate overexpressed transcripts, and black dots represent transcripts with no
significant differential expression. Differential expression was considered logFC > 1, and p < 0.05 was
considered statistically significant.
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Figure 4. Differentially Expressed Genes in Study 2. The volcano plot illustrates the transcripts
identified in study 2. Each dot on the graph represents a transcript; blue dots indicate underexpressed
transcripts, red dots indicate overexpressed transcripts, and black dots represent transcripts with no
significant differential expression. Differential expression was considered logFC > 1, and p < 0.05 was
considered statistically significant.
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Figure 5. Differentially Expressed Genes in Study 3. The volcano plot illustrates the transcripts
identified in study 3. Each dot on the graph represents a transcript; blue dots indicate underexpressed
transcripts, red dots indicate overexpressed transcripts, and black dots represent transcripts with no
significant differential expression. Differential expression was considered logFC > 1, and p < 0.05 was
considered statistically significant.

2.3. Differential Expression Analysis of LncRNAs and mRNAs

Meta-analysis is a systematic method that allows the integration of several studies by
increasing the number of samples, thereby increasing statistical power and reducing inter-
study variability. Therefore, the DERNAs of each individual study were used to perform a
meta-analysis using the MetaRNASeq package, which uses Fisher’s combined probability
test. Through the meta-analysis, a total of 659 DERNAs were identified, of which 278 were
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under-expressed and 381 were over-expressed. We identified 252 under-expressed and
332 over-expressed mRNAs. For lncRNAs, we obtained 26 under-expressed and 49 over-
expressed. To visualize the mRNA (Figure 6) and lncRNA (Figure 7) expression profiles
obtained in the meta-analysis, heatmaps were generated, which showed that the expression
profiles were different between samples from IPF and healthy individuals, indicating that,
during IPF, there is a deregulation in the expression of mRNA and lncRNA. The complete
list of differentially expressed mRNAs and lncRNAs can be found in Tables S1–S4.
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2.4. PPI Network and Identification of Hub mRNAs

The gene products of mRNAs and proteins perform an enormous diversity of functions
in cells through a set of direct (physical) and indirect (functional) interactions. Therefore,
protein–protein interactions (PPIs) play central roles in cellular systems, such that the subtle
alteration of PPIs can have major consequences and produce pathological phenotypes [17].
Moreover, PPI networks are extremely useful for predicting functions and identifying key
molecules within large assemblies. The obtained PPI network contained all 584 proteins
(nodes), of which 256 were part of the core network. However, 284 predicted functional
associations (edges) were also identified (Figure S1). PPI networks are more powerful
the greater the coverage of the interactome. However, the complexity of the network also
increases, which makes its biological interpretation more difficult. Due to the above, the
10 central proteins within the PPI network were identified using Cytoscape and visualized
by the complementary cytoHubba, which allowed us to identify with great precision the
central proteins within a biological interactome network using 11 topological analysis
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methods [18]. The ten hub proteins identified by cytoHubba were PIK3R1, BCL6, GNAI1,
RXRA, FOXO3, EPHB2, EFNB1, FOXO1, EPHB1, and IRF4, of which PIK3R1, BCL6, GNAI1,
RXRA, EFNB1, FOXO3, and FOXO1 were identified as under-expressed in the meta-
analysis, while EPHB1, EPHB2, and IRF4 were over-expressed (Figure 8A).
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2.5. GO and KEGG Pathway Analysis of Hub mRNAs

To elucidate the biological significance of the ten identified hub proteins, GO analysis
and KEGG pathway analysis were performed. GO analysis revealed that the ten hub
proteins were involved in biological processes (BPs), such as negative regulation of cell
differentiation, lymphocyte activation, myeloid cell differentiation, negative regulation of
developmental processes, and cell activation (Figure 8B), while binding to transcription
factors, Ephrin receptor activity, sequence-specific DNA binding of the cis-regulatory
region of RNA polymerase ll, and binding to coregulators of transcription were identified
among the major molecular functions (FMs) (Figure 8C). Cellular component (CC) terms
revealed that these proteins were primarily localized in membrane lipid rafts, membrane
microdomains, receptor complexes, and chromosomes (Figure 8D). In addition, analysis of
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KEGG pathways identified FoxO signaling pathways, chemical carcinogenesis, longevity
regulatory pathways, and non-small cell lung cancer, as well as AMPK signaling pathways
as major molecular functions (Figure 8E). The above results suggest that the ten hub proteins
transcribed by mRNAs differentially expressed in lung fibroblasts from IPF localize to
membrane raft mediating cell activation and differentiation via the FoxO and AMPK
signaling pathways.
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Figure 8. Identification and characterization of hub proteins. (A) Ten hub proteins identified by
cytoHubba. Each node represents a protein, while each edge represents a protein–protein association.
GO analysis of the ten hub proteins (B) PB—biological processes, (C) FM—molecular functions, and
(D) CC—cellular components, (E) Kyoto Encyclopedia of Genes and Genomes (KEGG). The size of
the circle represents the number of genes involved in each term, color represents significance, and
FDR < 0.05 is considered statistically significant.

2.6. Hub Gene–Drug Interaction Network Analysis

Gene–environment interactions are postulated as triggers for different diseases in
susceptible individuals. Due to the importance of these interactions, toxicogenomics has
emerged, which allows the interpretation of the activity of genes and proteins in response
to toxic substances [19,20]. To explore the interaction between hub genes and available
drugs, a network was constructed using CTD and visualized by Cytoscape. The results
identified abrine, acetaminophen, arsenic, asbestos, benzo(a)pyrene, bisphenol, cadmium,
cisplatin, copper, cyclosporine, dexamethasone, dorsomorphin, doxorubicin, hydrogen
peroxide, indomethacin, leflunomide, sodium arsenite, tetrachlorodibenzodioxin, tobacco
smoke, tretinoin, trichostatin A, urethane, and valproic acid. (Figure 9).
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Purple rectangles correspond to hub genes, yellow rectangles correspond to toxicants, and lines
represent toxicant–gene interactions.

