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Abstract: The relationship between climate change and viticulture has become increasingly apparent
in recent years. Rising temperatures have been a critical factor in early grape ripening. This, in turn,
has led to wines with imbalanced acidity and, more importantly, higher alcohol content and pH
values. Today, consumers demand high-quality and healthy products, and this trend has extended to
wine consumption. Consumers prefer wines with reduced alcohol content due to the health risks
associated with alcohol consumption. To meet this demand, researchers have developed modified
yeast strains that reduce wine alcohol content during fermentation. These strains ferment less sugar
or redirect carbon metabolism. However, their use may pose challenges, such as producing undesired
secondary metabolites that can affect wine characteristics. Additionally, consumers are still divided
on using genetically modified organisms (GMOs) in food and beverages. This review examines
the impact of climate change on wine quality and consumer perception, taking into account new
technologies used to reduce wine alcohol content or produce low-alcohol-content wines, such as
low-cost techniques like bio-dealcoholization performed by non-GMO wine yeast, Saccharomyces, and
non-Saccharomyces.

Keywords: climate change; post-fermentation; Saccharomyces; non-Saccharomyces; membrane separation;
heat treatment

1. Climate Change and Wine Quality

Climate change, primarily driven by anthropogenic influence, induces significant
transformations in the Earth’s system [1,2], including temperature extremes and modifica-
tions in precipitation patterns [3,4]. The latest Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) [5] predicts a continued rise in global surface temperature
and a decrease in annual precipitation across emission scenarios, with intensifying and
more frequent extreme events globally [4,6]. The Mediterranean region is particularly
vulnerable to global warming, with projected severe climate events affecting agriculture
and leading to economic and food security challenges [7].

As indicated by Lamonaca et al. [8], detrimental outcomes, such as reductions in
agricultural production and economic conditions associated with an increase in food
insecurity, are anticipated to exacerbate, significantly affecting the agricultural sector [9,10].
This emphasizes the considerable vulnerability of agriculture to climate change, including
viticulture. Despite being globally distributed, Europe hosts the world’s largest vineyard
area (approximately 40%), with a substantial portion in Mediterranean regions [11,12].
France, Italy, and Spain, the top wine-producing countries (Table 1), contribute significantly
to the global wine sector [13].
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Table 1. Top 5 wine-producing countries in 2022 (with respective rate of change from 2021 and % of
global wine production in 2022). The table is based on wine production, defined by OIV, 2022 [13].

Country Wine Production (Mhl) Rate of Change % of Global Wine Production

Italy 49.8 −1% 19.3%
France 45.6 21% 17.7%
Spain 35.7 1% 13.8%
USA 22.4 −7% 8.7%

Australia 12.7 −14% 4.9%

In 2022, wine exports from these three European countries amounted to around EUR
23 billion, emphasizing the economic importance of viticulture in Europe and globally,
highlighting wine grapes as one of the most valuable fruit crops worldwide [2,14,15].
Additionally, global wine production in 2022 reached 258 million hectoliters, slightly lower
than the previous year’s output of 261 million hectoliters. Nevertheless, the vineyard area
has decreased by approximately 1.18% over the past five years (from 2018 to 2022) due to
extreme weather changes [13], underscoring that climate factors, particularly temperature,
exert a more significant influence on vine development and berry composition relative
to other factors such as soil or variety [16,17]. However, it is essential to acknowledge
the multifaceted nature of these interactions, and the impact can vary based on specific
vineyard locations [17].

This demonstrates that, as stated earlier, due to the strong relationship between
viticulture and climate, fluctuations in temperature and frost events (early or late frosts) can
directly impact grape production and the quality of the wine produced [3,6,18]. Increasing
temperatures lead to premature grape ripening, culminating in an undesirable rise in sugar
levels and a decrease in organic acids and phenolic compounds. This results in higher
alcohol content, reduced acidity, and modified sensory profiles [18–20], ultimately altering
wine quality and typicity [2,21,22]. Given the potential compromise of crop yields and
viticulture productivity under future climatic conditions, the urgent adoption of cultivation
approaches and strategies is crucial to mitigate the effects of climate change on wine
production and quality.

