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Abstract: In this paper, a comparison is conducted between two different formulations of the van der
Waals interaction coefficient between layers, as applied to the vibrations of double-walled carbon
nanotubes (DWCNTs); specifically, the evaluation of the natural frequencies is achieved through
Ru’s and He’s formulations. The actual discrete DWCNT is modelled by means of a couple of
concentric equivalent continuous thin cylindrical shells, where Donnell shell theory is adopted
to obtain strain-displacement relationships. In order to take into account the chirality effect of
DWCNT, an anisotropic elastic shell model is considered. Simply supported boundary conditions
are imposed and the Rayleigh–Ritz method is used to obtain approximate natural frequencies and
mode shapes. A parametric analysis considering different values of diameters and numbers of
waves along longitudinal and circumferential directions is performed by adopting Ru’s and He’s
formulations. From the comparisons, it is evident that Ru’s formulation provides unsatisfactory
results for relatively low values of diameters and relatively high numbers of circumferential waves
with respect to the more accurate He’s formulation. This behaviour is observed for every number of
longitudinal half-waves. Therefore, Ru’s formulation cannot be used for the vibration modelling of
DWCNTs in a large range of diameters and wavenumbers.

Keywords: carbon nanotubes; vibration modelling; Donnell shell theory; anisotropic elastic shell
model; van der Waals interaction forces; Ru’s formulation

1. Introduction

Carbon nanotubes (CNTs) were discovered in 1991 inside the NEC Corporation lab-
oratories by S. Iijima, who studied the synthesis of fullerenes and first prepared a new
type of carbon structures, referred to as CNTs, which were described as “helical micro-
tubules of graphitic carbon” [1]. Since CNTs have very high Young’s modulus and tensile
strength, together with very small diameter, then they can reach the natural frequencies
of the THz order and therefore can be used as ultra-high sensitivity resonators in many
electro-mechanical devices, such as sensors, charge detectors and oscillators [2]. In addition,
the extremely high electrical and thermal conductivity of CNTs, together with the very
high transparency in a visible range, makes them promising candidates for innovative
applications including heat exchangers and energy conversion systems, with the role of
advanced catalyst supports or electrodes in solar and fuel cells [3,4].

Due to their relevant applications in several mechanical components, vibrations of
CNTs have attracted much attention from Researchers. Specifically, CNT vibrations have
been studied by means of experiments, atomistic mechanic simulations and continuum
mechanic models. Resonant Raman spectroscopy (RRS) starts from the experimental
measurement of CNT diameter by means of atomic force microscopy and investigates the
atomic structure, chirality and natural frequencies of CNTs [5–7]. However, due to high
technological complexity and costs, experimental methods cannot be considered efficient
approaches to studying the mechanical behaviour of CNTs. Molecular dynamics (MD)
simulations consider CNT atoms as interacting point-like masses, where the vibrations
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of the free atoms are recorded for a certain time duration at a fixed temperature [8–10].
However, due to the high computational effort, atomistic mechanics methods cannot be
easily applied to the structural simulation of CNTs, which incorporate a large number of
carbon atoms. Since theoretical models based on continuum mechanics are computationally
more efficient than MD simulations and do not present the technological complexity and
high costs of RRS, then continuous elastic models are the most commonly adopted methods
for the study of CNT vibrations. In these models, it is assumed that the effective discrete
structure of CNTs can be replaced by an equivalent homogeneous elastic structure with a
continuous distribution of mass and stiffness, not considering their intrinsic atomic nature
and so reducing the number of degrees of freedom [11–13].

In order to carefully investigate the validity of continuum mechanic approaches for
the study of CNT vibrations, in the cases when the actual discrete CNT is modelled via an
equivalent continuous thin cylindrical shell, some relevant open issues should be taken
into account and properly discussed.

The first relevant issue to be taken into account in the modelling of CNTs as contin-
uous elastic shells is given by anisotropy. CNTs are usually modelled as isotropic elastic
shells [14–21]; however, they have a chirality-induced anisotropic behaviour due to their
discrete nature that cannot be properly captured by using an isotropic shell model. To
this aim, Chang et al. [22,23] developed a molecular mechanics model, called “stick-spiral
model”, able to correctly predict the chirality and size-dependent elastic properties of CNTs.
They found explicit expressions for longitudinal Young’s modulus and Poisson’s ratio, cir-
cumferential Young’s modulus and Poisson’s ratio, and longitudinal shear modulus in the
case of chiral CNTs. This molecular-based anisotropic elastic shell model including chirality
effects was validated via comparisons with RRS and MD data, proving that the classical
relationship of isotropic elastic continuum mechanics between Young’s and shear modulus
is not valid for CNTs. Ghavanloo and Fazelzadeh [24,25], starting from the results of [23],
developed an anisotropic elastic shell model including chirality effects to study the vibra-
tion characteristics of CNTs. By applying the Flügge thin shell theory and complex method,
they obtained the natural frequencies of radial breathing, torsional, longitudinal and radial
modes under different CNT diameters and chiralities. Finally, they validated their model
by means of comparisons with experimental RRS and numerical MD simulation data from
the literature. In the present paper, the molecular mechanics-based anisotropic elastic shell
model developed by Chang [22,23], and then refined by Ghavanloo and Fazelzadeh [24,25],
for SWCNTs is extended to DWCNTs. Readers interested in deepening vibrations and
stability of circular cylindrical shells can refer to the fundamental books of Leissa [26],
Yamaki [27], Soedel [28] and Ventsel [29], where the strain-displacement relationships of the
most important thin shell theories together with the related equations of motion and natural
frequencies under different boundary conditions are reported. CNTs are divided into two
main classes: single-walled carbon nanotubes (SWCNTs), given by graphene sheets rolled
into cylinders, and multi-walled carbon nanotubes (MWCNTs), composed by concentric
SWNTs, where the different cylinders are connected by van der Waals interaction forces.

In addition to anisotropy, in the specific case of MWCNTs, another relevant issue to be
taken into consideration in the modelling of CNTs as continuous elastic shells is given by
the simulation of van der Waals interaction forces between the concentric SWCNTs. The two
most relevant formulations of van der Waals interaction forces in MWCNTs were developed
by Ru and He. Both of them are based on the Lennard–Jones pair potential, which takes
into account carbon–carbon potential depth, equilibrium separation distance and atom
distance, where van der Waals interaction forces are obtained by deriving Lennard–Jones
pair potential with respect to the carbon–carbon atom distance [30]. The pressure exerted
on the ith SWCNT, as a function of the radial displacement, is obtained by integrating van
der Waals interaction forces over the entire MWCNT.

Ru [31–33] proposed a linear relationship between pressure due to van der Waals inter-
action forces and radial displacement for the buckling and vibration analysis of MWCNTs
in which the interaction coefficient is constant, i.e., it is not dependent on the radius of the
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individual SWCNT. In this model, the value of the interaction coefficient can be estimated
using data given in [34], which are derived from the known van der Waals interaction
between a carbon atom and a flat graphite sheet, and the van der Waals pressure between
the inner and outer tube at any point is assumed to depend on the interlayer spacing at that
point. By adopting Ru’s formulation, Elishakoff and Pentaras [35,36] obtained fundamen-
tal natural frequencies of DWCNTs considering different boundary conditions and shell
theories by adopting an isotropic elastic shell model. In particular, the results of Ref. [35],
obtained by considering simply supported boundary conditions and Donnell shell theory,
are adopted to validate the model proposed in the present paper in the isotropic case for
Ru’s formulation. Other relevant analytical studies on the linear vibrations of DWCNTs
under different boundary conditions and geometries considering Ru’s formulation are
reported in Refs. [37–40]. However, it is clear that this simplified formulation is not accurate
in modelling van der Waals interaction forces.

In order to accurately describe van der Waals interactions in MWCNTs, He [41–43]
proposed a linear relationship between pressure due to van der Waals interaction forces
and radial displacement where the interaction coefficient is radius dependent. By consider-
ing this refined formulation, natural frequencies of MWCNTs were analysed for different
geometries and chiralities obtaining an excellent agreement with MD simulations. In partic-
ular, the results of Ref. [42], obtained by considering simply supported boundary conditions
and the Donnell shell theory, are adopted to validate the model proposed in the present
paper in the isotropic case for He’s formulation. Strozzi and Pellicano [44–47] studied linear
and nonlinear vibrations of MWCNTs considering He’s formulation. The effect of geometry,
boundary conditions and wavenumbers along longitudinal and circumferential directions
on the natural frequencies were analysed. Applicability and limitations of the Donnell shell
theory, with respect to the more accurate Sanders shell theory, were considered. The effect
of nonlinear van der Waals interaction forces on the nonlinear response was investigated.
Other interesting results on the linear vibrations of DWCNTs considering He’s formulation
are shown in Refs. [48–50], where the influence of boundary conditions and surrounding
elastic medium on the resonant natural frequencies in case of noncoaxial vibration is stud-
ied. Moreover, in Refs. [51–55], some recent studies on vibrations and stability of DWCNTs,
based on molecular dynamics simulations, non-local effect and anisotropic elastic model,
are reported.