2.7. Co-Expression of LncRNA/mRNAs

lncRNAs have recently emerged as important regulators of IPF. However, functional
characterization of lncRNAs is complicated because there are currently no databases with
functional annotation of these transcripts; therefore, a commonly used strategy to infer
the potential functions of lncRNAs is the construction of co-expression networks with
mRNAs [21,22]. Based on the above, to better identify disease-related genes and lncR-
NAs, a weighted gene co-expression network analysis (WGCNA) was performed with all
transcripts identified by meta-analysis based on Pearson’s correlation coefficient (PCC)
using the WGCNA R package. WGCNA is a method used for finding highly synergistic
expressed gene modules and the association between gene sets and disease [23]. The ob-
tained co-expression network contained associations between 55 lncRNAs and 576 mRNAs
(Figure S2). From the co-expression network, the top three clusters were identified, which
were most densely connected to each other. Cluster 1 consisted of 6 lncRNAs (MSC-AS1,
DUBR, MEG3, AC134312.5, AC009093.2, and MIR100HG) and 125 mRNAs (Figure 10A).
Analysis of KEGG pathways revealed that the mRNA gene products included in this clus-
ter were involved in cytokine–cytokine receptor interactions, cAMP, and neurotrophin
signaling pathways (Figure 10B). Cluster 2 consisted of SATB2-AS1 lncRNA and 14 mR-
NAs (Figure 10C). KEGG analysis revealed that the mRNAs included in this cluster were
involved in the MAPK signaling pathway and metabolic pathways (Figure 10D). Cluster 3
consisted of 2 lncRNAs (HSD3BP5 and BMS1P1) and 12 mRNAs (Figure 10E), which were
found to be involved in the regulation of peptide hormone secretion, double-strand break
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repair, chromosome organization, and cellular response to damage stimulus (Figure 10F).
Taken together, the results suggest that the lncRNAs identified in the meta-analysis are in-
volved in a variety of biological processes, including cell adhesion, inflammatory response,
compound metabolic processes, hormone regulation, and DNA double-strand break repair.
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Highly co-expressed groups are enriched in common biological functions and processes,
and a high correlation may denote close regulatory proximity [24]. Because lncRNAs can
regulate translation and transcription of mRNAs, a co-expression network was constructed
with the ten hub mRNAs and all lncRNAs identified in the meta-analysis to identify lncRNAs
that could be related to the ten hub mRNAs. The network identified 33 lncRNAs that were co-
expressed with the 10 hub mRNAs (Figure S3). From the network, the five lncRNAs with the
highest number of interactions (co-expression) were selected to identify a potential regulatory
network between core mRNAs and lncRNAs. The results revealed that, of the five lncRNAs
with the highest number of co-expressions, AC091806.1, FAM111A-DT, and LINC01989
showed under-expression in the meta-analysis, while lncRNAs AC008708.1 and AL442071.1
showed over-expression in the meta-analysis. These lncRNAs showed co-expression with
the hub mRNAs (PIK3R1, BCL6, GNAI1, RXRA, EFNB1, FOXO3, and FOXO1), which were
identified as under-expressed in the meta-analysis, while EPHB1, EPHB2, and IRF4 showed
over-expression. The co-expression network revealed that AC008708.1 was co-expressed
with BCL6, FOXO3, GNAI1, EPHB2, and IRF4. For its part, lncRNA AC091806.1 showed
co-expression with IRF4, BCL6, FOXO1, GNAI1, and RXRA, and lncRNA AL442071.1 was
co-expressed with BCL6, EFNB1, GNAI1, RXRA, and EPHB1. Furthermore, the lncRNA
FAM111A-DT was co-expressed with EPHB1, BCL6, GNAI1, and PIK3R1, while the lncRNA
LINC01989 was co-expressed with EPHB1, FOXO1, GNAI1, and PIK3R1 (Figure 11A). These
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findings suggest a possible involvement of lncRNAs AC008708.1, AC091806.1, AL442071.1,
FAM111A-DT, and LINC01989 in the pathophysiology of IPF by regulating the expression of
core mRNAs in IPF-associated fibroblasts.
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Figure 11. Co-expression regulation network and sequence interaction prediction analyses of hub
mRNAs–lncRNAs. (A) Co-expression regulation network interaction analyses of hub mRNAs/lncRNAs.
VARNA-based graphical representations obtained from LncRRIsearch (local base-pairing interactions as
a function of the interaction energy between lncRNA and mRNA sequences). (B) EPHB1-FAM111A-DT
interaction. (C) EPHB1-LINC01989 interaction. (D) BCL6-AC091806.1 interaction. (E) BCL6-FAM111A-
DT interaction. (F) EPHB2-AC00870891 interaction. Circles represent nucleotides: yellow = thymine,
green = cytokine, blue = guanine, and red = adenine. Lines represent base-pairing interaction.
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2.8. Prediction of lncRNA–mRNA Interactions

One of the mechanisms by which lncRNAs can post-transcriptionally regulate mRNAs
is by the direct binding of their sequences forming two-stranded lncRNA–mRNA structures
that can promote or impede their translation or degradation [25]. Therefore, in order to
elucidate whether co-expressed hub lncRNA–mRNA pairs could be regulated by interaction
of their sequences, a comprehensive prediction analysis of the interaction between mRNAs
and lncRNAs was performed using the LncRRIsearch web server, which performs RIblast
prediction. RIblast predicts local base-pairing interactions as a function of interaction
energy that is calculated using both accessibility energy and hybridization energy [26].

Interaction prediction analyses showed five energetically significant lncRNA–mRNA
pairs: EPHB2-AC008708.1, BCL6-AC091806.1, BCL6-FAM111A-DT, EPHB1-FAM111A-DT,
and EPHB1-LINC01989. The latter two were positively co-expressed while the others were
negatively co-expressed (Figure 11B–F). These results suggest that AC008708.1, AC091806.1,
FAM111A-DT, and LINC01989 lncRNAs can regulate EPHB2, EPHB1, and BCL6 mRNAs
through direct interaction between their sequences.

3. Discussion

In the present study, we identified the hub mRNAs and lncRNAs present in pulmonary
fibroblasts from IPF, as well as their functional characterization and adjacent mechanisms,
through a meta-analysis of RNA-seq data and the implementation of in silico analysis.
The advent of omics technologies has facilitated the understanding of diseases, since they
allow for obtaining a large amount of biological information in a short period of time. The
identification of differential expression profiles between two or more conditions has helped
to understand the processes and functions that favor the development and progression of
multiple diseases [27]. Our results allowed us to identify differential mRNA and lncRNA
expression profiles of lung fibroblasts from IPF in 3 independent studies obtaining 2898, 962,
and 1905 differentially expressed transcripts in each study, which demonstrates that, during
IPF, there is a differential expression profile of mRNA and lncRNA in lung fibroblasts,
which has been previously demonstrated by several studies in murine [28,29] and human
fibroblasts [30,31].

With the implementation of NGS technologies, new problems have arisen related to
the heterogeneity of results obtained due to the variability in techniques, instruments, and
protocols, among others, which hinders the biological understanding of the results [32].
Therefore, a meta-analysis was performed based on the combination of the normal inverse
and Fisher methods, with the integration of the 3 studies; a total of 659 differentially
expressed transcripts were obtained, of which 584 were mRNAs and 75 were lncRNAs.

A limitation in our study arises from the assumption that transcript levels align with
protein levels in the analyses of the PPI, KEGG, and toxicogenomics interaction networks.
It is recognized that transcription levels frequently do not exhibit a strong correlation
with the abundance of their respective protein products [33]. We speculate that, if the
protein levels correspond to the mRNA levels, the assays could be met. The functional
characterization of the differentially expressed mRNAs showed that their gene products
were mainly located in plasma membrane components participating in cell communication,
regulation of localization, and morphogenesis of anatomical structures through functions
related to adhesion and binding to growth factors, cytokines, and hormones. These results
could reflect the pathophysiology of IPF, in which fibroblasts physiologically participate
in the morphogenesis and maintenance of pulmonary architecture through a series of
ordered events. However, during IPF, a deregulation of biological processes influenced by
growth factors, cytokines, and other biomolecules causes aberrant activation of fibroblasts
that acquire greater migratory and biochemical capacity that contradictorily leads to the
deterioration of pulmonary architecture [34].

