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Abstract: Increasing environmental concerns, stricter legal requirements, and a wide range of indus-
trial applications have led to growing demand for activated carbon worldwide. The energy-intensive
production of fresh activated carbon causes significant CO2 emissions and contributes to global
competition for renewable carbon-based raw materials. Although (thermal) reactivation of spent
activated carbon can drastically reduce the demand for fresh material, the reactivation process itself
is still mostly based on experience and empirical knowledge locked into activated carbon compa-
nies. Despite the vast number of papers published in the field, practically relevant, systematic, and
quantitative knowledge on the thermal reactivation process is barely available. This paper presents
a simple and robust methodology for the development of a predictive model for the production of
reactivated carbon with a defined product quality under energetically optimized conditions. An ex-
hausted activated carbon sample was subjected to 26 reactivation experiments in a specially designed
laboratory rotary kiln, whereas the experiments were planned and evaluated with statistical design
of experiments. The influence of the reactivation conditions (heating rate, heating time, H2O/N2

volume ratio, and CO2/N2 volume ratio) on the specific surface area, energy consumption, yield, and
adsorption capacity for diatrizoic acid were evaluated. The BET surface of the reactivated carbons
ranged between 590 m2/g and 769 m2/g, whereas the respective fresh carbon had a BET surface
of 843 m2/g. The adsorption capacity for diatrizoic acid measured as the maximum solid phase
concentration qm derived from the Langmuir equation varied between 24.4 g/kg and 69.7 g/kg
(fresh carbon: 59.6 g/kg). It was possible to describe the dependency of the quality criteria on
different reactivation parameters using mathematical expressions, whereas the response surface
methodology with nonlinear regression was applied to build the models. A reactivation experiment
under statistically optimized conditions resulted in energy savings up to 65%, whereas the properties
of the reactivated sample were close to the predicted values.

Keywords: water treatment; activated carbon reactivation; CO2 saving; modeling; response surface
methodology; design of experiments

1. Introduction

As adsorbents, granular activated carbon (GAC) or powdered activated carbon (PAC)
from fossil carbon, nut shells, wood, and peat (to a limited extent) play a central role in
drinking and wastewater treatment [1]. Nowadays, owing to stricter legal requirements
for organic trace substances, an additional demand for fresh activated carbon (AC) in
drinking and wastewater treatment facilities is to be anticipated [2–4]. At the same time,
a steep increase in demand for fresh AC in the exporting countries may lead to a critical
development in the available quantity and price [5]. Therefore, it has been widely suggested

C 2023, 9, 115. https://doi.org/10.3390/c9040115 https://www.mdpi.com/journal/carbon

https://doi.org/10.3390/c9040115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/carbon
https://www.mdpi.com
https://orcid.org/0000-0003-2767-9319
https://orcid.org/0000-0002-0834-2828
https://orcid.org/0000-0002-6052-8670
https://orcid.org/0000-0003-2200-9658
https://orcid.org/0000-0001-6605-5010
https://doi.org/10.3390/c9040115
https://www.mdpi.com/journal/carbon
https://www.mdpi.com/article/10.3390/c9040115?type=check_update&version=2


C 2023, 9, 115 2 of 14

to reactivate and reuse exhausted AC. Most importantly, reactivated carbons (RACs) are
not only cheaper than fresh AC, but they also have a significantly better energy and CO2
balance [6]. In addition, reactivation of exhausted AC reduces the dependency on raw
materials and minimizes waste disposal as well.

Due to the financial and environmental advantages of RAC, many regeneration ap-
proaches such as microwave reactivation, electrochemical processes, acid-washing, thermal
reactivation, and supercritical fluid regeneration have been proposed [7,8]. Nevertheless,
thermal reactivation (ex situ) is still the method of choice in most cases [7,9]. This method
is essentially based on heating the carbon material between 700 ◦C and 950 ◦C under a
defined gas atmosphere, in which the previously adsorbed pollutants are desorbed and/or
pyrolytically/oxidatively converted.