In the present paper, the comparison is conducted between Ru’s and He’s formulations
of the van der Waals interaction coefficient for the evaluation of the natural frequencies
of DWCNTs. The actual discrete DWCNT is modelled by means of a couple of concentric
equivalent continuous cylindrical shells, where the Donnell shell theory is considered to
obtain strain-displacement relationships. In order to take into account the chirality effects
of DWCNTs, an anisotropic elastic shell model is used. Simply supported boundary condi-
tions are imposed and the Rayleigh–Ritz method is adopted to obtain approximate natural
frequencies and mode shapes. In the beginning, the results of the proposed model in the
isotropic form are compared with data retrieved from the literature to check the validity
of the shape functions used in the modal expansions of the displacement field. Then, the
values of van der Waals interaction coefficient from Ru’s and He’s formulations are com-
pared for different DWCNT diameters to verify the higher accuracy of He’s formulation
in simulating the actual anisotropic behaviour of DWCNTs. Starting from these results,
considering an anisotropic elastic shell model and adopting Donnell shell theory, natural
frequencies of DWCNTs with different diameters and wavenumber along longitudinal and
circumferential directions obtained via Ru’s and He’s formulations are compared. Assum-
ing the more accurate He’s formulation as a reference, the applicability and limitations of
Ru’s formulation for the vibration modelling of DWCNTs are investigated.

2. Donnell Shell Theory for DWCNTs

In this paper, the actual discrete DWCNT shown in Figure 1a is modelled by means
of a couple of concentric equivalent continuous cylindrical shells with van der Waals
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interactions between the layers. In Figure 1b,c, a single continuous cylindrical shell with
radius R, length L and thickness h is shown; in order to describe the displacement field, a
cylindrical coordinate system (O, x, θ, z) is adopted, due to the axisymmetric symmetry of
the cylindrical shell, where the origin O of the reference system is located at the centre of one
end of the shell. Three displacements are present: longitudinal u(x, θ, t), circumferential
v(x, θ, t) and radial w(x, θ, t), where the radial displacement w is assumed to be positive
outward; (x, θ) are the longitudinal and angular coordinates of an arbitrary point on the
middle surface of the shell; z is the radial coordinate along the thickness h of the shell; t is
the time variable. Starting from this continuum modelling, in the following, displacement
field and strain-displacement relations for DWCNTs will be derived.
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2.1. Displacement Field

In order to avoid very fast time scales, which are due to the infinitesimal dimensions
of CNTs, and therefore very hard convergence problems in the numerical integration, in
this work, all dimensionless parameters are considered.

The dimensionless displacement field (ũi, ṽi, w̃i) of the i-th cylindrical shell is written
as [44]:

ũi =
ui
Ri

ṽi =
vi
Ri

i = 1, 2
w̃i =

wi
Ri

(1)

where (ui, vi, wi) is the corresponding dimensional displacement field and Ri is the radius
of the i-th shell.

2.2. Strain-Displacement Relationships

In this paper, the Donnell shell theory is adopted to obtain linear strain-displacement
relationships.

The dimensionless middle surface strains of the i-th cylindrical shell (ε̃x,0,i, ε̃θ,0,i, γ̃xθ,0,i)
are written in the form [44]:

ε̃x,0,i = αi
∂ũi
∂η

ε̃θ,0,i =
∂ṽi
∂θ + w̃i i = 1, 2

γ̃xθ,0,i =
∂ũi
∂θ + αi

∂ṽi
∂η

(2)

where η = x/L is the dimensionless longitudinal coordinate of the shell and αi = Ri/L.
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The dimensionless middle surface changes in curvature and torsion of the i-th cylin-
drical shell

(
k̃x,i, k̃θ,i, k̃xθ,i

)
are written as [44]:

k̃x,i = −α2
i

∂2w̃i
∂η2

k̃θ,i = − ∂2w̃i
∂θ2 i = 1, 2

k̃xθ,i = −2αi
∂2w̃i
∂η∂θ

(3)

The dimensionless strains in a generic point of the external surface of the i-th cylin-
drical shell (ε̃x,i, ε̃θ,i, γ̃xθ,i) are related to the corresponding dimensionless middle surface
strains and changes in curvature and torsion by means of the following relationships [44]:

ε̃x,i = ε̃x,0,i + ζi k̃x,i
ε̃θ,i = ε̃θ,0,i + ζi k̃θ,i i = 1, 2

γ̃xθ,i = γ̃xθ,0,i + ζi k̃xθ,i

(4)

where ζi = zi/Ri is the dimensionless radial coordinate of the i-th cylindrical shell.

3. Anisotropic Elastic Shell Model for DWCNTs

Actually, CNTs are discrete systems composed of carbon atoms with covalent bonds,
and therefore, they are intrinsically non-isotropic. Accordingly, it was proven that the use
of an isotropic elastic shell model can lead to relevant errors in CNT vibration analysis, in
particular to natural frequencies very different from those obtained by means of resonant
Raman experimental spectroscopy or molecular dynamics numerical simulations, see
Ref. [24]. On the basis of these findings, in the present paper, an anisotropic elastic shell
model is adopted for DWCNT vibration analysis.

3.1. Stress–Strain Relationships

First of all, it should be stressed that the present study is conducted by assuming the
plane stress hypothesis (σz = 0), which is peculiar to thin-walled structures.

In the case of anisotropic elastic material, the dimensionless stresses (σ̃x,i, σ̃θ,i, τ̃xθ,i) of
the i-th cylindrical shell are related to the corresponding dimensionless strains by means of
the following constitutive Equation [46]:

σ̃x,i = Ỹ11,i ε̃x,i + Ỹ12,i ε̃θ,i + Ỹ13,iγ̃xθ,i
σ̃θ,i = Ỹ21,i ε̃x,i + Ỹ22,i ε̃θ,i + Ỹ23,iγ̃xθ,i i = 1, 2
τ̃xθ,i = Ỹ31,i ε̃x,i + Ỹ32,i ε̃θ,i + Ỹ33,iγ̃xθ,i

(5)

where the dimensionless material parameters Ỹjk,i, which substitute Young’s modulus and
Poisson’s ratio of the corresponding isotropic model, represent anisotropic surface elastic
constants, in the form [46]:

Ỹjk,i =
(

G̃l j,iG̃lk,i + 2µH̃l j,i H̃lk,i

)
j, k, l = 1, 2, 3 (sum over l) i = 1, 2 (6)

which allow the chirality effects to be considered in the anisotropic elastic constitutive
Equation (5), where

(
G̃l j,i, G̃lk,i, H̃l j,i, H̃lk,i

)
are dimensionless constants and µ is a dimen-

sionless constant parameter [46]:

µ =
Kθ

Kρa2 (7)

where Kρ and Kθ are force constants associated with the stretching and angular distortion
of the carbon–carbon bond, respectively, which can be derived from molecular mechanics
analyses or experimental data, see Ref. [23] for more details, and a is the carbon–carbon
bond length.
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The corresponding matrices
~
Gi and

~
Hi can be calculated as follows [46]:

~
Gi =

~
B
−1

i

(~
I−

~
Di

~
Fi

)
,

~
Hi =

~
Qi

~
Fi i = 1, 2 (8)

where
~
I is the identity matrix, matrix

~
Fi is given by [46]:

~
Fi =

[
~
Ui

~
B
−1

i
~
Di −

(
2µ

~
Vi

~
Ai +

~
Wi

)]−1 ~
Ui

~
B
−1

i i = 1, 2 (9)

and matrices
(

~
Ai,

~
Bi,

~
Di,

~
Ui,

~
Vi,

~
Wi,

~
Qi

)
are given by [46]:

~
Ai =

{
Ãjk,i

}
=
{
− cos ωjp,i cos ωkp,i

}
j, k, p = 1, 2, 3 (sum over p) i = 1, 2 (10)

~
Bi =

1

3
√

r2
i + risi + s2

i

(2ri + si) cos φ1,i −(ri − si) cos φ2,i −(ri + 2si) cos φ3,i√
3 si sin φ1,i −

√
3(ri − si) sin φ2,i

√
3 ri sin φ3,i

(2ri + si) sin φ1,i −(ri − si) sin φ2,i −(ri + 2si) sin φ3,i

 (11)

~
Di =

1

3
√

r2
i + risi + s2

i

−(2ri + si) sin φ1,i (ri − si) sin φ2,i (ri + 2si) sin φ3,i√
3 si cos φ1,i −

√
3(ri + si) cos φ2,i

√
3 ri cos φ3,i

(2ri + si) cos φ1,i −(ri − si) cos φ2,i −(ri + 2si) cos φ3,i

 (12)

