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Abstract: The hierarchical structure and microscale dimensions of carbon nanotube yarns (CNTYs)
make them great candidates for the development of integrated sensing applications. The change
in the electrical resistance of CNTYs due to mechanical strain, known as piezoresistivity, is the
principal mechanism in strain sensing using CNTYs. While the axial tensile properties of CNTYs
have been studied widely, studies on the axial piezoresistive response of CNTYS under compression
have been limited due to the complexities associated with the nature of the experiments involving
subjecting a slender fiber to compression loading in its axial direction. In this study, the piezoresistive
response of a single CNTY embedded into a polymeric resin (CNTY monofilament composite)
was investigated under axial compression. The results suggest that the CNTY exhibits a strong
piezoresistive response in the axial direction with sensitivity or gauge factor values in the order of
0.4–0.5 for CNTY monofilament composites. The piezoresistive response of the CNTY monofilament
composites under compression was compared to that under tension and it was observed that the
sensitivity appears to be slightly lower under compression. The potential change in sensitivity
between the freestanding CNTY and the CNTY monofilament composite under compression is
still unknown. Knowing the axial piezoresistive response of the CNTYs under both tension and
compression will enable their use in sensing applications where the yarn undergoes compression
including those in aerospace and marine structures, and civil or energy infrastructure.

Keywords: carbon nanotube yarn; piezoresistive response; axial compression; monofilament composites;
tension-compression

1. Introduction

Carbon nanotubes (CNTs) have been shown to exhibit extraordinary mechanical,
electrical, and thermal properties [1]. Since their discovery in 1991, there has been great
interest in tapping into their sensing capabilities for a variety of applications. In order to
be utilized as piezoresistive sensors for strain monitoring, CNTs could be in the form of
just nanotubes [2], sheets and thin films [3,4], or fibers and yarns [5–12]. Carbon nanotube
yarns (CNTYs) are continuous fiber-like materials consisting of thousands of individual
CNTs in their cross-section that can be twisted and densified to form a yarn, and further
tailored to serve as in situ sensors in structural health monitoring (SHM) due to their
significant sensitivity to strain, small size, light weight, high surface area, high electrical
and thermal conductivity, and multifunctionality [12–14]. Some studies show that CNTYs
exhibit an elastic modulus ranging from 70 to 350 GPa and a tensile strength ranging from
0.23 to 8.8 GPa [1,15]. Thus, the elastic modulus of CNTY can be greater than that of
aluminum (70 GPa) and of steel (210 GPa). Moreover, recent studies also show that the
specific electrical conductivity of CNTYs may reach a maximum of 19.6 × 106 Sm−1g−1cm3

exceeding 14.15 × 106 Sm−1g−1cm3 and 6.52 × 106 Sm−1g−1cm3, which correspond to
the specific electrical conductivity of aluminum and copper, respectively [16]. However,
one of the most relevant properties of the CNTY for sensing is piezoresistivity, which
causes the electrical resistance to change when a mechanical strain is applied [8–10]. From
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a nanoscale perspective, for low tensile strain levels (<2%), metallic nanotubes play a
paramount role in the change of electrical resistance [17]. For high tensile strain levels,
above 5%, semiconducting nanotubes dominate the change in the electrical resistance
of the CNTYs [17]. There are two underlying phenomena that take place at different
strain rates [18]. It is said that the bundles of carbon nanotubes untwist during tensile
loading and their contact length decreases (the density of CNTYs per unit length decreases),
which leads to an increase in electrical resistance [19]. In contrast, the electrical resistance
decreases during the unloading segments [17–19]. In addition, there is a decrease in
electrical resistance that occurs due to inter-tube/inter-bundle slippage (inelastic shear
motion) caused by the yarn’s relaxation and structural reformation during the loading
segments, and a continuous decrease in electrical resistance occurs during unloading
as the yarn recovers its (conductive) structure [19]. Based on previous studies, the first
phenomenon, whereby an electrical resistance increase is recorded during the loading and
a decrease in electrical resistance in the unloading segments is dominant at high tensile
strain rates. At a very low quasi-static tensile strain rate, an electrical resistance decrease
during both loading and unloading segments has been reported [18–23]. In this study,
the axial piezoresistive response of the CNTY monofilament composites was investigated
under compression for a variety of strain rates and the results were compared with those of
the piezoresistive response of CNTY monofilament composites under tension.