The restoration of the adsorption capacity during thermal reactivation occurs in sev-
eral steps including drying, desorption, pyrolysis, and oxidation. Generally, the term
“adsorption capacity” refers to the amount of adsorbate (e.g., organic pollutant) adsorbed
per unit mass of the adsorbent. In exhausted activated carbon, the available adsorption sites
within the material are to a large extend saturated with adsorbate or no longer accessible.
Whereas the drying step in thermal reactivation (up to 200 ◦C) is accounted for by the
(partial) removal of volatile adsorptives due to the resulting water vapor, the desorption
step (200–500 ◦C) is accounted for by the removal of volatile and unstable compounds.
The decomposition of non-volatile compounds takes place during the pyrolysis step
(500–700 ◦C). As a result of the recombination reactions of radical fragments with the
surface, blocking of the pore system and a reduction in the adsorption capacity might also
occur. During the oxidation step (at above 700 ◦C), gases (e.g., water vapor, carbon dioxide,
or air) are added to oxidize the remaining adsorbed molecules. The gases must be added
sub-stoichiometrically to avoid quantitative decomposition of the AC [10]. The addition of
carbon dioxide leads to a pore opening at a later stage of the activation process, which in-
volves widening of the narrow microporosity, whereas the addition of water vapor widens
the microporosity from the early stage of the activation process [11]. Despite being widely
considered one of the most efficient processes, thermal reactivation suffers from several
drawbacks such as incomplete desorption or pyrolysis due to an insufficient reactivation
temperature, overactivation, and/or mass loss (low yield) due to unfavorable conditions,
an undesirable reduction in particle size, or fouling (blocking of the pores) [12–14]. Further,
reactivation under non-optimized conditions leads to excess energy consumption, making
the process economically and ecologically less efficient.

The reactivation conditions have been reported to have a crucial influence on the
quality of RAC and, thus, on their further use in water treatment [15,16]. Xin-hui et al.
thermally reactivated exhausted AC acquired from the silicon industry by varying the
temperature, steam flow rate, and reactivation time with a fixed heating rate. It was
observed that among these three factors, the steam flow rate had the most significant
influence on the iodine number of the RAC and moreover led to a faster uptake of methylene
blue [9]. Landwehrkamp et al. reactivated an exhausted AC sample in three different
ways in a full-scale reactivation furnace and assessed the RAC’s ability to remove organic
micropollutants. The adsorption capacity of the RACs was assessed in terms of a fixed-
bed filter breakthrough curve for diatrizoic acid at environmental concentrations (ng/L),
as well as in batch adsorption tests at different mg/L concentration ranges for different
organic compounds. They achieved the highest adsorption capacity with an oxidative
reactivation in a rotary kiln at 920 ◦C [17]. Cevallos Toledo et al. [18] examined the influence
of chemical treatment, reactivation time, and reactivation temperature on the gold–cyanide
adsorption capacity and the mechanical stability of AC. They achieved the best reactivation
results via acid washing with HNO3, and a subsequent thermal reactivation at 850 ◦C over
1 h. Although a comparatively high number of experiments was conducted, the authors
did not apply any statistical tools to detect the interdependencies between the examined
influence factors.
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Despite various empirical studies, systematic and quantitative knowledge of the AC
reactivation process itself is still missing. Furthermore, the quantitative influence of single
reactivation parameters on the product quality is largely unknown. On the one hand,
furnaces at AC manufacturing sites are generally too large and too expensive in operation
to be available for systematic investigations. On the other hand, scientific studies often
rely on ovens at a laboratory scale using only a few grams or even milligrams of material,
thereby obtaining results of little practical relevance. Further, the small tubular or muffle
furnaces used in most scientific studies [18,19] can lead to an inhomogeneous transfer of
heat and reaction gases toward the activated carbon bedding because this is not moved
as in a rotary kiln or fluidized bed oven. Hence, a transfer of the results to technical-scale
furnaces is often impossible.

As systematic and quantitative information on the thermal reactivation of spent AC is
still missing in the literature, the main objective of the current study was the establishment
of systematic and quantitative information regarding the thermal reactivation of activated
carbon under near-practical conditions. The large dataset and the use of statistical methods
for the design of the experiments allowed for an advanced evaluation of the results and
the development of predictive models. This is, to our knowledge, the first time that a
statistically based predictive model for the thermal reactivation of ACs has been published.
Whereas the influence of the reactivation conditions on the physicochemical properties
of the AC was published elsewhere [12], the current paper is focused on the statistical
modeling approach and the adsorptive properties.