~
Ui =

 sin φ1,i sin φ2,i sin φ3,i
cos φ1,i cos φ2,i cos φ3,i

si cos φ1,i −(ri + si) cos φ2,i ri cos φ3,i

 (13)

~
Vi =

− cos φ1,i − cos φ2,i − cos φ3,i
sin φ1,i sin φ2,i sin φ3,i

0 0 0

 (14)

~
Wi =

 0 0 0
0 0 0

−si sin φ1,i (ri + si) sin φ2,i −ri sin φ3,i

 (15)

~
Qi =

{
Q̃jk,i

}
=
{
− cos ωkj,i

}
j, k = 1, 2, 3 i = 1, 2 (16)

where [46]:

cos ωjk,i =

{(
cos φj,i sin φp,i cos ϕk,i − sin φj,i cos φp,i

)
/ sin θk,i

0
j 6= k 6= p

j = k
(17)

and (ri, si) are the chirality indices of the i-th carbon nanotube, which describe its rolling
angle (i.e., direction), and therefore, define its radius by means of the formulation [18]:

Ri =

√
3 a

2π

√
r2

i + risi + s2
i (18)

The structural parameters of the i-th SWCNT, i.e., chiral angles (φ1,i, φ2,i, φ3,i) and
torsion angles (ϕ1,i, ϕ2,i, ϕ3,i), which can be calculated by means of Equation [47]:

φ1,i = arccos 2ri+si
2
√

r2
i +risi+s2

i

φ2,i =
4π
3 + φ1,i

φ3,i =
2π
3 + φ1,i

(19)
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ϕ1,i =
π√

r2
i +risi+s2

i
cos φ1,i

ϕ2,i =
π√

r2
i +risi+s2

i
cos
(

π
3 + φ1,i

)
ϕ3,i =

π√
r2

i +risi+s2
i

cos
(

π
3 − φ1,i

) (20)

and bond angles (θ1,i, θ2,i, θ3,i), which are written in the following form [47]:

cos θj,i = sin φk,i sin φp,i cos ϕj,i + cos φk,i cos φp,i

j, k, p = 1, 2, 3 (sum over p) i = 1, 2
(21)

are illustrated in Figure 2, see Ref. [22] for more details.
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It should be stressed that the chirality of a generic SWCNT is indicated by the chiral
angle φ1, see Equation (19) and Figure 2. In particular, the two limiting cases of carbon
nanotubes are (r, 0), which gives chiral angle φ1 = 0 and is defined “zigzag” CNT, and (r, r),
which gives chiral angle φ1 = π/6 and is defined “armchair” CNT. These two definitions
are based on the different geometry of the carbon atoms along the circumferential direction
of the nanotube. Moreover, zigzag and armchair CNTs are considered as achiral nanotubes,
due to their high geometric symmetry, whereas SWCNTs with a chiral angle within the
range 0 < φ1 < π/6 are referred to as “chiral” CNTs, see Ref. [22] for details.

3.2. Force and Moment Resultants

Starting from the anisotropic elastic constitutive Equation (5), the corresponding
dimensionless in-plane force resultants per unit length of the i-th shell

(
Ñx,i, Ñθ,i, Ñxθ,i

)
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can be written as a function of the corresponding dimensionless middle surface strains and
of the dimensionless material parameters Ỹjk,i in the form:

Ñx,i =
∫ +βi/2
−βi/2 σ̃x,idζi = Ỹ11,i ε̃x,0,i + Ỹ12,i ε̃θ,0,i + Ỹ13,iγ̃xθ,0,i

Ñθ,i =
∫ +βi/2
−βi/2 σ̃θ,idζi = Ỹ21,i ε̃x,0,i + Ỹ22,i ε̃θ,0,i + Ỹ23,iγ̃xθ,0,i

Ñxθ,i =
∫ +βi/2
−βi/2 τ̃xθ,idζi = Ỹ31,i ε̃x,0,i + Ỹ32,i ε̃θ,0,i + Ỹ33,iγ̃xθ,0,i

(22)

where βi = h/Ri is the thickness ratio of the i-th cylindrical shell.
Similarly, the dimensionless moment resultants per unit length of the i-th cylindrical

shell
(

M̃x,i, M̃θ,i, M̃xθ,i

)
can be written as a function of the corresponding dimensionless

middle surface changes in curvature and torsion and of the dimensionless material param-
eters Ỹjk,i in the form:

M̃x,i =
∫ +βi/2
−βi/2 σ̃x,iζidζi =

βi
12

(
Ỹ11,i k̃x,i + Ỹ12,i k̃θ,i + Ỹ13,i k̃xθ,i

)
M̃θ,i =

∫ +βi/2
−βi/2 σ̃θ,iζidζi =

βi
12

(
Ỹ21,i k̃x,i + Ỹ22,i k̃θ,i + Ỹ23,i k̃xθ,i

)
M̃xθ,i =

∫ +βi/2
−βi/2 τ̃xθ,iζidζi =

βi
12

(
Ỹ31,i k̃x,i + Ỹ32,i k̃θ,i + Ỹ33,i k̃xθ,i

) (23)

Finally, the dimensionless transverse shear forces per unit length of the i-th cylindrical
shell

(
Q̃x,i, Q̃θ,i

)
, which are obtained directly from the expressions of the dimensionless

moment resultants per unit length, can be written as:

Q̃x,i =
β2

i
12

(
αi

(
Ỹ11,i

∂k̃x,i
∂η + Ỹ12,i

∂k̃θ,i
∂η + Ỹ13,i

∂k̃xθ,i
∂η

)
+ Ỹ31,i

∂k̃x,i
∂θ + Ỹ32,i

∂k̃θ,i
∂θ + Ỹ33,i

∂k̃xθ,i
∂θ

)
Q̃θ,i =

β2
i

12

(
αi

(
Ỹ31,i

∂k̃x,i
∂η + Ỹ32,i

∂k̃θ,i
∂η + Ỹ33,i

∂k̃xθ,i
∂η

)
+ Ỹ21,i

∂k̃x,i
∂θ + Ỹ22,i

∂k̃θ,i
∂θ + Ỹ23,i

∂k̃xθ,i
∂θ

) (24)

The previous equations will be used in the following in the expressions of the natu-
ral boundary conditions imposed on the i-th cylindrical shell, which involve forces and
moments resultants.

3.3. Elastic Strain Energy

In the case of homogeneous, anisotropic and elastic material, assuming plane stress hy-
pothesis (σz = 0), the dimensionless elastic strain energy Ũi of the i-th cylindrical shell is ex-
pressed as a function of the dimensionless stresses (σ̃x,i, σ̃θ,i, τ̃xθ,i) and strains (ε̃x,i, ε̃θ,i, γ̃xθ,i)
as follows [44]:

Ũi =
1

2βi

∫ 1

0

∫ 2π

0

∫ +βi/2

−βi/2
(σ̃x,i ε̃x,i + σ̃θ,i ε̃θ,i + τ̃xθ,iγ̃xθ,i)dηdθdζ (25)

By inserting Equations (4) and (5) into Equation (25), the dimensionless elastic strain
energy Ũi can be rewritten as a function of the dimensionless middle surface strains

(ε̃x,0,i, ε̃θ,0,i, γ̃xθ,0,i) and changes in curvature and torsion
(

k̃x,i, k̃θ,i, k̃xθ,i

)
, and of the dimen-

sionless material parameters Ỹjk,i, and it becomes:

Ũi =
1
2

∫ 1
0

∫ 2π
0

(
Ỹ11,i ε̃

2
x,0,i + Ỹ12,i ε̃x,0,i ε̃θ,0,i + Ỹ13,i ε̃x,0,iγ̃xθ,0,i+ Ỹ21,i ε̃x,0,i ε̃θ,0,i+

+Ỹ22,i ε̃
2
θ,0,i + Ỹ23,i ε̃θ,0,iγ̃xθ,0,i + Ỹ31,i ε̃x,0,iγ̃xθ,0,i + Ỹ32,i ε̃θ,0,iγ̃xθ,0,i + Ỹ33,iγ̃

2
xθ,0,i

)
dηdθ +

β2
i

24

∫ 1
0

∫ 2π
0

(
Ỹ11,i k̃2

x,i + Ỹ12,i k̃x,i k̃θ,i + Ỹ13,i k̃x,i k̃xθ,i+ Ỹ21,i k̃x,i k̃θ,i

+Ỹ22,i k̃2
θ,i + Ỹ23,i k̃θ,i k̃xθ,i + Ỹ31,i k̃x,i k̃xθ,i + Ỹ32,i k̃θ,i k̃xθ,i + Ỹ33,i k̃2

xθ,i

)
dηdθ

(26)



C 2022, 8, 59 9 of 27

It should be observed that, in Equation (26), the first term on the right-hand side
is associated to the middle surface strains of the shell, and therefore, it represents the
stretching (tensile/compression) energy, while the second term is associated to the middle
surface changes in curvature and torsion of the shell, and therefore it represents the bending
(flexural) energy [18].