We could also speculate that the protein–protein interaction network of the differen-
tially expressed mRNA proteins allowed the identification of the following ten hub genes:
BCL6, RXRA GNAI1, PIK3R1, FOXO1, FOXO3, EFNB1, EPHB1, EPHB2, and IRF4. GO
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analysis showed that their gene products are found in compartments such as chromatin
and chromosomes, regulating the cellular response to cytokines, cell differentiation, DNA
binding, and the activity of receptors and transcription factors. The enrichment of these
terms may be attributed to the fact that the hub mRNAs code for proteins that are part of
signaling pathways, most of which are well described in the context of IPF, particularly
those related to the TGF-β pathway. It has been shown that the stimulation of fibroblasts
with TGF-β1 decreases the expression level of BCL6, which is a transcriptional repressor
that physiologically negatively regulates cell differentiation. Over-expression of BCL6 has
been shown to reduce fibroblast proliferation and differentiation, because it is able to bind
and negatively regulate SMAD4 [35]. BCL6 was found to be negatively regulated in the
meta-analysis, which could indicate that its low expression could favor fibroblast differen-
tiation. Nonetheless, our research has identified two noteworthy findings: (1) important
signaling pathways are associated with fibrogenic processes in the lung and (2) toxicants
are linked to fibrogenesis in the lung and in other organs or tissues. It is important to note
that, while these results are significant, they do not necessarily provide conclusive evidence;
rather, they underscore the importance of considering and validating genes and lncRNAs
for future research.

On the other hand, retinoid X receptor α (RXRA) has been found to negatively regulate
the TGF-β promoter [36]. The direct relevance of RXRA in IPF is poorly understood, but it
has been shown that, in liver fibroblasts, RXRA inhibits the expression of α-SMA and type
I collagen [37]. In addition, it showed under-expression in the meta-analysis, which may
suggest that its low expression does not inhibit TGF-β, allowing IPF fibroblasts to acquire
an α-SMA+ phenotype and produce type I collagen.

One of the mechanisms involved in the transduction of extracellular stimuli is medi-
ated by the interaction of receptors with one or more of the four major G-protein families.
GNAI1 belongs to the Gαi family, whose members can regulate cell proliferation and
differentiation [38]. GNAI1 was found to be under-expressed in IPF fibroblasts in the
meta-analysis and has been observed in a murine model of pulmonary fibrosis [39]. It
has also been shown that GNAI under-expression can favor tumor cell migration and
invasion [35,40]. In IPF, GNAI has been considered a profibrotic regulator, although the
mechanisms have not been elucidated [41].

The PI3K/AKT pathway has recently been considered a major regulator of IPF since it
is able to regulate many disease-related functions, especially fibroblast to myofibroblast
differentiation [42]. The PI3K/AKT pathway is involved in processes such as cell growth,
proliferation, motility, metabolism, and survival [43]. Our meta-analysis showed that
PIK3R1, a regulator of the PI3K pathway, was under-expressed, which can be explained
by PIK3R1 encoding for the p85 protein, whose deletion leads to the activation of the
downstream PI3K pathway. Therefore, its under-expression would favor PI3K signaling
and thus the activation of fibroblasts [44,45].

The PI3K/Akt pathway is closely related to the FoxO family of transcriptional reg-
ulators, of which there are four isoforms: FOXO1, FOXO3, FOXO4, and FOXO6. These
isoforms can act as transcriptional activators or repressors since they have a DNA binding
domain that participates in a diversity of biological processes [46]. Our meta-analysis
showed that FOX1 and FOX3 were under-expressed in IPF fibroblasts, which has been
observed in fibrosis of different organs [47]. FOXO3 regulation appears to be related to the
PI3K/Akt pathway, whereas FOXO1 is related to the WNT/β-catenin pathway [48,49].

In addition to the pathways classically related to IPF, ephrin ligand/Eph receptor
signaling has been observed to act downstream of the TGF-β/SMAD3 pathway [50]. EFNB1
is a single-pass transmembrane protein that is part of the ephrin family, which includes
cell surface ligands that can interact with Eph receptors (EPHB1, EPHB2). This interaction
promotes activation of the Stat3 signaling pathway, which is intimately involved in fibrosis
through fibroblast activation and differentiation [50,51]. Within the hub mRNAs, the
ligand EFNB1 and the receptors EPHB1 and EPHB2 were identified. EFNB1 showed
under-expression in the meta-analysis. However, there is little evidence to implicate the
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participation of EFNB1 in IPF. Nevertheless, due to the functions it performs, low expression
could indicate a reduction in cell adhesion favoring cell migration [52]. EPHB1 and EPHB2
receptors were found to have over-expression in the meta-analysis. Studies of EPHB2
have shown that it is capable of promoting fibrosis through fibroblast activation and that
it is over-expressed in the fibrosis of different tissues, although its participation in IPF is
unknown [53,54].

The pathways enriched in the KEGG pathway analyses were consistent for over-
expressed, under-expressed, and hub ten mRNAs, which were signaling, longevity reg-
ulation, and cancer-related pathways. The longevity regulatory pathways were relevant
in the KEGG analysis, since IPF is an aging-related disease based on the accumulation
of senescent cells. During IPF, fibroblasts show a senescent phenotype in which they are
abnormally activated, and exhibit telomere shortening, metabolic reprogramming, mito-
chondrial dysfunction, and resistance to apoptosis; these features promote the onset and
development of IPF [55]. Cancer pathways were another consistent term, which is not
surprising, since IPF shares several common features and processes with lung cancer such
as aberrant fibroblast proliferation, activation and differentiation, oxidative stress, and
genetic and epigenetic variations [56–58].

Functional characterization of lncRNAs remains a challenge. Interestingly, our work
allowed us to identify by lncRNA–mRNA co-expression networks the three most relevant
clusters that could manifest the core functions of lncRNAs in IPF fibroblasts. Cluster 1
consisted of six lncRNAs over-expressed in IPF fibroblasts in the meta-analysis: lncRNAs
MSC-AS1, DUBR, MEG3, AC134312.5, AC009093.2, and MIR100HG. Of the six lncRNAs,
only MEG3 and MIR100HG have been evaluated in IPF, where they have shown high
expression in epithelial cells [59,60].

Cluster 2 included SATB2-AS1 lncRNA, which was found to be over-expressed in IPF
fibroblasts in the meta-analysis. Very little is known about its function; however, being an
antisense transcript of SATB2 it is believed that it could play similar roles. Over-expression
of the SATB2 gene has been shown to induce epithelial cell transformation and promote
EMT, apparently through activation of the β-catenin pathway [61].

Cluster 3 included HSD3BP5 and BMS1P1, whose biological functions are unknown.
However, KEGG pathway analysis of the three clusters demonstrated that these lncRNAs
might be involved in cancer-related pathways, cytokine signaling, cAMP, MAPK, PI3K, and
neurotrophin signaling pathways. It should be emphasized that the neurotrophin signaling
pathway aims to transmit positive signals for cell survival and proliferation via the MAPK,
PI3K, and phospholipase (PLC) pathways, and that this pathway has been implicated in
multiple lung diseases, including pulmonary fibrosis [62]. Thus, the pathways identified
are redundant with those identified with mRNAs, suggesting that the TGF-β, PI3K, FOXO,
and MAPK pathways are highly relevant in IPF.