2. Materials and Methods
2.1. Preparation of Exhausted AC

A fossil-coal-based exhausted AC used for the removal of personal care and pharma-
ceutical products and other trace organics from wastewater was obtained in wet conditions
from a municipal sewage treatment facility in Germany. Prior to the reactivation experi-
ments, the exhausted AC was washed with water five times to remove coarse impurities
(plastics, mud, and shells), dried in an air oven (Universal Oven Model UNB 500, Memmert
GmbH, Schwabach, Germany) at 105 ◦C for 24 h, and stored in an airtight container until
further usage.

2.2. Reactivation Conditions and Target Parameters

The influence of the reactivation conditions heating rate, heating time, H2O/N2
volume ratio, and CO2/N2 volume ratio on the specific surface area (expressed as BET
surface area), energy consumption, yield, and adsorption capacity of RAC was investigated.

2.3. Thermal Reactivation Protocol

A custom-made bench-scale rotary kiln furnace (see Figure S1) was employed for
conducting the thermal reactivation experiments. N2 gas with a flow rate of 250 L/h
was constantly supplied throughout the experiment. Furthermore, 400 g of the granular
exhausted AC was placed in a rotating stainless steel reactor and heated to the desired
temperature at a specified heating rate and heating time. After the reactivation, the RAC
was cooled down to room temperature under a pure nitrogen atmosphere. Before setting the
test parameters, the furnace was first heated to 300 ◦C in each experiment. Subsequently, a
heating time from 40 to 80 min and a heating rate from 250 to 400 K/min were set, resulting
in a maximum temperature between 450 ◦C and 900 ◦C. It is likely that below 450 ◦C, the
reactivation success will be too low, and, above 900 ◦C, the pore system might collapse,
or too high a mass loss might occur. Furthermore, after each reactivation experiment, the
energy consumption and RAC yield were noted and the adsorption capacity for diatrizoic
acid was determined. The energy consumption was always determined for the whole
experiment, i.e., the recorded values refer to an original mass of 400 g exhausted carbon.
Including preheating and cooling to room temperature, each reactivation experiment took
about 24 h.
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2.4. Determination of RAC’s Adsorption Capacity

Prior to the adsorption experiment, the particle size of the RACs was brought down
to below 45 µm using a ball mill (Pulverisette 7, Fritsch gmbH, Idar-Oberstein, Germany).
In this work, diatrizoic acid, a contrast agent applied in X-ray diagnostics, was used as
an example for compounds that cannot be efficiently removed in biological wastewater
treatment. The diatrizoic acid was procured from Sigma-Aldrich, Taufkirchen, Germany.
The diatrizoic acid adsorption capacity was determined using so-called “bottle-point
isotherms” [20]. All adsorption experiments were carried out in a synthetic model water
(0.5 mmol/L NaHCO3, 0.3 mmol/L CaCl2, and 0.2 mmol/L MgSO4) made from ultrapure
water as described by Landwehrkamp et al. [17]. The pH value of the synthetic model
water was ~7.4 and the conductivity ~200 µs/cm at 25 ◦C. In a typical batch experiment,
different amounts (5–50 mg/L) of RAC were added to the flasks containing diatrizoic
acid (3 mg/L) solution. It should be noted that at the pH value of the experiments, the
diatrizoic acid (pKa-value ~3.4) was almost exclusively present as the corresponding anion,
i.e., diatrizoate. The resulting suspension was shaken at 150 rpm at room temperature using
a mechanical shaker (Laboshake, Gerhardt GmbH & Co. KG, Königswinter, Germany).
After 24 h contact time, the suspension was filtered through 0.45 µm cellulose nitrate filters
(Ahlstrom GmbH, Bärenstein, Germany) and the residual diatrizoic acid concentration was
analyzed using a Lambda 20 UV spectrophotometer (Perkin Elmer, Rodgau, Germany).
The diatrozoic acid concentration at equilibrium varied between 0.1 mg/L and 3 mg/L. All
experiments were repeated at least two times.

The solid phase loading (q in g
kg ) of the RACs was determined using Equation (1):

q = (c0 − ce)
V
M
∗ 1000 (1)

where c0 and ce are the initial and equilibrium concentrations of the diatrizoic acid (mg/L),
V is the volume of solution (L), and M is the mass of the RAC (g).