The dimensionless elastic strain energy of a DWCNT is given by [44]:

Ũ =
2

∑
i=1

δiŨi (27)

where δi = Ri/R1 and R1 is the radius of the inner SWCNT.

3.4. Kinetic Energy

The most important issue in the determination of the dimensionless kinetic energy is
the definition of the dimensionless time variable. In the present work, the dimensionless
time variable τ is obtained by introducing the reference dimensional circular frequency ω0,
in the form:

τ = ω0t ω0 =

√
Y

ρmhR2
1

(28)

where t is the corresponding dimensional time variable, ρm is the mass density of the
material and

Y =
2Kρ

3
√

3
(29)

is a reference dimensional surface elastic constant.
Starting from the definition of dimensionless time variable τ (28), the dimensionless

velocity field of the i-th cylindrical shell
(
ũ′i, ṽ′i, w̃′i

)
is written as [44]:

ũ′i =
dũi
dτ =

.
ui

Riω0

ṽ′i =
dṽi
dτ =

.
vi

Riω0
i = 1, 2

w̃′i =
dw̃i
dτ =

.
wi

Riω0

(30)

where
( .
ui,

.
vi,

.
wi
)

is the corresponding dimensional velocity field.
Neglecting the rotary inertia effect, the dimensionless kinetic energy of the i-th cylin-

drical shell is given by [44]:

T̃i =
1
2

δ2
i

∫ 1

0

∫ 2π

0

(
ũ′2i + ṽ′2i + w̃′2i

)
dηdθ i = 1, 2 (31)

It can be noted that, differently from the elastic strain energy (26), the kinetic energy
(31) does not depend on the material properties, as the dimensionless material parameters
Ỹjk,i are not present and the mass density ρm is included in the definition of the reference
circular frequency ω0), and therefore, it assumes the same expression for both isotropic and
anisotropic elastic material.

The dimensionless kinetic energy of a DWCNT is given by [44]:

T̃ =
2

∑
i=1

δiT̃i (32)
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3.5. Van der Waals Interaction Forces

In the present paper, the actual discrete DWCNT is modelled by means of a couple of
concentric equivalents continuous thin cylindrical shells, and van der Waals interaction
energy potential between the two layers can be estimated by the Lennard–Jones model [30]:

VLJ(a) = 4ε

((σ

a

)12
−
(σ

a

)6
)

(33)

where ε is the carbon–carbon potential depth, σ is the carbon–carbon equilibrium sep-
aration distance and a is the carbon–carbon bond length (i.e., the distance between the
interacting atoms).

The van der Waals interaction force is obtained by deriving Lennard–Jones pair poten-
tial (33), with respect to the carbon–carbon bond length [41]:

F(a) = −
dVLJ(a)

da
=

24ε

σ

(
2
(σ

a

)13
−
(σ

a

)7
)

(34)

where the negative value represents the attractive force between a pair of atoms, whereas
the positive value represents the corresponding repulsive force.

Since only the infinitesimal buckling of CNTs is of interest, then the van der Waals
force (34) can be estimated via the Taylor expansion to the first order around the equilibrium
position prior to buckling, in the form [41]:

F(a) = F(a0) +
dF(a0)

da0
(a− a0) (35)

where a0 is the initial carbon–carbon atom distance of the two layers prior to bucking.
By substituting Equation (34) into expansion (35), it is derived [41]:

F(a) =
24ε

σ

(
2
(

σ

a0

)13
−
(

σ

a0

)7
)
− 24ε

σ2

(
26
(

σ

a0

)14
− 7
(

σ

a0

)8
)
(a− a0) (36)

At the equilibrium position prior to buckling, the initial van der Waals interaction
force F(a0) is very small, and therefore, can be neglected.

By integrating Equation (36) over the entire DWCNT, it is obtained the pressure pi
exerted on the ith SWCNT due to the van der Waals interactions between the layers (i, j),
expressed as a function of the radial displacements

(
wi, wj

)
[41]:

pi(η, θ) = cij
(
wi − wj

)
i, j = 1, 2 i 6= j (37)

where cij is the van der Waals interaction coefficient between the layers (i, j).
In the literature, several formulations for the van der Waals interaction coefficient are

reported; in particular, it can be expressed by adopting Ru’s and He’s formulations.

3.5.1. Van der Waals Interaction Coefficient: Ru’s Formulation

In Ru’s formulation, the van der Waals interaction coefficient between the two layers is
estimated starting from the energy potential per unit area between a carbon atom and a flat
graphite sheet, as reported by Girifalco and Lad [34], and it is expressed in the form [31]:

cRu = −3.2× 102 erg/cm2

0.16a2 (38)

where 1 erg/cm2 = 10−3 N/m.
Note that the equilibrium distance between a carbon atom and a flat graphite sheet is

around 0.34 nm [34], so the initial pressure between the inner and outer tubes is zero if the
initial interlayer spacing is 0.34 nm. In this case, any increase (decrease) in the interlayer



C 2022, 8, 59 11 of 27

spacing causes an attractive (repulsive) van der Waals interaction, and then coefficient c
should be negative (positive) [32].

From expression (38), it can be observed that, in Ru’s formulation, the van der Waals
interaction coefficient represents a constant parameter, which is assumed to depend on
the distance between the interacting atoms a, while it is not dependent on CNT diameter.
Specifically, the curvature effect has been ignored because it is usually small for the MWNTs
of the larger innermost radius [5–7].

3.5.2. Van der Waals Interaction Coefficient: He’s Formulation

In He’s formulation, the van der Waals interaction coefficient is derived via the direct
integration of Equation (36), and it is expressed in the form [41]:

cij,He = −
(

1001πεσ12

3a4 E13
ij −

1120πεσ6

9a4 E7
ij

)
Rj i, j = 1, 2 i 6= j (39)

From expression (39), it can be observed that, in He’s formulation, the van der Waals
interaction coefficient depends on the radius Rj of the jth layer. In addition, for a specific
DWCNT geometry, it is obtained that cij 6= cji, i.e., the two coefficients are different, with
the relationship cijRi = cjiRj.

The elliptical integral Em
ij of expression (39) is written as [41]:

Em
ij =

(
Rj + Ri

)−m
∫ π/2

0

dθ(
1− kij cos2 θ

)m/2 i, j = 1, 2 i 6= j m = 7, 13 (40)

and the geometric coefficient kij of Equation (40) is written as [41]:

kij =
4RjRi(

Rj + Ri
)2 i, j = 1, 2 i 6= j (41)

3.5.3. Van der Waals Interaction Energy

The van der Waals interaction energy of the i-th cylindrical shell, which models the
SWCNT, is expressed in dimensionless form as follows [44]:

Ṽi = −
1
2

δi

∫ 1

0

∫ 2π

0
p̃i(η, θ)w̃idηdθ i = 1, 2 (42)

The dimensionless van der Waals interaction energy of a DWCNT is given by [44]:

Ṽ =
2

∑
i=1

δiṼi (43)

4. Vibration Modelling of DWCNTs

In the case of DWCNTs, a modal vibration can be formally written in terms of the
three dimensionless displacements of the i-th cylindrical shell (ũi, ṽi, w̃i) as [44]:

ũi(η, θ, τ) = Ũi(η, θ) f̃i(τ)

ṽi(η, θ, τ) = Ṽi(η, θ) f̃i(τ) i = 1, 2
w̃i(η, θ, τ) = W̃i(η, θ) f̃i(τ)

(44)

where
(

Ũi, Ṽi, W̃i

)
are the corresponding three dimensionless components of the modal

shape and f̃i(τ) is the corresponding dimensionless time law, which is supposed to be the
same for the three different displacements (i.e., synchronous motion hypothesis).
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The three modal shape components
(

Ũi, Ṽi, W̃i

)
can be expressed in different ways.

Usually, they are expanded by means of a double series in terms of harmonic functions
along the longitudinal and circumferential directions, see for example Ref. [35]. In the
present work, they are expanded by means of a double mixed series in terms of m-th degree
Chebyshev orthogonal polynomials T∗m(η) = Tm(2η − 1) along the longitudinal direction
η and harmonic functions (cos nθ, sin nθ) along the circumferential direction θ [44]:

Ũi(η, θ) =
Mu
∑

m=0

N
∑

n=0
Ũi,m,nT∗m(η) cos nθ

Ṽi(η, θ) =
Mv
∑

m=0

N
∑

n=0
Ṽi,m,nT∗m(η) sin nθ i = 1, 2

W̃i(η, θ) =
Mw
∑

m=0

N
∑

n=0
W̃i,m,nT∗m(η) cos nθ

(45)

where m is the number of longitudinal half-waves (maximum values (Mu, Mv, Mw)), n is
the number of circumferential waves (maximum value N) and

(
Ũi,m,n, Ṽi,m,n, W̃i,m,n

)
are

unknown coefficients, which can be obtained by imposing the boundary conditions.
This last is the most relevant difference due to the choice of Chebyshev polynomials

instead of harmonic functions to model DWCNT vibrations along the longitudinal direction;
actually, the boundary conditions are automatically satisfied by harmonic functions, while
they are not automatically satisfied by Chebyshev polynomials, and therefore, in the second
approach, they must be imposed on the unknown coefficients

(
Ũi,m,n, Ṽi,m,n, W̃i,m,n

)
, as in

the present work.