2. Materials, Fabrication and Characterization
2.1. Materials

The CNTY used in this study was fabricated from a vertically aligned CNT array at
Nanoworld Laboratories (Cincinnati, OH, USA). The diameter, density, angle of twist, and
average electrical resistivity of the densified CNTYs are ~30 µm, ~0.65 g/cm3, ~30◦, and
1.7 × 10−3 Ω cm, respectively [19–23]. The corresponding electrical conductivity value is
about 3.337 × 10−5 S/m. Figure 1 shows images of the twisted yarn obtained by Scanning
Electron Microscopy (SEM). Figure 1a shows an image of the CNTY with a magnification
of 5000× and Figure 1b shows an image with a magnification of 50,000×.

C 2023, 9, x FOR PEER REVIEW 2 of 13 
 

most relevant properties of the CNTY for sensing is piezoresistivity, which causes the 

electrical resistance to change when a mechanical strain is applied [8–10]. From a na-

noscale perspective, for low tensile strain levels (<2%), metallic nanotubes play a para-

mount role in the change of electrical resistance [17]. For high tensile strain levels, above 

5%, semiconducting nanotubes dominate the change in the electrical resistance of the 

CNTYs [17]. There are two underlying phenomena that take place at different strain rates 

[18]. It is said that the bundles of carbon nanotubes untwist during tensile loading and 

their contact length decreases (the density of CNTYs per unit length decreases), which 

leads to an increase in electrical resistance [19]. In contrast, the electrical resistance de-

creases during the unloading segments [17–19]. In addition, there is a decrease in electrical 

resistance that occurs due to inter-tube/inter-bundle slippage (inelastic shear motion) 

caused by the yarn’s relaxation and structural reformation during the loading segments, 

and a continuous decrease in electrical resistance occurs during unloading as the yarn 

recovers its (conductive) structure [19]. Based on previous studies, the first phenomenon, 

whereby an electrical resistance increase is recorded during the loading and a decrease in 

electrical resistance in the unloading segments is dominant at high tensile strain rates. At 

a very low quasi-static tensile strain rate, an electrical resistance decrease during both 

loading and unloading segments has been reported [18–23]. In this study, the axial piezo-

resistive response of the CNTY monofilament composites was investigated under com-

pression for a variety of strain rates and the results were compared with those of the pie-

zoresistive response of CNTY monofilament composites under tension. 

2. Materials, Fabrication and Characterization 

2.1. Materials 

The CNTY used in this study was fabricated from a vertically aligned CNT array at 

Nanoworld Laboratories (Cincinnati, OH, USA). The diameter, density, angle of twist, and 

average electrical resistivity of the densified CNTYs are ~30 μm, ~0.65 g/cm3, ~30°, and 1.7 

× 10−3 Ω cm, respectively [19–23]. The corresponding electrical conductivity value is about 

3.337 × 10⁻5 S/m. Figure 1 shows images of the twisted yarn obtained by Scanning Electron 

Microscopy (SEM). Figure 1a shows an image of the CNTY with a magnification of 5000× 

and Figure 1b shows an image with a magnification of 50,000×. 

  

Figure 1. Scanning Electron Microscopy images of CNTY: (a) 5000×; (b) 50,000× (images were taken by 

MIRA3 TESCAN). 

A commercial thermosetting epoxy resin, Epon 862 (Diglycidyl Ether of Bisphenol F) 

and Epikure W (aromatic amine) curing agent, both from Miller-Stephenson Chemical Co. 
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Figure 1. Scanning Electron Microscopy images of CNTY: (a) 5000×; (b) 50,000× (images were taken by
MIRA3 TESCAN).

A commercial thermosetting epoxy resin, Epon 862 (Diglycidyl Ether of Bisphenol
F) and Epikure W (aromatic amine) curing agent, both from Miller-Stephenson Chemical
Co. (Danbury, CT, USA), was used as the polymeric matrix of the CNTY monofilament
composites.
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2.2. Fabrication

A schematic of the CNTY monofilament composite sample is shown in Figure 2. A
CNTY is embedded into a polymer to form a CNTY monofilament composite using a
silicon rubber mold. Four 40 AWG copper wire electrodes were parallelly incorporated
into the silicone mold. The wires were threaded through needles and then stitched through
the mold at the pre-marked positions at the mid-thickness (5 mm from the surface) and
mid-length of the mold. The wires were positioned under the CNTY to eliminate any
stress caused by the contact between the wires and the CNTY. The next step consisted of
integrating the CNTY into the mold. The CNTY was removed gently from the spool and
placed so that its length exceeded the length of the rubber mold, and it was prestressed
with a small weight to ensure CNTY straightness of all the specimens. A conductive paint,
Bare Paint™ (Bare Conductive, London, UK), was used to promote the ohmic contact
between the CNTY and the copper wires. The dimensions of the specimen are based on the
ASTM standard D695, which is recommended for characterizing mechanical properties of
rigid polymers.