Lineweaver–Burk linearization of the Langmuir model (2) and a simple linearization
form of the Freundlich model (3) were used to fit the equilibrium data [21]:

1
qe

=

(
1

qmaxKL

)
1
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+
1
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)
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where qe(g/kg) is the capacity of adsorbate uptake of diatrizoic acid at equilibrium and
qmax(g/kg) the maximum saturated monolayer adsorption capacity, KL (L/(mg) the Lang-
muir isotherm constant related to the affinity between the respective AC and the dosed
diatrizoic acid, KF (mg/g)/(mg/L)n the Freundlich constant, and n (dimensionless) the
Freundlich intensity parameter, which indicates the magnitude of the adsorption driving
force or the surface heterogeneity. Since the argument of the logarithm must be unitless,
the corresponding parameters are divided by their units.

2.5. Design of Experiments

The so-called response surface methodology (RSM) is a statistical tool for the assess-
ment of the influence of individual experimental factors (or their combinations) on product
properties [22,23]. Besides a fundamental understanding of the process itself, the statistical
model allows predictions, i.e., it is possible to model the value of the response factors (R)
for a defined set of experimental parameters.

Often, the quantitative dependence of one (or more) target variable(s) on a few factors
is to be determined in detail. Hence, it is often impossible to apply a linear fit. The



C 2023, 9, 115 5 of 14

nonlinearity is crucial when the position of a maximum (e.g., the BET surface) or a minimum
(e.g., the energy consumption) is being searched for. In most cases, a quadratic model is
then used to empirically describe the dependence of the target variable R on the factors Xi:

R = β0 +
n

∑
i=1

βiXi +
n

∑
i=1

βiiX2
i +

n−1

∑
i=1

n

∑
j=i+1

βijXiXj + ε (4)

where R is the predicted response factor, β0 is the constant coefficient, βii is the quadratic
coefficients, βij is the interaction coefficients, Xi, Xj are the coded values of the factors
considered, and ε is the random deviation observed in the response R. Xi, Xj and the
respective products of both are the so-called predictors.

In this study, the following responses (dimensionless) were considered and deter-
mined: R1 = BET surface area/(m2/g), R2 = energy consumption/(kWh), R3 = yield/(%),
and R4 = diatrizoic acid adsorption capacity/(g/kg). The diatrizoic acid adsorption capac-
ity (R4) was determined from the parameters of the Langmuir and Freundlich isotherms for
the uptake of diatrizoic acid from water (see Table S1). Based on the higher correlation coef-
ficient value (R2), the Langmuir isotherm fitted well to the adsorption data. Therefore, the
determined adsorption capacity (R4) provided in Table 1 is the (theoretical) maximum solid
phase concentration qm calculated from the Lineweaver–Burke linearization (Equation (2))
of the Langmuir equation.

Table 1. Experimental design matrix and determined responses for each reactivation process. * For
comparison: the BET surface area of the respective fresh AC was measured to be 843 m2/g, adsorption
capacity was 59.6 g/kg.

Run X1 X2 X3 X4 R1 * R2 R3 R4 *

Heating
Rate in

K/h

Heating
Time in

min

H2O/N2
Volume

Ratio

CO2/N2
Volume

Ratio

BET
Surface
in m2/g

Energy
Consumption

in kWh

Yield
in %

Diatrizoic Acid
Adsorption

Capacity
in g/kg

Factorial
points

1 225 40 0 0 590 2.5 92.1 23.4
2 450 40 0 0 673 3.2 90.3 42.7
3 225 80 0 0 635 3.8 90.0 40.8
4 450 80 0 0 681 6 87.5 47.1
5 225 40 0.3 0 597 2.5 91.5 34.1
6 450 40 0.3 0 687 3.3 89.8 60
7 225 80 0.3 0 659 3.9 89.8 35.4
8 450 80 0.3 0 762 6 85.8 62.4
9 225 40 0 0.3 598 2.4 92.0 30.3

