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Abstract: The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 (2019-nCoV) has
devastated global healthcare and economies. Despite the stabilization of infectivity rates in some
developed nations, several countries are still under the grip of the pathogenic viral mutants that are
causing a significant increase in infections and hospitalization. Given this urgency, targeting of key
host factors regulating SARS-CoV-2 life cycle is postulated as a novel strategy to counter the virus
and its associated pathological outcomes. In this regard, Poly (ADP)-ribose polymerase-1 (PARP-1)
is being increasingly recognized as a possible target. PARP-1 is well studied in human diseases
such as cancer, central nervous system (CNS) disorders and pathology of RNA viruses. Emerging
evidence indicates that regulation of PARP-1 by non-coding RNAs such as microRNAs is integral to
cell survival, redox balance, DNA damage response, energy homeostasis, and several other cellular
processes. In this short perspective, we summarize the recent findings on the microRNA/PARP-1
axis and its therapeutic potential for COVID-19 pathologies.

Keywords: COVID-19; PARP-1; miRNA; therapeutics; drug repurposing; neuropathology; RNA
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1. Introduction

The rapidly evolving coronavirus disease (COVID-19), caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an urgent and unmet clinical
need for novel therapeutics [1,2]. This effort requires a clear understanding of the role
of host cell factors that aid in the viral life cycle. This knowledge will pave the way for
efficient drug repurposing and novel therapeutic strategies. One such host factor that has
caught considerable attention is Poly (ADP)-ribose polymerase-1 (PARP-1) [3–6]. PARP-1 is
a multi-domain enzyme that utilizes cellular NAD+ to catalyze the synthesis of poly (ADP)
ribose (PAR) residues following its transfer onto target proteins by a mechanism known as
PARylation [7–9]. PARP-1 belongs to the PARP/ARTD family of enzymes that constitutes
17 isoforms in humans (PARP-1–PARP-17) [10]. It is a highly conserved enzyme with a
molecular mass of 116 kDa [7] that predominantly localizes in the nucleus. PARP-1 multi-
domain unit comprises the amino (N) terminal DNA binding domain (DBD), a central auto-
modification domain (AMD), Zn binding domain (FIII/Zn3), and a carboxyl (C) terminal
catalytic domain [11], as illustrated in Figure 1 [12–14]. Among the different isoforms,
PARP-1 is predominantly responsible for 85–90% of cellular PARP activity; PARP-2 is
responsible for 10–15%; and the remainder of the enzymes contribute to the remainder
of PARP activity [8,15]. Like the PARP-1 function, recent studies have highlighted the
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role of PARP-2 in response to DNA damage, genome maintenance, metabolic regulation,
and oxidative stress [16,17]. Alteration in PARP-1 activity has been reported in several
diseases including viral pathogenesis [9,18]. For instance, interferon-stimulated genes
(ISGs), which are members of the PARP superfamily, have been implicated in the restriction
of viral replication. However, the exact mechanisms underlying the antiviral response
of the PARP superfamily of proteins are not clearly understood [19,20]. This is because
several viruses harbor the machinery to modulate PARP function, implying that PARP-
mediated signaling can be both anti- and pro-viral in a context-dependent manner [20,21].
However, with regards to coronavirus species, a recent study reported that SARS-CoV-2
infection strikingly induced activity of PARPs, along with expression of genes encoding
enzymes for salvage NAD synthesis from nicotinamide and nicotinamide riboside, while
simultaneously downregulating other NAD utilizing biosynthetic pathways [4,10,13,22].
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alyzes Poly (ADP)-ribosylation (i.e., PARylation) reactions using intracellular nicotinamide adenine 
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1 undergoes auto-modification, i.e., auto-PARylation, marked by the addition of ADP-
ribose chains ranging from 20 to more than 200 units in length, that inhibit its DNA bind-
ing ability and regulate its catalytic activity [7]. Thus, PARylation is a critical determinant 
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cal outcomes? 
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Figure 1. Structure of Poly (ADP)-ribose polymerase-1 (PARP-1). The N terminus of PARP-1 contains
the DNA-binding domain (DBD) constituting two zinc-finger motifs and a bipartite nuclear localiza-
tion signal (NLS). The auto-modification domain constitutes a breast cancer (BRCA) C-terminus-like
(BRCT) interaction domain and the Tryptophan-Glycine-Arginine (WGR) domain that mediates
interactions with self or protein partners. PARP-1 has a catalytic domain at its C’ terminus, within
which is contained its Poly (ADP)-ribosylation polymerase (PARP) signature motif that catalyzes Poly
(ADP)-ribosylation (i.e., PARylation) reactions using intracellular nicotinamide adenine dinucleotide
(NAD+) as a donor of ADP-ribose.