With a mixing ratio of 100:23 of resin and hardener, EPON 862 was mixed with
Epikure W, and mixed in a beaker for 3 min. The mixture was heated to 130 ◦C for 15 min to
eliminate air bubbles. Once the CNTY was straight and in place, previously mixed polymer
was poured into the mold and it was inserted into a convection drying oven (Labnique,
Hunt Valley, MD, USA) for curing. The specimens were cured using two-step heating
cycles. During the first 2 h, the temperature was set to 100 ◦C and increased to 130 ◦C for
the last 2 h of the heating cycle. The resulting specimens were 25.4 mm long, 12.7 mm wide,
and 12.7 mm thick. Strain gauges were mounted on each side of the specimen as shown in
Figure 2.
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Figure 2. Schematic view of the CNTY monofilament composite specimen instrumented with
strain gauge.

2.3. Electrical and Mechanical Measurements

A MTS Criterion 43 electromechanical loading machine with a 30-kN capacity load
cell, controlled by the TestWorks4 software, was used to apply the load to the specimens at
various strain rates for at least five continuous compression cyclic loadings. All experiments
were performed within the linear elastic regime of the polymeric material. The electrical
resistance of the embedded CNTY was measured during the experiments using a four-
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point-probe measurement technique with an NI PXI-4072 (Austin, TX, USA) Inductance–
Capacitance–Resistance (LCR) card mounted in an NI PXI-1033 chassis. The four copper
wires were inserted inside the specimen and connected to the NI-PXI-4072 card using
Bayonet Neill–Concelman (BNC) cables and electrical leads with mini-hooks. The electrical
resistance (R) of the embedded CNTY was determined by using inner probes that measure
the voltage (V) while a constant current (I) was applied using the outer probes. The strain
was measured by connecting the strain gauges (attached to the mid-center of the specimen)
to an NI-PXI 9219 card mounted on an NI cDAQ-9178 chassis. The experimental setup is
shown in Figure 3. The applied load, strain, and electrical resistance were measured as a
function of time. The data acquisition was conducted at 2 Hz using NI SignalExpress 2015
software. Five specimens of CNTY monofilament composite materials for each experiment
were tested to ensure reproducibility.
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Figure 3. Schematic of experimental setup for mechanical and electrical measurements.

2.4. Scanning Electron Microscopy

The fracture surface morphology of the CNTY monofilament composite specimens was
investigated to study the effect of wetting, wicking, and resin infiltration into the porous
structure of the yarn. The fracture surface of CNTY monofilament composite specimens
was examined by Scanning Electron Microscopy (SEM). SEM was conducted using a FEG-
SEM field-emission MIRA3 TESCAN SEM (Kohoutovice, Czech Republic) operated at an
acceleration voltage (ACC V) of 15 kV. The specimens were cross-sectionally cut by means
of liquid nitrogen and their cross-sectional area was coated with a thin layer of gold using
the Quorum Q150R ES–magnetron sputtering machine (Laughton, East Sussex, UK).