10 450 40 0 0.3 664 3.4 90.5 41.3
11 225 80 0 0.3 649 3.8 90.4 47.7
12 450 80 0 0.3 735 5.9 86.4 51.5
13 225 40 0.3 0.3 644 2.6 91.4 36.2
14 450 40 0.3 0.3 653 3.4 89.5 58.6
15 225 80 0.3 0.3 633 4 89.9 50.6
16 450 80 0.3 0.3 769 6 84.9 69.7

Axial
points

17 157 60 0.15 0.15 635 2.8 91.3 29.2
18 518 60 0.15 0.15 728 4.9 87.5 65
19 338 28 0.15 0.15 668 2.3 91.7 32
20 338 92 0.15 0.15 737 5.6 87.3 58.6
21 338 60 0.4 0.15 686 3.8 89.4 52.1
22 338 60 0.15 0.4 699 3.8 89.5 53.1

Center
point

23 338 60 0.15 0.15 680 3.7 89.9 38.8
24 338 60 0.15 0.15 690 3.8 89.3 39.7
25 338 60 0.15 0.15 699 3.8 87.9 41
26 338 60 0.15 0.15 674 3.9 89.5 43.3
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Four reactivation conditions (factors) were investigated at two stages each, namely
heating rate (225 and 450 ◦C/h), heating time (40 and 80 min), H2O/N2 volume ratio (0 and
0.3), and CO2/N2 volume ratio (0 and 0.3), respectively. For reasons of comparison, all
responses were also determined for the respective fresh AC and the exhausted AC sample.

To adequately represent the quadratic effects, an experimental design with more than
two stages is necessary. However, since a full factorial experimental design with three stages
would result in unreasonably high experimental effort, a central composite design (CCD)
was chosen here. Accordingly, a 24 full factorial experimental design with an additional
center point and additional 2 × 4 = 8 star points was designed [24]. A centrally composed
experimental design is orthogonal with respect to all terms in the model (Equation (4)) if

α2 =
1
2

(√
N·Ns − Ns

)
(5)

where α is the distance (in coded units) of each star point from the central point, Ns is the
number of single experiments for the 24 full factorial experimental design without a center
point (here: Ns = 24 = 16), and N is the total number of experiments for the CCD (here:
Ns = 28, considering the eight star points and if a fourfold repetition of the test is carried out
at the central point). The orthogonal experimental design is of benefit for the mathematical
evaluation since:

• the estimates for the coefficients β in model (Equation (1)) are independent of each
other (i.e., they do not influence each other), and

• for given step values for −1 and 1 (code values) and a given number of individual
trials, one obtains the narrowest possible confidence intervals for the coefficients
β [24].

The determined coded α values of the individual factors used in the experimental
design and their corresponding non-coded values are shown in Table 2.

Table 2. Experimental range and levels of the independent test factors.

Factors Label
α = −1.61 −1 0 1 1.61

Heating rate (K/h) X1 157 225 338 450 518
Heating time (min) X2 28 40 60 80 92

H2O/N2 volume ratio X3 −0.15 0 0.15 0.3 0.4
CO2/N2 volume ratio X4 −0.15 0 0.15 0.3 0.4

The Minitab (version 19) statistical software was applied for experimental design,
for the regression and graphical analyses of the obtained data, and for the forecasts in
the reactivation process. The analysis of variance used in Minitab and other important
terminology are explained in detail in Supplementary Information (S1). Given the fact that
two experiments with negative α values for the H2O/N2 and CO2/N2 volume ratio were
evidently not possible, D-optimization was performed using Minitab to improve the initial
experimental design. D-optimization allows limitations in the experimental design to be
taken into account, i.e., combinations that are not technically or physically possible [24].
This has resulted in 26 reactivation experiments instead of 28 (see Table 1). All reactivation
experiments were conducted in a random sequence as proposed by Minitab.

3. Results and Discussion
3.1. Thermal Reactivation

For each reactivation experiment, the corresponding responses for BET surface area
(R1), energy consumption per reactivation experiment (R2), yield (R3), and diatrizoic acid
adsorption capacity (R4) were determined. The results are shown in Table 1. While the
experimentally determined BET surface (R1) of the RACs ranged between 590 and 769, the
energy consumption (R2), yield (R3), and adsorption capacity (R4) ranged between 2.3 and
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6, 84.9 and 92.1, and 23.4 and 69.7, respectively. Furthermore, the repetitions of the center
point resulted in minor deviations, underlining the good reproducibility of the experiments.