4.1. Boundary Conditions

In this paper, simply supported DWCNTs are considered. The corresponding bound-
ary conditions on the two ends of the two SWCNTs are expressed in the form [45]:

ṽi(η, θ) = 0
w̃i(η, θ) = 0

Ñx,i(η, θ) = 0
M̃x,i(η, θ) = 0

η = 0, 1 i = 1, 2 (46)

which represent both geometric (on the displacements (ṽi, w̃i)) and natural (on the force
Ñx,i and moment M̃x,i resultants) conditions, where the dependency on the dimensionless
time variable τ is not taken into account (modal vibration analysis).

By taking into account Equations (22) and (23) for the dimensionless force and moment
resultants, the two natural boundary conditions (46) can be rewritten as a function of the
dimensionless middle surface strains and changes in curvature and torsion of the i-th
cylindrical shell in the following form:

Ñx,i(η, θ) = Ỹ11,i ε̃x,0,i + Ỹ12,i ε̃θ,0,i + Ỹ13,iγ̃xθ,0,i = 0
M̃x,i(η, θ) =

βi
12

(
Ỹ11,i k̃x,i + Ỹ12,i k̃θ,i + Ỹ13,i k̃xθ,i

)
= 0

η = 0, 1 i = 1, 2 (47)

Since the boundary conditions are related only to the dimensionless longitudinal
coordinate η and do not depend on the circumferential coordinate θ (i.e., they are axisym-
metric), then in the expressions (47) of the dimensionless force and moment resultants only
the dimensionless middle surface strain and change in curvature along the longitudinal
direction must be considered, and therefore, expressions (47) become:

Ñx,i(η) = Ỹ11,i ε̃x,0,i = Ỹ11,iαi
∂ũi
∂η = 0

M̃x,i(η) =
βi
12 Ỹ11,i k̃x,i = −

βi
12 Ỹ11,iα

2
i

∂2w̃i
∂η2 = 0

η = 0, 1 i = 1, 2 (48)
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Starting from the expressions for the geometric boundary conditions (46) and the
natural boundary conditions (48), the following equations in terms of the dimensionless
displacements (ũi, ṽi, w̃i) related to the longitudinal coordinate η of the i-th cylindrical shell
are derived:

ṽi(η) = 0
w̃i(η) = 0
∂ũi
∂η (η) = 0

∂2w̃i
∂η2 (η) = 0

η = 0, 1 i = 1, 2 (49)

By substituting expressions (49) into Equations (44) for the dimensionless displace-
ments, the following conditions in terms of expansions (45) for the corresponding modal
shape components are derived [45]:

Ṽi(η) =
Mv
∑

m=0
Ṽi,m,nT∗m(η) = 0

W̃i(η) =
Mw
∑

m=0
W̃i,m,nT∗m(η) = 0

Ũi,η(η) =
Mu
∑

m=0
Ũi,m,nT∗m,η(η) = 0

W̃i,ηη(η) =
Mw
∑

m=0
W̃i,m,nT∗m,ηη(η) = 0

η = 0, 1 i = 1, 2 (50)

where (·),η = ∂(·)/∂η and (·),ηη = ∂2(·)/∂η2.
The linear algebraic system given by Equation (50) can then be solved analytically in

terms of the coefficients
(

Ũi,1,n, Ũi,2,n, Ṽi,0,n, Ṽi,1,n, W̃i,0,n, W̃i,1,n, W̃i,2,n, W̃i,3,n

)
, for n ∈ [0, N].

Therefore, in the specific case of simply supported DWCNTs, eight different dimensionless
coefficients for each SWCNT are obtained.

4.2. Rayleigh–Ritz Method

In the case of DWCNTs, the maximum number of variables needed to properly describe
a generic vibration mode (m, n), with m longitudinal half-waves and n circumferential
waves, is given by Np = 2× (Mu + Mv + Mw + 3− p), where 2 is the number of concentric
SWCNTs, Mu = Mv = Mw is the maximum number of longitudinal half-waves considered
and p is the number of equations needed to satisfy the boundary conditions: as previously
demonstrated, in the case of DWCNTs with simply supported boundary conditions it is
imposed p = 8.

A convergence analysis was performed in order to obtain the correct order of Cheby-
shev orthogonal polynomials (i.e., the maximum number of longitudinal half-waves) to be
adopted: since it was obtained that Mu = Mv = Mw = 11 allows the modal shapes with a
number of longitudinal half-waves until m = 5 to be correctly modelled, and m = 5 is the
maximum number of longitudinal half-waves considered in the numerical analyses of the
present work, then Mu = Mv = Mw = 11 provides accurate results with relatively reduced
computational effort.

For a multi-mode analysis including different values of circumferential waves n, the
number of degrees of freedom of the mechanical system is given by Nmax = Np × (N + 1),
where N is the maximum number of circumferential waves considered.

Equations (44) are inserted in the expressions of elastic strain energy (26), kinetic
energy (31) and van der Waals interaction energy (42) in order to calculate the value of
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Rayleigh quotient R
(~

q
)

, where
~
q is a vector containing all the unknown coefficients of

expansions (45), expressed as [46]:

~
q =



...
Ũi,m,n
Ṽi,m,n
W̃i,m,n

...


i = 1, 2 (51)

After imposing the stationarity on the Rayleigh quotient, the following classic eigen-
value problem in dimensionless form is obtained [46]:(

−ω̃2 ~
M +

~
K
)~

q = 0 (52)

which provides approximate dimensionless circular frequencies (eigenvalues ω̃j) and modal

shapes (eigenvectors
~
qj), with j = (1, 2, . . . , Nmax), where

~
M and

~
K are the dimensionless

mass and stiffness matrices, respectively.
The approximate modal shape of the j-th mode of the i-th shell is provided by the

expansions (45), where coefficients
(

Ũi,m,n, Ṽi,m,n, W̃i,m,n

)
are replaced with coefficients(

Ũ(j)
i,m,n, Ṽ(j)

i,m,n, W̃(j)
i,m,n

)
, which are the components of the j-th eigenvector

~
q of Equation (52),

and the vector function [47]:

~
W

(j)
(η, θ) =

Ũ(j)
i (η, θ)

Ṽ(j)
i (η, θ)

W̃(j)
i (η, θ)

 i = 1, 2 (53)

is the approximation of the j-th eigenfunction vector of the original problem.
Finally, it must be underlined that, in order to obtain the corresponding dimensional

natural frequencies f j of DWCNTs, the dimensionless circular frequencies (eigenvalues) ω̃j

have to be multiplied by the dimensional constant term ω0/2π (with dimensions s−1).

5. Numerical Results

In the present work, natural frequencies of DWCNTs obtained via Ru’s (38) and He’s
(39) formulations of the van der Waals interaction coefficient between the two concentric
SWCNTs are compared. The Donnell shell theory is applied to obtain strain-displacement
relationships. An anisotropic elastic shell model is adopted to take into account the chirality
effects of CNTs. Simply supported boundary conditions are considered. Vibration modes
with different numbers of waves along the longitudinal and circumferential directions are
analysed. DWCNTs with different values of diameters are investigated.

In Table 1 the values of carbon–carbon (C-C) bond parameters
(
a, kρ, kθ

)
, C-C distance

parameters (ε, σ) and CNT equivalent parameters (h, ρm), retrieved from the pertinent
literature, are reported.

In particular, parameters kρ and kθ , which denote force constants related to the variance
of C-C bond length a and angle θ, respectively, and are used in the present work to compute
the anisotropic elastic properties of CNTs, were derived in the molecular mechanics “stick-
spiral model” developed by Chang et al. [22].

Moreover, parameters ε and σ, which denote C-C potential depth and equilibrium
distance, respectively, and are used in this work to simulate the van der Waals interaction
forces, were determined by He et al. [41] via buckling analysis of MWCNTs.

Finally, parameter h, which represents CNT equivalent thickness, and is adopted
in the present analysis to study the actual discrete DWCNT as a couple of concentric
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equivalent continuous cylindrical shells, was derived from MD simulations of CNT energy
by Yakobson et al. [14].