3. Results and Discussion
3.1. Piezoresistive Response of CNTY Monofilament Composites under Uniaxial Compression

The electrical resistance of the embedded CNTY and the strain were simultaneously
measured throughout the experiments. The relative electrical resistance change (∆R/R0)
and strain (ε) versus time responses of the CNTY monofilament composites subjected to ten
continuous compression cycles at a constant strain rate of 0.04 min−1 are shown in Figure 4.
The strain (ε) experienced by the specimen is shown at the right vertical axis (red) while
the relative change in electrical resistance (∆R/R0) is shown at the left vertical axis (black),
both plotted as a function of time. It is shown that both ε and ∆R/R0 decreased during
loading and increased during unloading segments, thus indicating a positive piezoresistive
response. The data show good repeatability, linearity, and consistency in the peak locations
and values of ∆R/R0 and ε at each cycle. The maximum strain reaches −0.36% when
the compressive load reaches ~2000 N, which is equivalent to a compressive stress of
12.4 MPa, and returns to 0 at the end of the unloading segment, while ∆R/R0 reaches
−0.15% and returns to 0 upon unloading. It is worth mentioning that this stress level is
well within the linear elastic regime of the mechanical response of the polymeric matrix of
the monofilament composite.
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Figure 4. CNTY monofilament composite under axial compression at a strain rate of 0.04 min−1:
(a) Relative change of electrical resistance and strain versus time; (b) Relative change of electrical
resistance versus strain.

The ∆R/R0 versus ε curves showing one cycle (loading-unloading) up to a maximum
strain of −0.36% are presented in Figure 4. It shows that the CNTY monofilament composite
exhibits a quasi-linear positive piezoresistive response under compressive loading and
unloading segments up to this strain level.

The sensitivity or gauge factor (GF) of the piezoresistive response of the CNTY monofil-
ament composite is defined as the slope of the relative change of electrical resistance versus
strain and can be calculated according to:

GF =
∆R
R0

ε
(1)

A positive GF of 0.41 ± 0.01 was recorded for the CNTY monofilament composites
under compressive loading considering the loading segment of one of the cycles. Similar
results were obtained for the unloading segments.

3.1.1. Strain Rate Effect

Based on previous studies that had shown a significant effect of the strain rate on the
piezoresistive response of freestanding CNTYs under tension [16], a similar study was
pursued to determine the effect of the strain rate on the piezoresistive response of the
CNTY monofilament composites under axial compression. The specimens were subjected
to compressive cycles at other strain rates, including 0.02 min−1, 0.2 min−1, 0.4 min−1, and
0.6 min−1. The relative resistance change (∆R/R0) and strain (ε) versus time responses
of the CNTY monofilament composites at these four different strain rates are shown in
Figure 5a–d. The compressive strain (ε) experienced by the specimen is plotted at the right
vertical axis (red) while the relative change in electrical resistance (∆R/R0) is shown at the
left vertical axis (black), both plotted as a function of time.

The results showed that for all strain rates, there was a decrease in ∆R/R0 during
loading and an increase during unloading. At a strain rate of 0.02 min−1, the maximum
strain was −0.36 ± 0.01%, and ∆R/R0 was −0.14%. For a strain rate of 0.2 min−1, the
maximum strain was also −0.36 ± 0.01%, and ∆R/R0 was −0.15%. At a strain rate of
0.4 min−1, the maximum strain was −0.32 ± 0.02%, and ∆R/R0 was −0.13%. Finally, at a
strain rate of 0.6 min−1, the maximum strain was −0.30 ± 0.02%, and ∆R/R0 was −0.12%.
In all cases, the maximum strain was reached when the compressive load was 2000 N
(12.4 MPa), and it returned to 0 at the end of the unloading segment.
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Figure 5. Relative change of electrical resistance and strain versus time of CNTY monofilament
composites under axial compression at strain rates of: (a) 0.02 min−1; (b) 0.2 min−1; (c) 0.4 min−1;
(d) 0.6 min−1. In each instance, the maximum compressive load reached 2000 N (stress of 12.4 MPa) and
reached 0 at the conclusion of the unloading period.

Figure 6a–d shows the piezoresistive response of the CNTY monofilament composite
specimens during a compressive loading-unloading cycle for the same strain rates, includ-
ing 0.02 min−1, 0.2 min−1, 0.4 min−1, and 0.6 min−1. For all strain rates, the piezoresistive
response is quasi-linear for both loading and unloading segments, and some hysteresis
was observed, being more prominent at the higher rates. As observed for the strain rate
of 0.04 min−1, the data show good repeatability, linearity, and consistency in the peak
locations and values of ∆R/R0 and ε at each cycle.

Table 1 summarizes the sensitivity (gauge factor, GF) for the five different strain
rates, including the corresponding maximum strain level and maximum relative change
in electrical resistance. It is concluded that the sensitivity varies slightly with increasing
strain rate.

Table 1. Sensitivity of CNTY monofilament composites under axial compression for various strain rates.

Strain Rate
− .