3.2. Statistical Model Analysis

A mathematical quadratic polynomial regression expression (Equation (4)) was used
to analyze the influence of factors on the responses using Minitab. The significance of
the factors was assessed using a standard analysis of variance (ANOVA [25]) with α

= 0.05 as the significance level. All the results of ANOVA are listed in Supplementary
Information (Tables S2–S5). The respective full quadratic equations with the exclusion of
insignificant factors for the responses BET surface (R1), energy consumption (R2), yield
(R3), and adsorption capacity (R4) are given in Equations (6)–(9), respectively.

R1 = 470.5 + 0.3232X1 + 1.248X2 + 329X3 − 793X2
3 (6)

R2 = 2.13− 0.00217X1 − 0.0171X2 + 0.00017X2
2 + 0.00014X1·X2 (7)

R3 = 93.22 + 0.00221X1 + 0.0102X2 − 2.351X3 − 0.000236X1·X2 (8)

R4 = 2.83 + 0.0508X1 + 0.2869X2 − 34.0X3 + 18.97X4 + 0.2001X1·X3 (9)

A positive sign in front of the terms indicates a synergistic effect, whereas a negative
sign indicates an antagonistic effect. The impact of the impact factors on the responses
are visualized using Pareto charts and two-dimensional contour plots determined using
Minitab. In the Pareto chart, the absolute values of the standardized effects are shown
ordered from the largest to the smallest effect. The standardized effects are t-statistics
used to test the null hypothesis that the effect is equal to 0. In this study, all standardized
effects correspond to the absolute value of the t-statistic for the respective coefficient of the
predictors. In addition, a reference line is displayed in the diagram to show which effects
are statistically significant. The reference line for statistical significance is the critical t-value
which depends on the chosen significance level (here α = 0.05). It equals the (1 − α/2)th
quantile of a t-distribution with the degrees of freedom corresponding to the degrees of
freedom of the error term (number of reactivation experiments—number of predictors − 1).
If the standardized effect is larger than the critical t-value, the null hypothesis can be
rejected, and the effect is statistically significant. For further information, see [26]. Only
significant standardized effects are shown in the following Pareto charts.

It is evidenced from the Pareto chart analysis (Figure 1a) that the BET surface (R1)
is influenced significantly by the linear terms heating rate (X1), heating time (X2), and
H2O/N2 volume ratio X3, and the quadratic term (X3)2. Figure 1b–d show the conjugate
effect of the heating rate (X1) and heating time (X2) on the BET surface (R1) in which the
H2O/N2 volume ratio (X3) varies between 0, 0.2, and 0.4 (expressed in the figure as “set
value”). It can be seen from Figure 1b that a higher heating rate (X1) and heating time
(X2) can certainly enhance the BET surface (R1), which might be attributed to the better
mobilization of previously adsorbed compounds from the AC matrix. Equally, a H2O/N2
ratio (X3) increasing from 0 to 0.2 (Figure 1c) contributes to the BET surface (R1) and a
further increase in the H2O/N2 ratio (X3) to 0.4 (Figure 1d) results in a decrease in the BET
surface (R1). A possible explanation for this behavior might be that water vapor reacts
and oxidizes the residual adsorbed compounds and removes them from the material [27].
This helps in the restoration of the original pore structure of the AC. However, a higher
water vapor concentration can lead to a reduction in the BET surface (R1), as pore widening
is more pronounced and small pores combine to form a larger pore (over-reactivation).
Furthermore, squared X3 interactions showed almost no influence on the BET surface (R1),
whereas increasing or decreasing the CO2/N2 ratio (X4) showed no effect on R1.
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Figure 1. (a) Pareto chart of the influence of factors on BET surface area (R1) and (b–d) contour plots
of BET surface area (R1) showing the influence of heating rate (X1) and heating time (X2) at different
H2O/N2 ratio (X3) set values.