lncRNAs are involved in gene regulation at virtually all levels, including epigenetic
regulation, nuclear and cytoplasmic trafficking, transcription, splicing, and mRNA transla-
tion [63]. Our results showed that 33 differentially expressed lncRNAs in IPF fibroblasts
could regulate the ten hub mRNAs, as demonstrated by the co-expression network from
which the five lncRNAs with the highest interaction were selected identifying AC008708.1,
AC091806.1, AL442071.1, FAM111A-DT, and LINC01989, whose biological functions are
poorly understood and currently none have been previously associated with fibrosis.
However, our results suggest that they may regulate hub mRNAs at some level of gene ex-
pression, as they showed 25 co-expression pairs, 10 positively and 15 negatively correlated.
Additionally, we identified that FAM11DT, LINC01989, AC008708.1, and AC091806.1 can
physically interact by energetically favorable binding (<−16 Kcal/mol) of their sequences
to EPHB1, EPHB2, and BCL6 and thus modulate their translation. The binding of lncRNAs
to mRNAs can positively or negatively regulate their translation because they can bind to
specific mRNA sequences regulating their stability and preventing or favoring degradation
by exonucleases, miRNA binding, and binding to ribosome-binding proteins [64].
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The toxicogenomic interaction network revealed a large number of toxicants that can
negatively modulate the expression of hub mRNAs, some of which are widely related
to pulmonary fibrosis, such as tobacco smoke, asbestos, hydrogen peroxide, arsenic, cad-
mium, and copper, which supports the importance of the hub mRNAs identified in this
study [65,66]. In addition, drugs of clinical use such as dexamethasone, cyclosporine,
acetaminophen, and leflunomide were identified, which is interesting since they are used
with high frequency. In fact, dexamethasone is a corticosteroid that was initially used to
treat patients with IPF. Currently, there is little evidence to support its use since it has been
observed that its effect can be contradictory [67]. Acetaminophen and cyclosporine A have
been considered etiologic agents of hepatic and renal fibrosis, respectively [68]. Although
cyclosporine has also been used in combination with corticosteroids at low doses in pa-
tients with IPF, its effects have not been significant [69]. Similarly, leflunomide used for the
treatment of rheumatoid arthritis has been contradictory in pulmonary fibrosis since it has
shown both beneficial and detrimental effects [70,71]. The duality of the effects observed
for these drugs in pulmonary fibrosis seems to indicate that their effect is dose dependent;
however, more research is needed. The toxicogenomic network also included drugs used
in chemotherapy such as doxorubicin and cisplatin. Chemotherapy carries the risk of acute
exacerbations in IPF patients and contributes to an increased risk of mortality; therefore,
the choice of chemotherapy should be made in consideration of risks and benefits [12].

4. Materials and Methods
4.1. Search and Selection Criteria for RNA-Seq Datasets

To investigate gene expression profiles of lung fibroblasts in patients with IPF, a search
of the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/,
accessed on 1 April 2022) was conducted to identify relevant RNA-seq studies. The
search was performed on publicly available gene expression datasets until 31 March 2022,
using the keyword “idiopathic pulmonary fibrosis”. Search results were further narrowed
through the following filters: entry type (“series”), study type (“expression profiling by
high throughput sequencing”), and organism (“Homo sapiens”). The following data
were extracted for each identified gene expression profile: GEO accession ID, sample size,
platform, expression data, and references. The identified RNA-seq datasets were reviewed,
filtered, and selected according to the following inclusion criteria:

Inclusion criteria:

1. Studies in primary fibroblasts isolated from human lung tissue.
2. Expression profiles generated by high-throughput sequencing (RNA-seq).
3. Comparative study between primary fibroblasts isolated from lung tissues of patients

with IPF, as well as their respective controls; the latter consisting of primary fibroblasts
isolated from normal human lung tissues.

4. Sample size equal to or more than 3 per group.
5. The raw RNA-seq-generated reads are publicly available.

Exclusion criteria:

1. Expression profiles generated by microarrays are not included.
2. Expression profiles from commercial cell lines are excluded.
3. Lung tissue samples are excluded.
4. Expression profiles from primary cultured fibroblasts isolated from species other than

Homo sapiens are not considered.
5. RNA-seq profiles are not accepted if raw data are not publicly available.
6. Methylation profiles are excluded.

The meta-analysis was conducted following the guidelines provided in the 2020 Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [72].

https://www.ncbi.nlm.nih.gov/geo/
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4.2. Data Collection

The acquisition of raw reads in FASTQ format was performed using Galaxy interface
version 22.05 (https://usegalaxy.org, accessed on 5 April 2022). The reference genome was
downloaded from GENCODE Version 32 (GRCh38.p13) in FASTA format.

4.3. Data Analysis of Individual Study Data

Data analysis was performed individually for each study on Galaxy platform version
22.05 (https://usegalaxy.org, accessed on 5 April 2022). The quality of raw reads was
assessed with FASTQC, and bases with a Phred value ≤ 20 were considered poor quality
and were removed with the Trimmomatic tool (version 0.38). Adapters were removed with
the Cutadapt tool (version 1.16).

4.4. Alignment of Transcripts with the Reference Genome

Alignment was performed using HISAT2 (version 2.2.1). The human reference genome
GRCh38 was used. The SAM format file was converted to its binary BAM format using
samtools (version 1.12). Read counting of each transcript was performed using htseq
(version 0.9.1).

4.5. Differentially Expressed Analysis

Differential expression analysis between samples from healthy subjects and IPF was
performed using DESeq2 (bioconductor-deseq2, version 1.22.1). Differentially expressed
transcripts were screened as upregulated if they had a log2(FC) value ≥ 1 and an adjusted
p value < 0.05, and downregulated if they had a log2(FC) value ≤ −1 and an adjusted
p value < 0.05.

4.6. Meta-Analysis

Meta-analysis was performed using the R: metaRNASeq package, which is based on
Fisher’s pooled probability using the following formula:

Transcripts with an adjusted p value > 0.05, transcripts with low expression levels, and
transcripts with inconsistent expression directions were removed from the meta-analysis.
The p values were adjusted for the Benjamini–Hochberg false discovery rate (FDR). An
adjusted p value of less than 0.05 was considered statistically significant.

4.7. Gene Ontology and KEGG Pathway Enrichment Analysis

Gene ontology (GO), including biological processes (BPs), molecular functions (MFs),
cellular components (CCs), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were performed using the R package ClusterProfiler version 3.5. The results
were plotted with ggplot2 version 3.3.6, with terms and pathways with an FDR < 0.05
considered significant.

4.8. Protein–Protein Interaction Network

The protein–protein interaction network was performed on the Search Tool for the
Retrieval of Interacting Genes (STRING database version 11.5 https://string-db.org/,
accessed on 20 April 2022), considering a high confidence interaction score (0.700). Visu-
alization of the interaction network was performed in Cytoscape software (version 3.9.1).
MCODE was used to identify the four main clusters and cytoHubba was used to identify
the ten hub genes.

4.9. Comparative Toxicogenomic Interaction Network

A search for toxicant interactions was performed in the comparative toxicogenomics
database (CTD) (http://ctdbase.org, accessed on 22 April 2022), selecting those chem-
icals that interacted with at least 5 mRNAs. The interaction network was visualized
using Cytoscape.

https://usegalaxy.org
https://usegalaxy.org
https://string-db.org/
http://ctdbase.org
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4.10. lncRNA–mRNA Network Construction

Initially, the RNA expression data profiles of both genes and lncRNAs underwent rig-
orous testing to ensure the qualification of samples, genes, and lncRNAs. The co-expression
analysis involved 75 lncRNAs and 584 mRNAs, where the Pearson correlation coefficient
was calculated for each lncRNA-mRNA pair. This was accomplished using the normalized
expression intensities and the WGCNA package within the RStudio interface (version 4.2.0),
employing the “cor.test” function [23]. Subsequently, a weighted adjacency matrix was
formulated using a power function represented by Amn = |Cmn| β (Cmn = Pearson’s
correlation between gene/lncRNA m and gene/lncRNA n; Amn = adjacency between
gene/lncRNA m and gene/lncRNA n). The lncRNA–mRNA pairs with correlation co-
efficients > 0.9 (positive) or <−0.9 (negative) were considered significant, the value of
the soft-thresholding powers (β) was calculated in a range from 1 to 30, determining the
value of β = 8. The topological overlap matrix (TOM), assessing the connectivity of a
gene/lncRNA within the network, was defined as the sum of gene adjacency with all
other gene/lncRNAs for the network gene/lncRNA ratio with a module size of 20. The
co-expression network was visualized in Cytoscape software.