ε (min−1)
Strain Level

−ε (%)

Relative Change in
Electrical Resistance

∆R/R0 (%)
GF

0.02 0.36 −0.14 0.41 ± 0.01
0.04 0.36 −0.15 0.41 ± 0.01
0.2 0.33 −0.15 0.45 ± 0.01
0.4 0.32 −0.13 0.41 ± 0.01
0.6 0.30 −0.12 0.41 ± 0.01
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3.1.2. Hysteresis

The hysteresis of the piezoresistive response of the CNTY monofilament composites
was quantified using two parameters: the residual relative change in electrical resistance
(∆R/R0)Res, which is defined as the difference between the initial and final values of ∆R/R0
after each cycle, and a path-dependent metric (H), which is defined as the area between the
loading-unloading curve at each cycle. H is dependent on the maximum relative change in
resistance (∆R/R0)max and the maximum strain change (ε)max during the loading phase of
each cycle. Figure 7 shows the schematic of the parameters calculated after each cycle. The
normalized hysteresis (HN) is defined as:

HN =
H(

∆R
R0

)
max

(ε)max

where HN is the normalized hysteresis, H is the area under the hysteresis loop, (ε)max
represents the maximum strain achieved in each cycle, and (∆R/R0)max is the maximum
change in electrical resistance associated with the strain. Table 2 shows the corresponding
values of the calculated hysteresis parameters for each strain rate tested.
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Table 2. Hysteresis parameters of CNTY monofilament composites under axial compression for
various strain rates.

Strain Rate
− .

ε
Hysteresis

HN (%)

0.04 −0.031 ± 0.010
0.02 −0.024 ± 0.022
0.2 −0.010 ± 0.017
0.4 −0.0027 ± 0.015
0.6 −0.035 ± 0.011

3.1.3. Stress-Strain Response

When subjected to compressive forces up to 2000 N, the stress-strain behavior of the
monofilament composite follows a linear curve (Figure 8) This linear behavior indicates that
the material undergoes elastic deformation. The linear portion of the stress-strain curve can
be characterized by the elastic modulus (approximately 3.7 GPa). The linear stress-strain
behavior of the CNTY monofilament composite can be explained by the strong bonding
between the CNTYs and the polymeric matrix. Under compressive forces, the CNTYs
transmit the load to the polymer matrix through interfacial shear stresses. The interfacial
shear stresses are proportional to the deformation, resulting in a linear stress-strain curve.
The linear behavior can be maintained until the CNTs start to buckle or the polymer matrix
undergoes plastic deformation. Increasing the stress level leads to nonlinearity, which
would correspond to the nonlinearity of the polymer itself as well as that of the CNTY.
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3.2. Scanning Electron Microscopy

Figure 9a,b show the fracture surface SEM images of CNTY embedded in the monofil-
ament composite. The images show that only the outer bundles are affected by resin
infiltration and show no evidence of fiber/matrix debonding. The images indicate that the
piezoresistive response of the embedded yarn could be predominantly dependent on the
change of the contact resistance between the internal bundles upon deformation because
the resin exhibits relatively conservative infiltration into the yarn, consequently exerting a
comparatively minor influence during strain.
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3.3. Comparison of Piezoresistive Responses of Monofilament Composites under Uniaxial
Compression and Tension

The piezoresistive response of the CNTY monofilament composite under uniaxial
longitudinal compression was compared to prior and new results on the piezoresistive
response of the CNTY monofilament composite under tension.

These results appear to indicate that the piezoresistive responses of the CNTY monofil-
ament composite under tension and compression are substantially similar. For instance,
Figure 10 shows there is an overlap between the relative electrical resistance change (∆R/R0)
and strain (ε) versus time responses of the CNTY monofilament composites subjected to
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nine continuous tension cycles at a constant strain rate of 0.01 min−1 and 0.05 min−1,
respectively.
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Figure 10. Relative change of electrical resistance and strain versus time of CNTY monofilament
composite under axial tension at a strain rate: (a) 0.01 min−1; (b) 0.05 min−1.