From an economic point of view, the energy consumption (R2) is considered one of
the vital parameters for the reactivation processes. The results reveal that the model and
the terms heating time (X2) and heating rate (X1) are significant to the response. The energy
consumption (R2) is greatly affected by the linear terms heating time (X2) and heating rate
(X1), by the interactive term X1 · X2, and the quadratic term (X2)2 (see Figure 2a). It is
evident from Figure 2b that energy consumption (R2) increases with an increase in heating
time (X2) and heating rate (X1).
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The yield (see Figure 3a) (R3) is impacted strongly by the heating rate (X1) and heating
time (X2), followed by their interactive terms (X1 · X2), and the H2O/N2 ratio (X3). Figure 3b–d
show the contour plots of the effects of heating rate (X1) and heating time (X2) on the yield
(R3) by varying the H2O/N2 ratio (X3). It is shown that increasing the heating rate (X1) and
heating time (X2) results in a decreased yield (R3). This was expected, as heating in the
presence of oxidizing gas leads to a burn-off of previously adsorbed compounds (the desired
effect) and carbon material itself (unwanted effect). CO2 has a certain oxidation potential as
described using the Boudouard reaction [28]; however, water vapor is generally regarded
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as a stronger oxidation agent in activated carbon activation [29]. This was confirmed by the
results obtained within this study.
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It is observed from Figure 4a that the adsorption capacity (R4) is strongly dependent
on the heating rate (X1) term followed by the terms heating time (X2), H2O/N2 ratio (X3),
X1*X3, and CO2/N2 ratio (X4). The influence of the CO2/N2 ratio (X4) on the response is
only seen for adsorption capacity (R4), but not for the other responses. It is apparent from
Figure 4b–d that increasing the heating time (X2) and heating rate (X1) leads to an increase
in the diatrizoic acid adsorption capacity. This is most likely because the elimination of
strongly or chemically adsorbed compounds from the AC matrix is quite difficult at a
lower heating time (X2) and heating rate (X1) and, hence, the restoration of the original
pore structure fails. Furthermore, increasing both the H2O/N2 ratio (X3) and CO2/N2
ratio (X4) from 0 to 0.4 has promoted the diatrizoic acid adsorption capacity of the RACs.
Interestingly, the authors found in their study of the influence of the reactivation conditions
on the physio-chemical properties of the RACs [12] that the surface chemistry (number and
nature of functional groups) changes differently also depending on the H2O/N2 ratio (X3)
and CO2/N2 ratio (X4). This certainly can impact the adsorption capacity of the AC for
diatrizoic acid.

The suitability of the developed polynomial regression equation was further assessed
by determining the coefficient of determination R2. This was evaluated by plotting the
experimental values of the single response factors (i.e., the real values that were obtained
within the reactivation experiments) against the values calculated using Equations (6)–(9)
(cf. Figure 5). The determined R2 values for the developed polynomial models are 83.3%
for the BET surface (R1), 99.6% for the energy consumption (R2), 94.3% for the yield (R3),
and 89.7% for the adsorption capacity (R4), which implies that only 16.7%, 0.4%, 5.7%, and
10.3% of the total variation cannot be explained by the respective model and underlines the
reliability of the developed models.
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3.3. Production of Reactivates with a Defined BET Surface Area at Lowest Energy Consumption

The BET surface area (R1) is one of the most important parameters for RACs. The
desired or necessary BET surface of RAC is strongly dependent on the respective application
(e.g., drinking water treatment, wastewater treatment, treatment of landfill leachates, etc.),
whereas applications for emission control typically require RAC of a lower quality than
drinking water treatment. Providing RACs with higher BET surface areas is connected to
higher energy consumption for the reactivation and thus of disadvantages for reactivating
companies, also against the background that a higher BET surface area does not necessarily
imply a higher adsorption capacity. Thus, the target of this optimization was to predict the
optimal reactivation conditions for the production of a RAC with a BET surface area of 630
m2/g with the additional goal of achieving it with the minimum energy consumption. The
value of 630 m2/g was chosen to make the modeling results comparable with some of the
experimental results (runs 3, 15, and 17).

The proposed reactivation conditions extracted from the model are given in Table 3.
For these conditions, an energy consumption of 2.5 kWh was predicted. Please note that
the CO2/N2 ratio is not part of the model and that the model proposes no addition of H2O
to realize the target. The parameter settings proposed by the model were used to produce
a sample “OC” (Table 4). The BET surface area of the produced RAC was determined as
612 m2/g, whereas the energy consumed was 2.4 kWh and the yield obtained was 91%.
The obtained BET surface area value was within a 95% confidence interval of the predicted
BET surface area value. Furthermore, the predicted and the actual energy consumption did
not differ within the given measurement precision (±0.1 kWh), thereby underlining the
quality of the model.