4.11. Prediction of lncRNA–mRNA Interactions

Base-pairing interaction prediction between lncRNA–mRNA sequences was per-
formed using the WEB server LncRRIsearch (http://rtools.cbrc.jp, accessed on 25 April
2022), using as input the Ensembl identifier of each transcript, considering interactions
with an energy threshold < −16 kcal/mol as significant.

5. Conclusions

In conclusion, the present study (based on bioinformatics analysis) identified differ-
entially expressed hub lncRNAs (AC008708.1, AC091806.1, AL442071.1, FAM111A-DT,
and LINC01989) and mRNAs (BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4,
PIK3R1, and RXRA) from fibroblasts bearing IPF, and BCL6 may be directly regulated by
AC091806.1 and FAM111A-DT, EPHB1 by FAM111A-DT and LINC01989, and EPHB2 by
AC008708.1. Therefore, the present study may provide novel insights into the pathologi-
cal mechanisms underlying IPF. However, further functional investigation is required to
confirm these results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ncrna10020026/s1, Figure S1: Protein–protein interaction network;
Figure S2: Co-expression network mRNA-lncRNA; Figure S3: Co-expression network hub mRNA-
lncRNA. Table S1: Complete list of overexpressed mRNAs; Table S2: Complete list of underexpressed
mRNAs; Table S3: Complete list of over-expressed lncRNAs; and Table S4: Complete list of under-
expressed lncRNAs.

Author Contributions: Conceptualization, A.L.-M. and R.B.-H.; methodology, A.L.-M., J.C.S.-Á.,
J.M.V.-E. and R.B.-H.; formal analysis, A.L.-M., J.M.V.-E. and R.B.-H.; investigation, A.L.-M., J.M.V.-E.,
J.C.S.-Á. and A.A.R.-H.; resources, R.B.-H.; data curation, A.L.-M. and J.M.V.-E.; writing—original
draft preparation, A.L.-M., V.R.V.-G. and J.C.S.-Á.; writing—review and editing, A.L.-M., J.C.S.-Á.,
J.M.V.-E., A.A.R.-H., V.R.V.-G. and R.B.-H.; visualization, A.L.-M., J.M.V.-E., A.A.R.-H. and J.C.S.-
Á.; funding acquisition, R.B.-H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Consejo Nacional de Ciencia y Tecnología CONACyT,
Support for the Strengthening and Development of Scientific and Technological Infrastructure 2016
(No. 270189), and CONACyT-Fondo de Ciencia Básica, cb-2016-01 (No. 287162) a RBH.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

http://rtools.cbrc.jp
https://www.mdpi.com/article/10.3390/ncrna10020026/s1
https://www.mdpi.com/article/10.3390/ncrna10020026/s1


Non-Coding RNA 2024, 10, 26 20 of 22

Data Availability Statement: Publicly available RNAseq datasets were analyzed in this study. These
RNAseq datasets can be found in the GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 5 April 2024) with accession numbers GSE99621, GSE180415, and GSE185492.

Acknowledgments: We thank the Autonomous University “Benito Juarez” of Oaxaca and the Faculty
of Medicine and Surgery for the administrative and economic procedures.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wakwaya, Y.; Brown, K.K. Idiopathic Pulmonary Fibrosis: Epidemiology, Diagnosis and Outcomes. Am. J. Med. Sci. 2019,

357, 359–369. [CrossRef] [PubMed]
2. Ye, Z.; Hu, Y. TGF-β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int. J. Mol. Med. 2021, 48, 132.

[CrossRef] [PubMed]
3. Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al.

Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit.
Care Med. 2018, 198, e44–e68. [CrossRef] [PubMed]

4. Barratt, S.L.; Creamer, A.; Hayton, C.; Chaudhuri, N. Idiopathic Pulmonary Fibrosis (IPF): An Overview. J. Clin. Med. 2018, 7, 201.
[CrossRef] [PubMed]

5. Stainer, A.; Faverio, P.; Busnelli, S.; Catalano, M.; Della Zoppa, M.; Marruchella, A.; Pesci, A.; Luppi, F. Molecular Biomarkers in
Idiopathic Pulmonary Fibrosis: State of the Art and Future Directions. Int. J. Mol. Sci. 2021, 22, 6255. [CrossRef] [PubMed]

6. Vivien, S.; Nazia, C.; Sebastiano Emanuele, T.; Nicolas, K.; Veronika, M.; Michael, K. The therapy of idiopathic pulmonary fibrosis:
What is next? Eur. Respir. Rev. 2019, 28, 190021. [CrossRef]

7. Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet 2017, 389, 1941–1952. [CrossRef]
8. Sgalla, G.; Iovene, B.; Calvello, M.; Ori, M.; Varone, F.; Richeldi, L. Idiopathic pulmonary fibrosis: Pathogenesis and management.

Respir. Res. 2018, 19, 32. [CrossRef] [PubMed]
9. Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [CrossRef]
10. Pakshir, P.; Noskovicova, N.; Lodyga, M.; Son, D.O.; Schuster, R.; Goodwin, A.; Karvonen, H.; Hinz, B. The myofibroblast at a

glance. J. Cell Sci. 2020, 133, jcs227900. [CrossRef]
11. Hadjicharalambous, M.R.; Lindsay, M.A. Idiopathic Pulmonary Fibrosis: Pathogenesis and the Emerging Role of Long Non-

Coding RNAs. Int. J. Mol. Sci. 2020, 21, 524. [CrossRef] [PubMed]
12. Zhang, X.; Li, W.; Li, C.; Zhang, J.; Su, Z. Chemotherapy in idiopathic pulmonary fibrosis and small-cell lung cancer with poor

lung function. BMC Pulm. Med. 2021, 21, 122. [CrossRef] [PubMed]
13. Lanzafame, M.; Bianco, G.; Terracciano, L.M.; Ng, C.K.Y.; Piscuoglio, S. The Role of Long Non-Coding RNAs in Hepatocarcino-

genesis. Int. J. Mol. Sci. 2018, 19, 682. [CrossRef] [PubMed]
14. Kazimierczyk, M.; Kasprowicz, M.K.; Kasprzyk, M.E.; Wrzesinski, J. Human Long Noncoding RNA Interactome: Detection,

Characterization and Function. Int. J. Mol. Sci. 2020, 21, 1027. [CrossRef] [PubMed]
15. Hadjicharalambous, M.R.; Roux, B.T.; Csomor, E.; Feghali-Bostwick, C.A.; Murray, L.A.; Clarke, D.L.; Lindsay, M.A. Long

intergenic non-coding RNAs regulate human lung fibroblast function: Implications for idiopathic pulmonary fibrosis. Sci. Rep.
2019, 9, 6020. [CrossRef] [PubMed]

16. Wu, Q.; Jiao, B.; Gui, W.; Zhang, Q.; Wang, F.; Han, L. Long non-coding RNA SNHG1 promotes fibroblast-to-myofibroblast
transition during the development of pulmonary fibrosis induced by silica particles exposure. Ecotoxicol. Environ. Saf. 2021,
228, 112938. [CrossRef] [PubMed]

17. Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011,
12, 56–68. [CrossRef]

18. Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst. Biol. 2014, 8, S11. [CrossRef] [PubMed]

19. Tiret, L. Gene-environment interaction: A central concept in multifactorial diseases. Proc. Nutr. Soc. 2002, 61, 457–463. [CrossRef]
20. Hamadeh, H.K.; Amin, R.P.; Paules, R.S.; Afshari, C.A. An overview of toxicogenomics. Curr. Issues Mol. Biol. 2002, 4, 45–56.