The strain (ε) experienced by the specimen is shown at the right vertical axis (red)
while the relative change in electrical resistance (∆R/R0) is shown at the left vertical axis
(black), both plotted as a function of time. It is shown that both ε and ∆R/R0 increased
during loading and decreased during unloading segments, thus indicating a positive
piezoresistive response. The data show good repeatability, linearity, and consistency in
the peak locations and values of ∆R/R0 and ε at each cycle. The maximum strain reaches
0.36% and 0.32% when the tensile load reaches 500 N and returns to 0 at the end of the
unloading segment, while ∆R/R0 reaches 0.20% and returns to 0 upon unloading. Similar
to the compression studies, the consistent correspondence between strain and electrical
resistance change over multiple cycles indicates a predictable piezoresistive response of the
CNTY. This predictability underscores the potential of the CNTY monofilament composite
as a reliable and repeatable piezoresistive sensor. Such sensors can find applications in
structural health monitoring, fatigue assessment, and stress analysis, where precise and
repetitive strain measurements are essential.

Another resemblance can be observed through the ∆R/R0 versus ε curve, where the
CNTY monofilament composite exhibits a quasi-linear positive piezoresistive response
under tension. Figure 11 presents the ∆R/R0 versus ε curves showing one cycle (loading-
unloading) up to the maximum strain. Additionally, it is noteworthy that the gauge factor
obtained, 0.53, closely resembles the gauge factor acquired during compression testing.

These results appear to indicate that the piezoresistive response of the CNTY monofil-
ament composite under tension and compression are of the same order of magnitude,
but more parametric studies are needed. The results also differ quite significantly from
those of the freestanding CNTYs under axial tension, where the strain rate plays a very
significant role in determining the sign of the piezoresistivity and the sensitivity. It is worth
mentioning one more time that the piezoresistive response of the freestanding CNTY under
compression is not available, due to the complexities associated with testing a very slender
fiber under axial compression.

Different mechanisms are involved in the electrical response of the CNTY monofila-
ment composite (embedded or constrained CNTY). Under tension, the contact resistance
between the individual CNTs and their bundles is the main component governing the
change in the electrical resistance of the CNTY. Assuming that, under tension, the contact
area between individual CNTs and their bundles decreases due to the discrete length of
nanotubes in the yarn, this results in a higher change in the electrical resistance under
tension. Another contributing factor in the piezoresistive response of the CNTY monofila-
ment composite is the effect of slippage. CNTY has a porous structure that promotes resin
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infiltration. However, the high viscosity and high molecular weight of the polymeric matrix
prevents infiltration. Therefore, fiber slippage and unravelling during tension could also
be attributed to the higher piezoresistive response of the CNTY monofilament composites
under tension.
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It is assumed that the cross-sectional volume of individual CNTs and their bundles
increases when the CNTY monofilament composite is subjected to axial compression. By
increasing the volume of the individual CNTs, the contact area between the CNTs and their
bundle increases, which reduces the electrical resistance. However, despite the porous
structure of the yarn, the distance between nanotubes is less affected under compression.
As seen in Figure 9, CNTs and bundles are closely packed in the cross-sectional area of
the embedded yarn. It is assumed that the increase in the cross-sectional volume of CNTs
and their bundles, elimination of slippage, and fiber unravelling under compression are
the main contributing phenomena to the piezoresistive response of the embedded yarn
under compression.

4. Conclusions

The piezoresistive response of CNTY monofilament composites was investigated
under axial compression. The aim was to understand the compressive piezoresistive
response of the CNTYs for their implementation as piezoresistive-based sensors. This
was done by embedding a single CNTY into a polymer to form a CNTY monofilament
composite and subjecting it to axial compressive loading while monitoring the change in
electrical resistance of the CNTY. In order to investigate the piezoresistive response, the
CNTY monofilament composites were subjected to continuous compression cycles. The
specimens were subjected to different quasi-static strain rates to study the effect of strain
rate on the piezoresistive response of the CNTY. The relative change in electrical resistance
of the CNTY monofilament composite decreases monotonically with the compressive strain
and increases upon unloading. A positive piezoresistive response was observed for all
strain rates with an excellent matching between the mechanical and electrical response
cycles. The sensitivity of the CNTY monofilament composite, defined as the slope of the
relative change of the electrical resistance over strain, was recorded during the loading and
unloading compression segments. The sensitivity ranged from 0.4 to 0.45, considering a
maximum strain level of approximately 0.35%. It was shown that the strain rate plays a
relatively small role on the piezoresistive response of the embedded CNTY. Knowing the
axial piezoresistive response of the CNTYs under both tension and compression will enable
their use in sensing applications where the yarn undergoes compression, including those
in aerospace and marine structures, and civil or energy infrastructure.
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