Table 3. Optimized conditions proposed by the model for the targeted BET surface area under
minimum energy demand.

Proposed
Conditions

BET-Surface Area
(m2/g)

Energy Consumption
(kWh)

Heating
rate (K/h)

Heating
time (min)

H2O/N2
ratio

Model
prediction

Exp.
result

Model
prediction

Exp.
result

387 28 0 630 612 2.5 2.4

Table 4. Adjusted parameters and results of experimental runs 3, 15, 17 and with optimized condi-
tions (OC).

Run Heating Rate
(K/h)

Heating
Time
(min)

H2O/N2
Ratio

BET-Surface
Area

(m2/g)

Energy Consumption
(kWh)

3 225 80 0 635 3.8
15 225 80 0.3 633 4
17 157 60 0.15 635 2.8
OC 387 28 0 612 2.4

A comparison with the results of runs 3, 15, and 17 (Table 4) shows that in case of
non-optimal reactivation conditions, the energy consumption will be much larger for the
same targeted BET surface area (up to about 65% related to the optimum).

4. Conclusions and Outlook

A simple and robust method using a central composite design of experiments and
response surface methodology with nonlinear regression was used to develop a predictive
model for the reactivation of the exhausted ACs used in water treatment. The model is
able to describe the influence of the reactivation conditions on several product quality
and process criteria. By means of the model, the simultaneous optimization of several key
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performance parameters can be carried out by predicting suitable reactivation conditions.
The influence of the reactivation conditions heating rate, heating time, H2O/N2-volume
ratio, and CO2/N2-volume ratio on the specific surface area (expressed as BET surface
area), energy consumption, yield, and diatrizoic acid adsorption capacity was investigated.
For better scalability of the laboratory results to the technical scale, a bench-scale rotary
kiln was used, allowing the reactivation of 400 g of sample per batch. It was observed that:

• heating rate and heating time had the greatest influence on all the considered process
and product criteria.

• the H2O/N2 ratio generally showed less effect, but a proper adjustment can help to
increase the yield or the adsorption capacity.

• the CO2/N2 ratio only affected the adsorption capacity for diatrizoic acid.
• The results further show that the correlations between the effects (reactivation condi-

tions or their combinations) have considerably nonlinear components. Therefore, the
conducted nonlinear regression was necessary for the statistical modeling.

The proposed methodology is a powerful tool to optimize the thermal reactivation
process of a specific AC and to adjust the operating parameters of reactivation kilns in such
a way that, for example:

1. a recovery of the adsorption properties as complete as possible can be achieved at a
minimum mass loss,

2. a tailor-made reactivate with desired characteristics can be produced, and
3. the energy input and CO2 emissions can be minimized to produce reactivates with

sufficient quality for less demanding treatment processes (downscaling).

A future application of the methodology could be a lifecycle analysis in which the
reactivation process and the filter reactivation frequency in a treatment process are matched
to reduce the overall energy consumption. Lower quality of the RAC due to an energy-
optimized reactivation can result in a shorter lifetime of the filter and thus, a higher
reactivation frequency. The shorter lifespan of the filter, however, could be overcompen-
sated for by the lower energy consumption for the less extensive reactivation, resulting in
a net energy saving. Vilen et al. [30] postulated in their comparative lifecycle analysis of
activated carbons that the majority of the CO2 footprint of reactivated carbons stems from
the make-up (fresh) carbon that is necessary to compensate for the mass loss during reacti-
vation. The proposed methodology can help to optimize reactivation processes in terms of
yield and thus contribute to a more environmentally friendly activated carbon application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/c9040115/s1 Figure S1: Photo image of a bench-scale rotary kiln
furnace set-up used for the thermal reactivation process, Table S1: Calculated isotherm parameters
for DA adsorption onto RACs and fresh AC, Table S2: Analysis of Variance for R1, Table S3: Analysis
of Variance for R2, Table S4: Analysis of Variance for R3, Table S5: Analysis of Variance for R4,
S1: Analysis of Variance using the F-Test of the overall significance, S2: Standardized Effects.
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