[CrossRef]
21. Chen, X.; Sun, Y.Z.; Guan, N.N.; Qu, J.; Huang, Z.A.; Zhu, Z.X.; Li, J.Q. Computational models for lncRNA function prediction

and functional similarity calculation. Brief. Funct. Genom. 2019, 18, 58–82. [CrossRef] [PubMed]
22. Chowdhary, A.; Satagopam, V.; Schneider, R. Long Non-coding RNAs: Mechanisms, Experimental, and Computational Ap-

proaches in Identification, Characterization, and Their Biomarker Potential in Cancer. Front. Genet. 2021, 12, 649619. [CrossRef]
[PubMed]

23. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef] [PubMed]

24. Yin, W.; Mendoza, L.; Monzon-Sandoval, J.; Urrutia, A.O.; Gutierrez, H. Emergence of co-expression in gene regulatory networks.
PLoS ONE 2021, 16, e0247671. [CrossRef] [PubMed]

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1016/j.amjms.2019.02.013
https://www.ncbi.nlm.nih.gov/pubmed/31010461
https://doi.org/10.3892/ijmm.2021.4965
https://www.ncbi.nlm.nih.gov/pubmed/34013369
https://doi.org/10.1164/rccm.201807-1255ST
https://www.ncbi.nlm.nih.gov/pubmed/30168753
https://doi.org/10.3390/jcm7080201
https://www.ncbi.nlm.nih.gov/pubmed/30082599
https://doi.org/10.3390/ijms22126255
https://www.ncbi.nlm.nih.gov/pubmed/34200784
https://doi.org/10.1183/16000617.0021-2019
https://doi.org/10.1016/S0140-6736(17)30866-8
https://doi.org/10.1186/s12931-018-0730-2
https://www.ncbi.nlm.nih.gov/pubmed/29471816
https://doi.org/10.1056/NEJMra1705751
https://doi.org/10.1242/jcs.227900
https://doi.org/10.3390/ijms21020524
https://www.ncbi.nlm.nih.gov/pubmed/31947693
https://doi.org/10.1186/s12890-021-01489-4
https://www.ncbi.nlm.nih.gov/pubmed/33858421
https://doi.org/10.3390/ijms19030682
https://www.ncbi.nlm.nih.gov/pubmed/29495592
https://doi.org/10.3390/ijms21031027
https://www.ncbi.nlm.nih.gov/pubmed/32033158
https://doi.org/10.1038/s41598-019-42292-w
https://www.ncbi.nlm.nih.gov/pubmed/30988425
https://doi.org/10.1016/j.ecoenv.2021.112938
https://www.ncbi.nlm.nih.gov/pubmed/34741930
https://doi.org/10.1038/nrg2918
https://doi.org/10.1186/1752-0509-8-S4-S11
https://www.ncbi.nlm.nih.gov/pubmed/25521941
https://doi.org/10.1079/PNS2002178
https://doi.org/10.21775/cimb.004.045
https://doi.org/10.1093/bfgp/ely031
https://www.ncbi.nlm.nih.gov/pubmed/30247501
https://doi.org/10.3389/fgene.2021.649619
https://www.ncbi.nlm.nih.gov/pubmed/34276764
https://doi.org/10.1186/1471-2105-9-559
https://www.ncbi.nlm.nih.gov/pubmed/19114008
https://doi.org/10.1371/journal.pone.0247671
https://www.ncbi.nlm.nih.gov/pubmed/33793561


Non-Coding RNA 2024, 10, 26 21 of 22

25. Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev.
Mol. Cell Biol. 2021, 22, 96–118. [CrossRef] [PubMed]

26. Fukunaga, T.; Hamada, M. RIblast: An ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach.
Bioinformatics 2017, 33, 2666–2674. [CrossRef] [PubMed]

27. Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [CrossRef]
28. Han, H.; Lagares, D. RNA Sequencing Uncovers Antifibrotic Genes during Lung Fibrosis Resolution. Am. J. Respir. Cell Mol. Biol.

2021, 64, 401–402. [CrossRef]
29. Pham, T.X.; Lee, J.; Guan, J.; Caporarello, N.; Meridew, J.A.; Jones, D.L.; Tan, Q.; Huang, S.K.; Tschumperlin, D.J.; Ligresti, G.

Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis. JCI Insight
2022, 7, e153672. [CrossRef]

30. Mullenbrock, S.; Liu, F.; Szak, S.; Hronowski, X.; Gao, B.; Juhasz, P.; Sun, C.; Liu, M.; McLaughlin, H.; Xiao, Q.; et al. Systems
Analysis of Transcriptomic and Proteomic Profiles Identifies Novel Regulation of Fibrotic Programs by miRNAs in Pulmonary
Fibrosis Fibroblasts. Genes 2018, 9, 588. [CrossRef]

31. Plantier, L.; Renaud, H.; Respaud, R.; Marchand-Adam, S.; Crestani, B. Transcriptome of Cultured Lung Fibroblasts in Idiopathic
Pulmonary Fibrosis: Meta-Analysis of Publically Available Microarray Datasets Reveals Repression of Inflammation and
Immunity Pathways. Int. J. Mol. Sci. 2016, 17, 2091. [CrossRef] [PubMed]

32. Cui, W.; Xue, H.; Wei, L.; Jin, J.; Tian, X.; Wang, Q. High heterogeneity undermines generalization of differential expression results
in RNA-Seq analysis. Hum. Genom. 2021, 15, 7. [CrossRef] [PubMed]

33. Jiang, L.; Wang, M.; Lin, S.; Jian, R.; Li, X.; Chan, J.; Dong, G.; Fang, H.; Robinson, A.E.; Snyder, M.P. A Quantitative Proteome
Map of the Human Body. Cell 2020, 183, 269–283.e219. [CrossRef] [PubMed]

34. Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic
pulmonary fibrosis. Nat. Rev. Dis. Prim. 2017, 3, 17074. [CrossRef] [PubMed]

35. Ni, J.; Wu, Q.-q.; Liao, H.-h.; Fan, D.; Tang, Q.-z. Bcl6 Suppresses Cardiac Fibroblast Activation and Function via Directly Binding
to Smad4. Curr. Med. Sci. 2019, 39, 534–540. [CrossRef]

36. Salbert, G.; Fanjul, A.; Piedrafita, F.J.; Lu, X.P.; Kim, S.J.; Tran, P.; Pfahl, M. Retinoic acid receptors and retinoid X receptor-alpha
down-regulate the transforming growth factor-beta 1 promoter by antagonizing AP-1 activity. Mol. Endocrinol. (Baltim. Md.) 1993,
7, 1347–1356. [CrossRef]

37. Wang, Z.; Xu, J.; Zheng, Y.; Chen, W.; Sun, Y.; Wu, Z.; Luo, M. Effect of the regulation of retinoid X receptor-α gene expression on
rat hepatic fibrosis. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2011, 41, 475–483. [CrossRef]