PARP-1 is a multi-functional enzyme, which depends on specific interactions with
DNA, nucleosomes, or chromatin-associated proteins [11,22–24]. PARP-1-mediated PARy-
lation of proteins is a key post-translational modification that leads to a series of molecular
signaling cascades involving ATP and co-factor NAD+ [25]. In addition, PARP-1 undergoes
auto-modification, i.e., auto-PARylation, marked by the addition of ADP-ribose chains
ranging from 20 to more than 200 units in length, that inhibit its DNA binding ability and
regulate its catalytic activity [7]. Thus, PARylation is a critical determinant for direct (au-
tocrine) and indirect (paracrine) molecular signaling that is dependent on PARP-1 function.
In this perspective, we summarize and discuss two important questions pertaining to the
miRNA-mediated regulation of PARP-1 in the context of COVID-19 pathogenesis. First,
how relevant is PARP-1’s activity across cell/tissue types in SARS-CoV-2 pathogenesis and
second, can miRNA-mediated regulation of PARP-1 be exploited as a therapeutic target to
prevent SARS-CoV-2 infection to mitigate COVID-19 pathological outcomes?

2. PARP-1 in Viral Pathology

Emerging evidence highlights the role of the PARP family of proteins, and specifically
PARP-1, as a potential therapeutic target for COVID-19 [3–6]. Various small molecule
inhibitors targeting PARP-1′s enzymatic activity are available and have been extensively
studied. Currently, these inhibitors are under investigation in clinical trials for several
cancer types and associated disorders [26,27]. Unfortunately, only a limited number of studies
have discussed the repurposing of PARP1 inhibitors in other disease models (e.g., inflammatory or
viral diseases). Given the ability of PARP proteins to bind nucleic acids, several members of
the PARP family have been shown to impact host–virus interactions. In particular, these
proteins affect a number of steps of the viral life cycle (integration, recombination, and tran-
scription) suggesting potential pro- and antiviral properties of PARP proteins [20,28,29].
Although these findings are primarily reported for other RNA viruses, such as influenza
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and porcine reproductive and respiratory syndrome viruses (PRSSV), the effect of PARP-1
and other PARP proteins on coronavirus species cannot be ignored. In general, stud-
ies have highlighted that PARP-1 inhibitors may be useful therapeutic targets for viral
infections [5,6]. However, the drug doses optimized for treating cancers may be insuffi-
cient to treat viral infection and pathogenesis. Hence, there is an urgent need for research
to understand the impact of drugs targeting PARP1 on viral pathogenesis, specifically
investigation of the direct role of PARP-1 and SARS-CoV-2 life cycle and pathology.

As illustrated in Figure 2, in SARS-CoV-2 infection, both viral proteins and virions
in circulation bind to cell surface receptors (e.g., ACE2 and TLRs) and activate immune
response cascades (e.g., pro-inflammatory cytokines such as IL6), in addition to increasing
mitochondrial reactive oxygen species (ROS) and impairing redox balance, followed by
PARP-1-induced PARylation of downstream targets, which results in depletion of intracel-
lular ATP levels causing cellular apoptosis and tissue injury [30–32]. Viruses require an
intracellular ATP pool to maintain their life cycle in the host cell [33,34]. Viral replication is
dependent on nicotinamide adenine dinucleotide (NAD) coenzymes and redox factors such
as NAD+, NADH, NADP+, and NADPH, which are central to cellular metabolism [35].
Primarily, these coenzymes regulate electron (e−) exchange in essential metabolic pro-
cesses and scavenging of intracellular ROS generated during the infectivity cycle. It is well
established that metabolic stresses, including obesity, type 2 diabetes [36], smoking [37],
heart failure [38], hypertension [39], nerve damage [40], and brain injury [41], deplete
intracellular ATP and NAD+ in affected tissues with a dramatic induction of ROS and
PARP-1 expression. Induced ROS levels also result in depleted NAD+ levels and an im-
paired antioxidant system, following inflammatory triggers (cytokine response and cellular
activation/adhesion markers) that are hallmarks of aging, hypertension, diabetes, and
obesity [42–45]. Despite this importance, the direct roles of these coenzymes in viral repli-
cation and antiviral defenses remain largely unexplored. Strikingly, PARP-1 is recognized
as a master regulator of intracellular NAD+ and ATP pools. In this context, we showed
that PARP-1-mediated PARylation of nuclear p53 maintains the intracellular ATP pool via
transactivation of Proline oxidase (POX) mRNA [46]. With regards to diseases, studies have
shown that increased age-associated lower NAD+ and increased ROS levels serve as strong
predictors of SARS-CoV-2-associated in-hospital mortality [47,48]. A recent laboratory
investigation revealed that non-canonical PARP isozyme (PARP-10) having an affinity
for NAD+ was consistently upregulated by SARS-CoV infection [4]. Moreover, the abun-
dant expression of PARP-1 across tissue types (Figure 3) implies functional significance
in diseased conditions. Based on these observations, we postulate that deficiency of NAD+ due
to increased PARP activation may be a key factor related to the SARS-CoV-2 associated disease
spectrum. Oxidative stress induces PARP1, whose hyper activation depletes NAD+ and
ATP levels, culminating in energy loss and subsequent cell death [49–51]. Overall, these
processes enhance pro-inflammatory signaling. Hence, regulating the levels/activity of
PARP-1 may serve as an important factor to maintain basal intracellular NAD+ levels and
restore redox balance without inducing immune dysfunction. The supplementation of
NAD+ or precursors is hypothesized to minimize disease severity in COVID-19 patients.
Nevertheless, the significance of this hypothesis needs experimental and clinical validation.