Table 1. Mechanical parameters adopted in the anisotropic elastic shell model.

C-C Bond Parameters

C-C bond length a (nm) 0.142

C-C bond elongation Kρ (nN/nm) 742

C-C bond angle variance Kθ (nN·nm) 1.42

C-C distance parameters

C-C potential depth ε
(
10−22 J

)
4.755

C-C equilibrium separation distance σ (nm) 0.3407

CNT equivalent parameters

Thickness h (nm) 0.066

Mass density ρm
(
kg/m3) 11, 700

5.1. Validation of the Proposed Model in the Isotropic Case

In order to justify the validity of the proposed model, let us consider the corresponding
isotropic case, in which the SWCNT is assumed to be an isotropic elastic thin shell, with
tensile rigidity C (in-plane stiffness), bending rigidity D (flexural stiffness), surface density
ρs (mass density ρm per unit lateral area h) and Poisson’s ratio ν reported in Table 2, where
chirality effects are neglected, see Ref. [14] for more details.

Table 2. Mechanical parameters adopted in the isotropic elastic shell model.

Tensile rigidity C
(
J/m2) 360

Bending rigidity D (J) 1.362× 10−19

Surface density ρs
(
kg/m2) 7.718× 10−7

Poisson’s ratio ν 0.19

To this purpose, in this Section, the results of the present elastic shell model in isotropic
form, which considers Chebyshev orthogonal polynomials along the longitudinal direction
and harmonic functions along the circumferential direction, are compared with the ones of
the isotropic elastic shell models of Refs. [35,42], which adopt harmonic functions along
both longitudinal and circumferential directions, and use Ru’s and He’s formulations for
van der Waals interaction coefficient, respectively.

This check is important because there can be relevant differences between the results
due to the different shape functions used in the modal expansions of the displacement field,
and the accuracy of the natural frequencies depends strongly on the choice of modal shape
functions. Moreover, it must be stressed that, in order to perform a correct analysis, the
same thin shell theory, i.e., the Donnell shell theory, is adopted.

In Tables 3 and 4, the natural frequencies of a simply supported DWCNT with inner
radius R1 = 5 nm and aspect ratio L/R2 = 10 are reported. The Donnell shell theory
and isotropic elastic shell model are adopted. The van der Waals interaction coefficient is
expressed via Ru’s (Table 3) and He’s (Table 4) formulations. Circumferential flexure modes
(n = 2) are analysed. Comparisons between present and Ref. [35] models (see Table 3), and
present and Ref. [42] models (see Table 4), are performed.
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Table 3. Natural frequencies (THz) of a simply supported DWCNT with innermost radius R1 = 5 nm
and aspect ratio L/R2 = 10. Donnell shell theory. Isotropic elastic shell model. Van der Waals
interaction coefficient expressed on the basis of Ru’s formulation. Circumferential flexure modes
(n = 2). Comparisons between present and Ref. [35] models.

Natural Frequency (THz) Diff. (%)

Mode
(m,n) Prevalent Displacement Prevalent

Mode Shape
Present

Model (Ru)
Ref. [35]

Model (Ru)

(1,2) w R1 0.0163 0.0162 0.62

(2,2) w R1 0.0511 0.0509 0.39

(3,2) w R1 0.1025 0.1020 0.49

(1,2) u R2 0.8508 0.8438 0.83

(2,2) u R2 0.8850 0.8775 0.85

(1,2) u R1 0.9070 0.8999 0.79

(3,2) u R2 0.9334 0.9254 0.86

(2,2) u R1 0.9446 0.9375 0.76

(3,2) u R1 1.0050 0.9977 0.73

(1,2) v R2 1.3114 1.3080 0.26

(2,2) v R2 1.3601 1.3567 0.25

(3,2) v R2 1.4371 1.4334 0.26

(1,2) v R1 1.5384 1.5371 0.08

(2,2) v R1 1.5692 1.5679 0.08

(3,2) v R1 1.6214 1.6201 0.08

(1,2) w R1 2.7006 2.7000 0.02

(2,2) w R1 2.7011 2.7005 0.02

(3,2) w R1 2.7021 2.7015 0.02

Table 4. Natural frequencies (THz) of a simply supported DWCNT with innermost radius R1 = 5 nm
and aspect ratio L/R2 = 10. Donnell shell theory. Isotropic elastic shell model. Van der Waals
interaction coefficient expressed on the basis of He’s formulation. Circumferential flexure modes
(n = 2). Comparisons between present and Ref. [42] models.

Natural Frequency (THz) Diff. (%)

Mode
(m,n) Prevalent Displacement Prevalent

Mode Shape
Present

Model (He)
Ref. [42]

Model (He)

(1,2) w R1 0.0163 0.0163 0.00

(2,2) w R1 0.0511 0.0509 0.39

(3,2) w R1 0.1025 0.1021 0.39

(1,2) u R2 0.8508 0.8440 0.81

(2,2) u R2 0.8852 0.8782 0.80

(1,2) u R1 0.9071 0.8998 0.81

(3,2) u R2 0.9339 0.9266 0.79

(2,2) u R1 0.9447 0.9372 0.80

(3,2) u R1 1.0052 0.9972 0.80

(1,2) v R2 1.3157 1.3130 0.21

(2,2) v R2 1.3642 1.3620 0.16

(3,2) v R2 1.4409 1.4380 0.20

(1,2) v R1 1.5387 1.5360 0.18

(2,2) v R1 1.5696 1.5670 0.17

(3,2) v R1 1.6218 1.6190 0.17

(1,2) w R1 2.7831 2.7830 0.00

(2,2) w R1 2.7835 2.7840 0.02

(3,2) w R1 2.7843 2.7840 0.01
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From Tables 3 and 4, it is observed that the present elastic shell model in isotropic
form is accurate both for Ru’s and for He’s formulations, as it gives natural frequencies
with less than 1% difference, and therefore, the validity of the shape functions adopted in
the modal expansions of the displacement field is confirmed.

5.2. Ru’s vs. He’s Formulations of the van der Waals Interaction Coefficient for DWCNTs

Before comparing the natural frequencies of DWCNTs obtained by considering an
anisotropic elastic shell model via Ru’s and He’s formulations, it is useful to investigate the
values of the corresponding interaction coefficients under different values of CNT diameter,
in order to justify the assumption of He’s formulation as a reference in the comparisons.

In Figure 3, the effect of the DWCNT inner radius R1 on the value of the van der Waals
interaction coefficient c obtained by assuming the C-C bond parameters (a, ε, σ) of Table 1
and considering Ru’s (38) and He’s (39) formulations is shown.
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From this Figure, it can be observed that, for a very large inner radius (R1 > 10 nm),
the two different interaction coefficients c12 and c21 deriving from He’s formulation tend
asymptotically to the same value (c ≈ 1.09). This is due to the fact that as the inner radius
increases, the outer radius also increases, while the distance between the two layers remains
constant; therefore, the percentage difference between the inner and outer radius decreases,
and the values of the two coefficients converge.

Moreover, it can be observed that this value is quite close to the constant one assumed
by the interaction coefficient from Ru’s formulation (c ≈ 1). This is because, for a suffi-
ciently large inner radius, the interaction coefficient no longer depends on the radius, but it
assumes a constant value, which is similar to Ru’s and He’s formulations.

This behaviour, however, is not important for the modelling of CNTs, since it lies
outside the range commonly assumed for the radius of CNTs. In fact, it is reported that “a
single-wall nanotube is defined by a cylindrical graphene sheet with a diameter of about
0.7–10.0 nm, though most of the observed single-wall nanotubes have diameters < 2 nm”,
see Ref. [24]. For this reason, it is important to focus the attention on the comparison
between the interaction coefficients, and the corresponding natural frequencies of DWCNTs,
from Ru’s and He’s formulations in this range of inner radius.

From Figure 3 it can be observed that, for a sufficiently small inner radius (R1 < 1 nm),
such as commonly assumed by CNTs, the two interaction coefficients c12 and c21 from He’s
formulation have very different values. This is because, in this range, the distance between
the layers is significant with respect to the relative radii; therefore, the percentage difference
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between the inner and outer radius is very high, and the values of the two interaction
coefficients diverge.

Moreover, it can be observed that these two values are very different compared to the
constant one assumed by the interaction coefficient derived from Ru’s formulation. This is
due to the fact that, for a sufficiently small inner radius, the interaction coefficient strongly
depends on the radius itself, and therefore it assumes very distant values for Ru’s and He’s
formulations.

As stated above, He’s formulation, with respect to Ru’s one, taking into account the
effect of CNT diameter on the value of the van der Waals interaction coefficient, is able to
simulate more correctly the actual CNT behaviour, which is anisotropic, that is the elastic
properties of the material depend on CNT chirality and size, and therefore is more accurate.