38. Ram, P.T.; Iyengar, R. G protein coupled receptor signaling through the Src and Stat3 pathway: Role in proliferation and
transformation. Oncogene 2001, 20, 1601–1606. [CrossRef]

39. Bo, C.; Zhang, J.; Sai, L.; Du, Z.; Yu, G.; Li, C.; Li, M.; Peng, C.; Jia, Q.; Shao, H. Integrative transcriptomic and proteomic analysis
reveals mechanisms of silica-induced pulmonary fibrosis in rats. BMC Pulm. Med. 2022, 22, 13. [CrossRef]

40. Yao, J.; Liang, L.-H.; Zhang, Y.; Ding, J.; Tian, Q.; Li, J.-J.; He, X.-H. GNAI1 Suppresses Tumor Cell Migration and Invasion and is
Post-Transcriptionally Regulated by Mir-320a/c/d in Hepatocellular Carcinoma. Cancer Biol. Med. 2012, 9, 234–241. [CrossRef]

41. Haak, A.J.; Ducharme, M.T.; Diaz Espinosa, A.M.; Tschumperlin, D.J. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis
Therapies. Trends Pharmacol. Sci. 2020, 41, 172–182. [CrossRef]

42. Wang, J.; Hu, K.; Cai, X.; Yang, B.; He, Q.; Wang, J.; Weng, Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary
fibrosis. Acta Pharm. Sin. B 2022, 12, 18–32. [CrossRef] [PubMed]

43. Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The Pathogenic Role of PI3K/AKT
Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers 2021, 13, 3949. [CrossRef]

44. Luo, J.; Cantley, L.C. The negative regulation of phosphoinositide 3-kinase signaling by p85 and it’s implication in cancer. Cell
Cycle (Georget. Tex.) 2005, 4, 1309–1312. [CrossRef]

45. Mercer, P.F.; Woodcock, H.V.; Eley, J.D.; Platé, M.; Sulikowski, M.G.; Durrenberger, P.F.; Franklin, L.; Nanthakumar, C.B.; Man,
Y.; Genovese, F.; et al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax 2016,
71, 701–711. [CrossRef] [PubMed]

46. Benayoun, B.A.; Caburet, S.; Veitia, R.A. Forkhead transcription factors: Key players in health and disease. Trends Genet. TIG 2011,
27, 224–232. [CrossRef] [PubMed]

47. Xin, Z.; Ma, Z.; Hu, W.; Jiang, S.; Yang, Z.; Li, T.; Chen, F.; Jia, G.; Yang, Y. FOXO1/3: Potential suppressors of fibrosis. Ageing Res.
Rev. 2018, 41, 42–52. [CrossRef]

48. Al-Tamari, H.M.; Dabral, S.; Schmall, A.; Sarvari, P.; Ruppert, C.; Paik, J.; DePinho, R.A.; Grimminger, F.; Eickelberg, O.; Guenther,
A.; et al. FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Mol. Med.
2018, 10, 276–293. [CrossRef]

49. Rao, P.; Pang, M.; Qiao, X.; Yu, H.; Wang, H.; Yang, Y.; Ren, X.; Hu, M.; Chen, T.; Cao, Q.; et al. Promotion of β-catenin/Foxo1
signaling ameliorates renal interstitial fibrosis. Lab. Investig. 2019, 99, 1689–1701. [CrossRef]

50. Wu, B.; Rockel, J.S.; Lagares, D.; Kapoor, M. Ephrins and Eph Receptor Signaling in Tissue Repair and Fibrosis. Curr. Rheumatol.
Rep. 2019, 21, 23. [CrossRef]

51. Darling, T.K.; Lamb, T.J. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front. Immunol. 2019, 10, 454075.
[CrossRef] [PubMed]

https://doi.org/10.1038/s41580-020-00315-9
https://www.ncbi.nlm.nih.gov/pubmed/33353982
https://doi.org/10.1093/bioinformatics/btx287
https://www.ncbi.nlm.nih.gov/pubmed/28459942
https://doi.org/10.1038/nrg.2018.4
https://doi.org/10.1165/rcmb.2021-0008ED
https://doi.org/10.1172/jci.insight.153672
https://doi.org/10.3390/genes9120588
https://doi.org/10.3390/ijms17122091
https://www.ncbi.nlm.nih.gov/pubmed/27983601
https://doi.org/10.1186/s40246-021-00308-5
https://www.ncbi.nlm.nih.gov/pubmed/33509298
https://doi.org/10.1016/j.cell.2020.08.036
https://www.ncbi.nlm.nih.gov/pubmed/32916130
https://doi.org/10.1038/nrdp.2017.74
https://www.ncbi.nlm.nih.gov/pubmed/29052582
https://doi.org/10.1007/s11596-019-2070-y
https://doi.org/10.1210/mend.7.10.8264664
https://doi.org/10.1111/j.1872-034X.2011.00794.x
https://doi.org/10.1038/sj.onc.1204186
https://doi.org/10.1186/s12890-021-01807-w
https://doi.org/10.7497/j.issn.2095-3941.2012.04.003
https://doi.org/10.1016/j.tips.2019.12.008
https://doi.org/10.1016/j.apsb.2021.07.023
https://www.ncbi.nlm.nih.gov/pubmed/35127370
https://doi.org/10.3390/cancers13163949
https://doi.org/10.4161/cc.4.10.2062
https://doi.org/10.1136/thoraxjnl-2015-207429
https://www.ncbi.nlm.nih.gov/pubmed/27103349
https://doi.org/10.1016/j.tig.2011.03.003
https://www.ncbi.nlm.nih.gov/pubmed/21507500
https://doi.org/10.1016/j.arr.2017.11.002
https://doi.org/10.15252/emmm.201606261
https://doi.org/10.1038/s41374-019-0276-z
https://doi.org/10.1007/s11926-019-0825-x
https://doi.org/10.3389/fimmu.2019.01473
https://www.ncbi.nlm.nih.gov/pubmed/31333644


Non-Coding RNA 2024, 10, 26 22 of 22

52. Nunan, R.; Campbell, J.; Mori, R.; Pitulescu, M.E.; Jiang, W.G.; Harding, K.G.; Adams, R.H.; Nobes, C.D.; Martin, P. Ephrin-Bs
Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization. Cell Rep. 2015,
13, 1380–1395. [CrossRef] [PubMed]

53. Mimche, P.N.; Lee, C.M.; Mimche, S.M.; Thapa, M.; Grakoui, A.; Henkemeyer, M.; Lamb, T.J. EphB2 receptor tyrosine kinase
promotes hepatic fibrogenesis in mice via activation of hepatic stellate cells. Sci. Rep. 2018, 8, 2532. [CrossRef] [PubMed]

54. Huang, Z.; Liu, S.; Tang, A.; Al-Rabadi, L.; Henkemeyer, M.; Mimche, P.N.; Huang, Y. Key role for EphB2 receptor in kidney
fibrosis. Clin. Sci. 2021, 135, 2127–2142. [CrossRef]

55. Lin, Y.; Xu, Z. Fibroblast Senescence in Idiopathic Pulmonary Fibrosis. Front. Cell Dev. Biol. 2020, 8, 593283. [CrossRef] [PubMed]
56. Ballester, B.; Milara, J.; Cortijo, J. Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. Int. J. Mol.