Interferon signaling induces the PARP family of proteins (e.g., PARP-9, PARP-10,
PARP-12, and PARP-14) causing inhibition of ADP-ribosylation, a mechanism that is
presumed to impact viral translation [28,29]. In parallel, it should be noted that the
conserved macro domain of SARS-CoV species suppresses host interferon and immune
response to facilitate viral replication [28,29]. Regulation of PARP-1 expression and activity
is shown to be important in cancer, cell metabolism, stress response, DNA damage, and
neuronal differentiation and signaling, in addition to drug abuse [18,52–54]. Similarly,
other studies have also established the regulation of PARP-1 in several disease conditions,
including hypertension, obesity, and inflammation [50,55–57].
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Figure 2. Model for PARP-1 activation in SARS-CoV-2 pathogenesis. Systemic inflammation in SARS-
CoV-2 pathogenesis induces immune signaling in cells causing elevated mitochondrial ROS and
cytokine response, which triggers PARP-1 transcription and activity. Thereafter, PARP-1 activation
PARylates self (autoPARylation) or downstream protein targets by adding Poly (ADP)-ribose residues
in a NAD+ dependent manner. Sustained PARylation events under diseased and inflammatory
conditions cause declines in intracellular ATP and NAD+ pools, which leads to metabolic dysfunction
and cell death, followed by tissue injury, as reported in COVID-19 pathology.

We have also reported the in vivo and in vitro implications of post-transcriptional
mechanisms regulating PARP-1 in the context of neuronal function [52,53]. Employing
molecular and biochemical approaches, we established the role of cellular microRNAs
miR-124 and miR-125b in the regulation of PARP-1 mRNA in neurons [52,53]. miRNAs are
small non-coding RNAs that post-transcriptionally regulate gene expression by binding to
3′-UTR of mRNAs. Although several pieces of evidence exist for the binding of miRNAs
to 5′-UTR, and the open reading frame (ORF) of mRNAs to induce post-transcriptional
events [57–60], miRNAs have been shown to be important in the regulation of PARP-1
in various physiological and pathological conditions (Table 1). As presented in Table 1,
several of these diseases involving regulation of PARP-1 have been well documented as
risk factors for COVID-19-associated mortality and hospitalizations, thus highlighting the
plausible role of miRNA-regulated PARP-1 in COVID-19.

One of the long-term effects of COVID-19 is a broad spectrum of neurological disor-
ders [72–74]. Cerebrovascular complications featuring peripheral nervous system damage
(olfactory disorder), and ischemic and acute hemorrhagic encephalopathies with neurologi-
cal features, are some of the profound observations made in COVID-19 patients [75–77].
The neurological features include ischemic stroke and cerebral hemorrhage, reduced con-
sciousness, and nerve pain with abnormal levels of blood pressure. Additionally, mul-
tifocal lesions in the thalamus with signs of hemorrhage were observed in COVID-19
patients [75,78,79]. It is widely postulated that SARS-CoV-2 may employ the “Trojan horse
model” of viral pathogenesis in the CNS [80,81]. The viral particles traverse through the
blood brain barrier (BBB) via transcytosis and paracellular mechanisms, predominantly
via the destabilization of endothelial tight junctions [82–84]. The hijacking of integral
transport mechanisms by viral particles from the blood stream to the brain parenchyma
is exacerbated as a result of induced matrix metalloproteinase (MMP) activity, causing
severe BBB dysfunction and a productive infection cycle in the cellular constituents of brain
parenchyma [83,84]. Given that PARP-1 is ubiquitously expressed across all tissue types
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with higher expression in the brain (Figure 3), it is plausible that PARP-1 may be exploited
as a useful therapeutic target.

Specifically, regarding the neurological and related pathologies observed in COVID-19
patients, it is critical to understand whether:

(a) SARS-CoV-2 infection affects PARP-1expression across cell types of the brain;
(b) SARS-CoV-2 infection in the brain alters intracellular ATP and NAD+ levels;
(c) Alteration occurs in the expression levels of miRNAs that are known to regulate

PARP-1 expression in the brain and whether there is a cell-type specific effect.