This is especially true for a relatively small CNT diameter (< 2 nm), where it is known
from the literature that the surface elastic constants assume values that strongly depend on
chirality and size, and therefore it is necessary to adopt an anisotropic elastic model. On the
other hand, the surface elastic constants tend asymptotically to constant values coinciding
with those of the relative constants of graphite as CNT diameter increases, and therefore it
is possible to adopt an isotropic elastic model, see Ref. [25] for more details.

In order to take into account chirality and size effects of CNTs, in the following, an
anisotropic elastic shell model will be used to obtain the natural frequencies of DWCNTs.
Moreover, since He’s formulation is able to simulate more properly the actual anisotropic
behaviour of CNTs, then in the following, it will be used as a reference to investigate the
applicability and limitations of Ru’s formulation for vibration modelling of DWCNTs.

5.3. Applicability and Limitations of Ru’s Formulation for DWCNTs

In the present Section, starting from the previously reported results, natural frequen-
cies of DWCNTs obtained via Ru’s and He’s formulations of the van der Waals interaction
coefficient between the layers are compared. The Donnell shell theory and anisotropic
elastic shell model are applied. Different values of diameters and wavenumbers along the
longitudinal and circumferential directions are considered.

In Table 5, comparisons between the natural frequencies of the simply supported
DWCNT of Table 1 with inner radius R1 = 5 nm and aspect ratio L/R2 = 10 are shown. Cir-
cumferential flexure modes (n = 2) are analysed. The number of longitudinal half-waves
1 ≤ m ≤ 3 is studied. Vibration modes with a prevalent longitudinal u, circumferential v
or radial w displacement component, which corresponds to a primarily axial, torsional or
flexural vibration, respectively, are investigated.

From these comparisons, it can be observed that the percentage difference between
the results of the two formulations is concentrated in the highest natural frequencies corre-
sponding to the modal shape with prevalent radial displacement w, while elsewhere the
percentage difference is negligible. The same result is found by comparing the natural fre-
quencies of the present model in the isotropic form obtained via Ru’s and He’s formulations
of the van der Waals interaction coefficient in Tables 3 and 4.

Starting from these results, in the following, only the highest radial natural frequencies
will be considered to investigate the differences between the two formulations (Ru’s vs.
He’s) adopted for the simulation of the van der Waals interaction coefficient.

It should be underlined that, in a previous work of the same author, it was obtained
that the differences in the results due to the different shell theory (Sanders vs. Donnell)
considered to model the linear vibrations of DWCNTs are concentrated in the lowest radial
natural frequencies, see Ref. [46] for more details.

Let us extend the previous analysis of Table 1 by considering the range of longitudinal
half-waves 0 ≤ m ≤ 5, the range of circumferential waves 0 ≤ n ≤ 8 and the range of inner
radius values 0.5 nm ≤ R1 ≤ 10 nm. In addition, on the basis of the previous results, let us
focus our attention on the highest radial natural frequencies.

In Figures 4–8, the curves of the percentage differences between the natural frequen-
cies of the simply supported DWCNT of Table 1 obtained by considering Ru’s and He’s
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formulations are shown, where the more accurate He’s formulation is assumed as the
reference. Vibration modes with a different number of waves along the longitudinal and
circumferential directions (m, n) are analysed. Different values of inner radius R1 are
adopted. The aim of the present study is to investigate both applicability and limitations of
Ru’s formulation for vibration modelling of DWCNTs.

Table 5. Natural frequencies (THz) of the simply supported DWCNT of Table 1 with inner radius
R1 = 5 nm and aspect ratio L/R2 = 10. Donnell shell theory. Anisotropic elastic shell model. Circum-
ferential flexure modes (n = 2). Van der Waals interaction forces. Comparisons between Ru’s (38) and
He’s (39) formulations.

Natural Frequency (THz) Diff. (%)

Mode
(m,n)

Prevalent
Displacement

Prevalent
Mode Shape

Anisotropic
Model (Ru)

Anisotropic
Model (He)

(1,2) w R1 0.0162 0.0162 0.00

(2,2) w R1 0.0510 0.0510 0.00

(3,2) w R1 0.1023 0.1023 0.00

(1,2) u R2 0.8593 0.8594 0.01

(2,2) u R2 0.8936 0.8943 0.08

(1,2) u R1 0.9160 0.9161 0.01

(3,2) u R2 0.9421 0.9437 0.17

(2,2) u R1 0.9538 0.9541 0.03

(3,2) u R1 1.0149 1.0152 0.03

(1,2) v R2 1.2975 1.3086 0.85

(2,2) v R2 1.3462 1.3567 0.77

(3,2) v R2 1.4230 1.4327 0.68

(1,2) v R1 1.5248 1.5257 0.06

(2,2) v R1 1.5550 1.5560 0.06

(3,2) v R1 1.6063 1.6074 0.07

(1,2) w R1 2.6313 2.8507 7.70

(2,2) w R1 2.6319 2.8510 7.69

(3,2) w R1 2.6329 2.8517 7.67
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In Figure 4, a simply supported DWCNT with inner radius R1 = 0.5 nm is considered.
From this Figure, it is observed that the percentage difference assumes the initial value of
1.5% for n = 0. Then, it decreases to the local minimum of 0.4% for n = 1 and increases to
the local maximum of 14% for n = 2. Finally, for n ≥ 3 the percentage difference decreases
very quickly with increasing n.

In Figure 5, a simply supported DWCNT with inner radius R1 = 1 nm is analysed.
From this Figure it is observed that the percentage difference assumes the initial value of
4% for n = 0. Then, it decreases to the local minimum of 1.5% for n = 1 and increases to the
local maximum of 10.5% for n = 2. Finally, for n ≥ 3 the percentage difference decreases
quickly with increasing n.
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As previously verified, the vibrational mode shapes, and the corresponding natural 
frequencies, of DWCNTs are sensitive to the van der Waals interactions. Actually, from 
Figure 3 it can be noted that the maximum difference between the values of Ru’s and 
He’s van der Waals interaction coefficient is present at the inner radius R1 = 0.5 nm. So, 
the investigation of the critical order number (m, n) of the mode shape with which the 
difference between Ru’s and He’s formulations cannot be ignored should be carried out 
at that value of the inner radius, see Figure 4. First of all, from Figure 4 it can be ob-
served that the behaviour is almost the same for every number of longitudinal half-
waves m, and therefore, the analysis will be focused on the critical number of circumfer-
ential waves n. By imposing the limit value of percentage difference of 5%, below which 
Ru’s formulation can be considered as sufficiently accurate, it is found that Ru’s formu-

Figure 8. Percentage differences between the highest radial natural frequencies of the simply sup-
ported DWCNT of Table 1 with inner radius R1 = 10 nm and aspect ratio L/R2 = 10 from Ru’s (38) and
He’s (39) formulations. Donnell shell theory. Anisotropic elastic shell model. Number of longitudinal
half-waves m. Number of circumferential waves n.

In Figure 6, a simply supported DWCNT with inner radius R1 = 2 nm is investigated.
From this Figure, it is observed that the percentage difference assumes the initial value of
6% for n = 0. Then, it decreases to the local minimum of 1% for n = 2 and increases to the
local maximum of 8% for n = 4. Finally, for n ≥ 5 the percentage difference decreases very
slowly with increasing n.

In Figure 7, a simply supported DWCNT with inner radius R1 = 5 nm is examined.
From this Figure, it is observed that the percentage difference assumes the initial value of
5.5% for n = 0, which is maintained quasi-constant for n = (1, 2). Then, it decreases to the
local minimum of 2% for n = 4 and increases to the local maximum of 6% for n = 6, which
is maintained quasi-constant with increasing n.
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In Figure 8, a simply supported DWCNT with inner radius R1 = 10 nm is studied.
From this Figure, it is observed that the percentage difference assumes the initial value of
5% for n = 0, which is maintained quasi-constant for 1 ≤ n ≤ 4. Then, it decreases slowly
for n = (5, 6) and finally very quickly with increasing n.

From Figures 4–8 it is noted that, for all considered values of inner radius R1, the
behaviour is almost the same for every number of longitudinal half-waves m; therefore, the
percentage differences of Figures 4–8 can be rightly synthesized in Figure 9, which shows
the percentage differences between the highest radial natural frequencies obtained via Ru’s
(38) and He’s (39) formulations for the inner radius range 0.5 nm ≤ R1 ≤ 10 nm and the
number of longitudinal half-waves m = 1.
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and He’s (39) formulations (He as reference). Donnell shell theory. Anisotropic elastic model. Simply
supported DWCNT of Table 1 with m = 1 longitudinal half-wave and aspect ratio L/R2 = 10. Inner
radius R1. Number of circumferential waves n.

From Figure 9 it can be observed that, as the inner radius R1 increases, the value of
the initial percentage difference for n = 0 increases, converging to the final value of 5% for
R1 = 10 nm.