Sci. 2019, 20, 593. [CrossRef] [PubMed]
57. Koyama, N. Common Pathways in IPF and Lung Cancer. In Idiopathic Pulmonary Fibrosis: Advances in Diagnostic Tools and Disease

Management; Nakamura, H., Aoshiba, K., Eds.; Springer: Tokyo, Japan, 2016; pp. 217–247.
58. Vancheri, C. Idiopathic pulmonary fibrosis and cancer: Do they really look similar? BMC Med. 2015, 13, 220. [CrossRef]
59. Gokey, J.J.; Snowball, J.; Sridharan, A.; Speth, J.P.; Black, K.E.; Hariri, L.P.; Perl, A.T.; Xu, Y.; Whitsett, J.A. MEG3 is increased in

idiopathic pulmonary fibrosis and regulates epithelial cell differentiation. JCI Insight 2018, 3, e122490. [CrossRef] [PubMed]
60. Guan, S.; Liu, H.; Zhou, J.; Zhang, Q.; Bi, H. The MIR100HG/miR-29a-3p/Tab1 axis modulates TGF-β1-induced fibrotic changes

in type II alveolar epithelial cells BLM-caused lung fibrogenesis in mice. Toxicol. Lett. 2022, 363, 45–54. [CrossRef]
61. Roy, S.K.; Shrivastava, A.; Srivastav, S.; Shankar, S.; Srivastava, R.K. SATB2 is a novel biomarker and therapeutic target for cancer.

J. Cell. Mol. Med. 2020, 24, 11064–11069. [CrossRef]
62. Prakash, Y.; Thompson, M.A.; Meuchel, L.; Pabelick, C.M.; Mantilla, C.B.; Zaidi, S.; Martin, R.J. Neurotrophins in lung health and

disease. Expert. Rev. Respir. Med. 2010, 4, 395–411. [CrossRef] [PubMed]
63. Karapetyan, A.R.; Buiting, C.; Kuiper, R.A.; Coolen, M.W. Regulatory Roles for Long ncRNA and mRNA. Cancers 2013, 5, 462–490.

[CrossRef] [PubMed]
64. Sebastian-delaCruz, M.; Gonzalez-Moro, I.; Olazagoitia-Garmendia, A.; Castellanos-Rubio, A.; Santin, I. The Role of lncRNAs in

Gene Expression Regulation through mRNA Stabilization. Non-Coding RNA 2021, 7, 3. [CrossRef] [PubMed]
65. Assad, N.; Sood, A.; Campen, M.J.; Zychowski, K.E. Metal-Induced Pulmonary Fibrosis. Curr. Environ. Health Rep. 2018,

5, 486–498. [CrossRef]
66. Schwaiblmair, M.; Behr, W.; Haeckel, T.; Märkl, B.; Foerg, W.; Berghaus, T. Drug induced interstitial lung disease. Open Respir.

Med. J. 2012, 6, 63–74. [CrossRef]
67. Brereton, C.J.; Jo, H.E. Acute exacerbations of idiopathic pulmonary fibrosis and the role of corticosteroids. Breathe 2020, 16, 200086.

[CrossRef]
68. Slattery, C.; Campbell, E.; McMorrow, T.; Ryan, M.P. Cyclosporine A-induced renal fibrosis: A role for epithelial-mesenchymal

transition. Am. J. Pathol. 2005, 167, 395–407. [CrossRef]
69. Miyazaki, Y.; Azuma, A.; Inase, N.; Taniguchi, H.; Ogura, T.; Inoue, E.; Takeuchi, M.; Yoshizawa, Y.; Sugiyama, Y.; Kudoh, S.

Cyclosporine A combined with low-dose corticosteroid treatment in patients with idiopathic pulmonary fibrosis. Respir. Investig.
2015, 53, 288–295. [CrossRef]

70. Kayhan, S.; Guzel, A.; Duran, L.; Tutuncu, S.; Guzel, A.; Gunaydın, M.; Salis, O.; Okuyucu, A.; Selcuk, M.Y. Effects of leflunomide
on inflamation and fibrosis in bleomycine induced pulmonary fibrosis in wistar albino rats. J. Thorac. Dis. 2013, 5, 641–649.
[CrossRef]

71. El-Sherbiny, M.; Atef, H.; Eladl, M.A.; Mohamed, A.S.; El-Shafey, M.; Ali, H.S.; Zaitone, S.A.; Alomar, S.Y.; Alqahtani, S.A.M.; Aloy-
ouni, S.Y.; et al. Leflunomide Induces Dose-Dependent Lung Injury in Mice via Stimulating Vimentin and NLRP3 Inflammasome
Production. Front. Pharmacol. 2021, 12, 631216. [CrossRef]

72. Matthew, J.P.; Joanne, E.M.; Patrick, M.B.; Isabelle, B.; Tammy, C.H.; Cynthia, D.M.; Larissa, S.; Jennifer, M.T.; Elie, A.A.; Sue,
E.B.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.celrep.2015.09.085
https://www.ncbi.nlm.nih.gov/pubmed/26549443
https://doi.org/10.1038/s41598-018-20926-9
https://www.ncbi.nlm.nih.gov/pubmed/29416088
https://doi.org/10.1042/CS20210644
https://doi.org/10.3389/fcell.2020.593283
https://www.ncbi.nlm.nih.gov/pubmed/33324646
https://doi.org/10.3390/ijms20030593
https://www.ncbi.nlm.nih.gov/pubmed/30704051
https://doi.org/10.1186/s12916-015-0478-1
https://doi.org/10.1172/jci.insight.122490
https://www.ncbi.nlm.nih.gov/pubmed/30185671
https://doi.org/10.1016/j.toxlet.2022.04.003
https://doi.org/10.1111/jcmm.15755
https://doi.org/10.1586/ers.10.29
https://www.ncbi.nlm.nih.gov/pubmed/20524922
https://doi.org/10.3390/cancers5020462
https://www.ncbi.nlm.nih.gov/pubmed/24216986
https://doi.org/10.3390/ncrna7010003
https://www.ncbi.nlm.nih.gov/pubmed/33466464
https://doi.org/10.1007/s40572-018-0219-7
https://doi.org/10.2174/1874306401206010063
https://doi.org/10.1183/20734735.0086-2020
https://doi.org/10.1016/S0002-9440(10)62984-7
https://doi.org/10.1016/j.resinv.2015.05.002
https://doi.org/10.3978/j.issn.2072-1439.2013.09.20
https://doi.org/10.3389/fphar.2021.631216
https://doi.org/10.1136/bmj.n71

	Introduction 
	Results 
	Study Selection 
	Differentially Expressed Gene 
	Differential Expression Analysis of LncRNAs and mRNAs 
	PPI Network and Identification of Hub mRNAs 
	GO and KEGG Pathway Analysis of Hub mRNAs 
	Hub Gene–Drug Interaction Network Analysis 
	Co-Expression of LncRNA/mRNAs 
	Prediction of lncRNA–mRNA Interactions 

	Discussion 
	Materials and Methods 
	Search and Selection Criteria for RNA-Seq Datasets 
	Data Collection 
	Data Analysis of Individual Study Data 
	Alignment of Transcripts with the Reference Genome 
	Differentially Expressed Analysis 
	Meta-Analysis 
	Gene Ontology and KEGG Pathway Enrichment Analysis 
	Protein–Protein Interaction Network 
	Comparative Toxicogenomic Interaction Network 
	lncRNA–mRNA Network Construction 
	Prediction of lncRNA–mRNA Interactions 

	Conclusions 
	References