Answering these broadly significant questions may provide key insights into the role of PARP-1
in the replication features of SARS-CoV-2 in the brain.
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Table 1. List of functionally validated cellular microRNAs that regulate PARP-1mRNA in the context of human diseases.

miRNA Functional Assay Region Disease Relevance/Context Ref.

miR-181a Gof/Lof 3′-UTR Acute Myeloid Leukemia [61]
miR-7-5p Gof/Lof; Reporter assay 3′-UTR Small cell lung cancer [62]

miR-379-5p Luciferase Reporter assay 3′-UTR Premature ovarian insufficiency [63]
miR-103a-2-5
pmiR-585-5p Luciferase Reporter assay ORF Oxidative stress, Hypertension [64]

miR-335 Luciferase Reporter assay 3′-UTR Small cell lung cancer [65]
miR-520 Luciferase Reporter assay 3′-UTR Recurrent spontaneous abortion [66]
miR-223 Gof/Lof; Reporter assay 3′-UTR Pulmonary arterial hypertension [67]
miR-489 Luciferase Reporter assay 3′-UTR Ischemic kidney injury [68]
Let-7a Luciferase Reporter assay 3′-UTR HER2-overexpressing Breast cancer [69]

miR-149 Luciferase Reporter assay 3′-UTR Skeletal muscle metabolism [16]
miR-577 Luciferase Reporter assay 3′-UTR Myocardial infarction [70]

miR-221-3p Luciferase Reporter assay 3′-UTR Triple negative Breast cancer [61]

miR-124 Gof/Lof; Reporter assay,
RNA-pulldown 3′-UTR Drug (cocaine) abuse [52]

miR-125b Gof/Lof; Reporter assay,
RNA-pull-down 3′-UTR Drug (cocaine) abuse;

Regulation of HIV integration [53,71]

Abbreviations used: Gof/Lof, gain-of-function/loss-of-function; 3′-UTR, 3′-untranslated region; ORF, open reading frame.

The regulation of PARP-1, particularly by miRNAs in the context of COVID-19 patho-
genesis, may be of therapeutic relevance. miRNAs have been proposed as novel therapeutic
molecules for several diseases, including cardiovascular dysfunction, cancer, and viral
infections [85]. More recently, studies have reported alterations in host cell miRNAs in
COVID-19 infection and have proposed computational modeling to predict miRNAs that
can target the viral genome [86–88]. It will be interesting and worth validating to identify
if any of the PARP-1 regulatory miRNAs are altered in COVID-19 and whether there is
any tissue/cell-type specificity in such alterations. Such studies are anticipated to advance
our understanding of the role of miRNAs, and to establish the relevance of miRNAs for
RNA-based therapeutics for COVID-19. Given that levels of miRNA can regulate gene
expression, miRNA-replacement therapy is postulated as one of the viable and emerging
therapeutic options. Nonetheless, limitations such as tissue specific delivery strategies and
therapeutic feasibility of miRNAs need to be thoroughly investigated.

miRNA and small RNA-based drugs are anticipated to be the next generation drugs
for the cure and prevention of complex human diseases [89–91]. In contrast, there are
currently four approved small molecule inhibitors of PARP-1, namely, Olaparib, rucaparib,
talazoparib, and niraparib, which target PARP-1′s function and activity at the protein
level and are used for several forms of cancer [92]. However, these inhibitors are non-
selective inhibitors of PARP-1 [92]. Additionally, challenges including off-target effects,
tissue distribution, dose optimization, and toxicity have resulted in a low success rate of
small molecule inhibitors in clinical trials [93,94]. Nonetheless, the pleiotropic nature of
miRNAs presents a major challenge in its therapeutic approach. However, miRNAs can be
engineered with chemical modifications to enhance stability and target specificity; details
are provided in these cited studies [90,95,96]. Importantly, the small RNA-based therapeutic
approach is highly specific, and its off-target effects can be controlled and can bypass
the secondary effects of targeting other mRNAs or protein function [97,98]. Although
most oligonucleotide/nucleic acid-based drugs are antisense oligos or siRNA-based, the
miRNA-based approach has yet to be proved to be successful. Nevertheless, a well-
validated repertoire of miRNAs that regulate PARP-1 must be investigated in pre-clinical
models. Therefore, targeting PARP-1 at the mRNA level by modulating the expression of
tissue-specific microRNAs can be a path forward to examine the relevance of this idea. In
conclusion, gaining insight into the effect of SARS-CoV-2 on miRNAs that regulate PARP-1
expression in tissue types will be an important step to understand the relevance of the
“miRNA-PARP-1” axis in COVID-19 disease pathology.
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