Again, as the inner radius R1 increases, the oscillation amplitude of the portion of the
percentage difference curve between the local minimum and maximum decreases, where
the local minimum and maximum tend to approach, moving towards increasing numbers
of circumferential waves n.

Finally, as the inner radius R1 increases, the percentage difference curves tend to
converge to the quasi-constant curve corresponding to R1 = 10 nm, without maximum
and minimum values and with the percentage difference close to 5%.

Since, in Section 5.2, it was derived that, for a sufficiently large inner radius, the
interaction coefficient no longer depends on the radius, but it assumes a constant value,
which is similar to Ru’s and He’s formulations, then, in the following, the limit value of
applicability of Ru’s formulation for the vibration modelling of DWCNTs will be imposed
at 5%, which is the value of the quasi-constant percentage difference curve corresponding
to R1 = 10 nm.

From Figure 9, the following comments for increasing values of the inner radius R1
can be made:
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• for n = (0, 1) the percentage difference is initially very low (<2%) , then it increases,
finally stabilizing at 5%;

• for n = 2, the percentage difference is initially extremely high (≈ 15%), then it
decreases by assuming a minimum value of 2% and finally increases, stabilizing
at 5%;

• for n = 3, the percentage difference is initially very high (≈ 10%), then it reduces,
stabilizing at 5%;

• for n = 4, the percentage difference is initially relatively low (≈ 4%), then it increases
until a maximum value of 10%, it decreases until a minimum value of 2% and finally
it increases, stabilizing at 5%;

• for 5 ≤ n ≤ 8, the percentage difference is initially very low (<2%) , then it increases
until a maximum value of 8% and finally decreases at a value lower than 5%.

Therefore, by assuming the more accurate He’s formulation as a reference, considering
the Donnell shell theory and adopting an anisotropic elastic shell model, from Figure 9,
with respect to the number of circumferential waves n and as a function of the value of
the inner radius R1, the following ranges of applicability of Ru’s formulation for vibration
modelling of DWCNTs are identified (percentage difference ≤ 5%):

• n = 0 (axisymmetric modes), for every value of R1;
• n = 1 (beam-like modes), for every value of R1;
• n = 2 (circumferential flexure modes), for R1 ≥ 2 nm;
• n = 3 (shell-like modes), for R1 ≥ 5 nm;
• n = (4, 5) (shell-like modes), for R1 ≤ 0.5 nm and for R1 ≥ 5 nm;
• n = 6 (shell-like modes), for R1 ≤ 0.5 nm and for R1 ≥ 10 nm;
• n = (7, 8) (shell-like modes), for R1 ≤ 1 nm and for R1 ≥ 10 nm;

while the corresponding ranges of limitation of Ru’s formulation for vibration mod-
elling of DWCNTs are (percentage difference > 5%):

• n = 2 (circumferential flexure modes), for R1 ≤ 1 nm;
• n = 3 (shell-like modes), for R1 ≤ 2 nm;
• n = (4, 5) (shell-like modes), for 1 nm ≤ R1 ≤ 2 nm;
• n = 6 (shell-like modes), for 1 nm ≤ R1 ≤ 5 nm;
• n = (7, 8) (shell-like modes), for 2 nm ≤ R1 ≤ 5 nm.

Similarly, from Figure 9, with respect to the value of inner radius R1 and as a function
of the number of circumferential waves n, the following ranges of applicability of Ru’s
formulation for the vibration modelling of DWCNTs are identified (percentage difference
≤ 5%):

• R1 = 0.5 nm (very low inner radius), for n ≤ 1 and for n ≥ 4;
• R1 = 1 nm (low inner radius), for n ≤ 1 and for n ≥ 7;
• R1 = 2 nm (intermediate inner radius), for n ≤ 2;
• R1 = 5 nm (high inner radius), for n ≤ 5;
• R1 = 10 nm (very high inner radius), for every number of n;

while the corresponding ranges of limitation of Ru’s formulation for vibration mod-
elling of DWCNTs are (percentage difference > 5%):

• R1 = 0.5 nm (very low inner radius), for n = (2, 3);
• R1 = 1 nm (low inner radius), for 2 ≤ n ≤ 6;
• R1 = 2 nm (intermediate inner radius), for n ≥ 3;
• R1 = 5 nm (high inner radius), for n ≥ 6.

As previously verified, the vibrational mode shapes, and the corresponding natural
frequencies, of DWCNTs are sensitive to the van der Waals interactions. Actually, from
Figure 3 it can be noted that the maximum difference between the values of Ru’s and
He’s van der Waals interaction coefficient is present at the inner radius R1 = 0.5 nm. So,
the investigation of the critical order number (m, n) of the mode shape with which the
difference between Ru’s and He’s formulations cannot be ignored should be carried out at
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that value of the inner radius, see Figure 4. First of all, from Figure 4 it can be observed
that the behaviour is almost the same for every number of longitudinal half-waves m, and
therefore, the analysis will be focused on the critical number of circumferential waves n. By
imposing the limit value of percentage difference of 5%, below which Ru’s formulation can
be considered as sufficiently accurate, it is found that Ru’s formulation cannot be applied
in the range of the number of circumferential waves n = (2,3), which denotes the critical
order number of the mode shapes.

In the end, we want to validate the previous assumption of Section 5.2, i.e., that it is
necessary to assume an anisotropic model for R1 < 1 nm (relatively small inner radius),
while it can be adopted an isotropic model for R1 > 5 nm (large inner radius).

In Figure 10, the percentage difference in curves between the highest radial natural
frequencies obtained via He’s formulation by adopting isotropic and anisotropic elastic
shell models (anisotropic model as reference) are reported. He’s formulation is applied
since it takes into account the effect of the radius, and therefore, is able to simulate the
actual anisotropic behaviour of CNTs more correctly than Ru’s one. A simply supported
DWCNT with an aspect ratio L/R2 = 10 is analysed. The Donnell shell theory is adopted.
Circumferential flexure modes (n = 2) are studied. Different values of inner radius R1 and
numbers of longitudinal half-waves m are investigated.
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formulation (39). Simply supported DWCNT of Tables 1 and 2 with aspect ratio L/R2 = 10 and n = 2.
Inner radius R1. Number of longitudinal half-waves m.

From this Figure, it is noted that, for a relatively small inner radius R1 < 1 nm, the
percentage difference is significant (≈ 3.5%), and therefore, the anisotropic model must
be adopted; conversely, for a large inner radius R1 > 5 nm, the percentage difference
is negligible (< 0.2%), and therefore, within this range, the isotropic model can also
be correctly adopted. Again, this behaviour is almost the same for every number of
longitudinal half-waves m.

6. Conclusions

In the present paper, the comparison is conducted between Ru’s and He’s formulations
of the van der Waals interaction coefficient for the evaluation of the natural frequencies
of DWCNTs. The actual discrete DWCNT is modelled by means of a couple of concentric
equivalent continuous cylindrical shells, where the Donnell shell theory is considered to
obtain strain-displacement relationships and an anisotropic elastic shell model is adopted to
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take into account the chirality effects. Simply supported boundary conditions are imposed
and Rayleigh–Ritz method is used to obtain approximate natural frequencies and mode
shapes. Increasing values of the inner ratio R1 are considered. Different numbers of
longitudinal half-waves m and circumferential waves n are investigated.

The main findings are reported below:

1. for a small inner radius, the interaction coefficient strongly depends on the radius,
and therefore it assumes very different values for Ru’s and He’s formulations;

2. for a large inner radius, the interaction coefficient no longer depends on the radius,
and it assumes a constant value, which is similar for Ru’s and He’s formulations;

3. He’s formulation is able to simulate the actual anisotropic behaviour of CNTs more
accurately than Ru’s formulation, and is assumed as reference for the comparisons;

4. the difference in the results between Ru’s and He’s formulations is localised in the
highest radial natural frequencies;

5. for axisymmetric and beam-like modes, Ru’s formulation can be applied for every
value of the inner radius;

6. for shell-like modes with a relative low number of circumferential waves, Ru’s formu-
lation cannot be applied for a small inner radius;

7. for shell-like modes with a high number of circumferential waves, Ru’s formulation
can be applied for every value of the inner radius;

8. for a large inner radius, Ru’s formulation can be applied for every number of circum-
ferential waves;

9. the behaviour is almost the same for every number of longitudinal half-waves.

In all papers available in the literature that are focused on the analysis of MWCNT
vibrations, the van der Waals interaction coefficient is always modelled by considering
either Ru’s or He’s formulation. The main novelty of the present work is that, for the first
time, the results of Ru’s and He’s formulations are compared with each other. From this
comparison, which is carried out by varying DWCNT geometry and wavenumber, it is
derived when it is possible to apply the less accurate but simpler Ru’s formulation and
when it is necessary to use the more accurate but also more complex He’s formulation.
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