Moreover, recent data indicate a growing consumer preference for low-alcohol wines
(9% to 13%). This preference is associated with increased social awareness of the harmful ef-
fects of alcohol on human health (calorific intake and possibility of alcohol-related diseases)
as consumers seek a healthier lifestyle [23–26]. This has led to an increase in the volume of
no and low-alcohol beverages of over 7% across the 10 major global markets in 2022. This
upward trajectory is projected to outpace the growth observed in the past four years, with
a forecasted Compound Annual Growth Rate (CAGR) of over 7% from 2022 to 2026. This
forecasted rate represents an increase compared to the 5% CAGR recorded from 2018 to
2022 (Figure 1). In this context, wine producers are innovatively lowering alcohol content to
meet consumer demands and address challenges posed by high grape sugar concentration
during winemaking. Musts with high sugar content usually present difficulty in perform-
ing alcoholic fermentation, causing stuck or sluggish fermentation, leading to prolonged
and intricate processes or even complete stoppage [24,25,27,28]. These issues arise from the
osmotically stressful environment of high sugar concentrations, hindering water absorption
and slowing yeast metabolic activity. The resulting alcohol production can reach toxic
levels for the yeast, and the must’s nutritional conditions and the potential presence of
fermentation inhibitors further contribute to the complications [29]. Furthermore, in some
countries, such as the USA, Finland, Sweden, Ireland, and the United Kingdom, exceeding
14.5% (v/v) alcohol content results in higher taxes [24,30,31].
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Figure 1. Overview of global market trends for no-alcohol and low-alcohol beverages, including
wine. Sources: [32,33].

This review aims to overview the problem of climate change and its impact on wine
quality, typicity, and composition, namely increased alcohol content, and link it to tra-
ditional and new technologies used to reduce that content. The overviewed strategies
include pre-fermentation approaches, like early-harvest of grapes, fermentation modifica-
tions, for instance, using non-Saccharomyces yeasts, or post-fermentation prospects, namely
bio-dealcoholization performed by Saccharomyces and non-Saccharomyces yeasts. Finally,
consumers’ perspective on low-alcohol wines is also addressed, as they are a critical factor
in the wine industry.

1.1. Impact of Climate Changes on Wine Sensory Perception
1.1.1. Influence of the Higher Alcohol Content

The close link between climate change and viticulture is evident, with temperature
playing a decisive role. While other atmospheric factors influence vine growth, researchers
emphasize temperature as central [12,34,35]. Rising temperatures notably lead to earlier
grape ripening, observed across diverse wine-producing regions. The stages of vine devel-
opment, such as budding, flowering, and veraison, happen earlier than usual. This results in
grapes ripening faster than expected and accumulating sugars at an accelerated rate, owing
to the increased speed of the metabolic processes involved in grape maturation [16,19,36,37].
Higher temperatures lead to higher evapotranspiration rates, exacerbating the impact on
grape maturation [2,35,38].

The high sugar content in these grapes at harvest plays a crucial role, as, during the
fermentation process, the yeast converts these natural sugars into alcohol [19,39,40]. This
transformation, in turn, produces wines with a high alcohol content [24,41]. However, in
this particular scenario, the early harvest of grapes can be employed to mitigate these effects.
On the other hand, excessive humidity during ripening is unfavorable to maturation due
to the promotion of sugar dilution. However, this effect is minor compared to bunch rot’s
more rapid and devasting spread [22,42].
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Grapes accumulate sugar naturally as they ripen on the vine. Several studies have
shown that glucose and fructose are the predominant sugars in grape berries. Sucrose
is present in trace amounts in most cultivars; however, this amount is higher in some
interspecific hybrids involving Vitis labrusca and Vitis rotundifolia [43,44].

Bock et al. [45] studied data from 1805 to 2010 in the Franconia wine-growing region,
Germany, finding that higher temperatures correlated with an increased vine yield (hl/ha)
and must sugar content (◦Oe). Temperature changes contributed to a 15% yield increase
and a 38% rise in sugar content. Another study by Alston et al. [46] highlighted a significant
sugar level increase in California wine grapes, leading to higher alcohol levels in wines
produced over the last two decades. Other researchers [37] studied the impact that hail, a
phenomenon likely to increase due to climate change, may have on Thompson seedless
grapevines. While the damage caused by hail did not affect certain factors, it notably
reduced the overall leaf area. Importantly, this damage revealed potential implications
for cluster quality, as it coincided with an increase in the sugar content of the grapes.
Additionally, Bigard et al. [39] studied 12 vine varieties, finding that rising temperatures led
to significant changes in grape composition and significantly increased sugars. Navrátilová
et al. [47] observed similar trends in the Czech Republic’s central wine regions from 2000
to 2019. Over six decades, evaluations of Bordeaux and Napa Valley also linked higher
temperatures to increased grape sugar content [48].

Therefore, we can assess that the sugar composition of grapes plays a vital role
in the quality of wine, encompassing factors such as flavor complexity, balance, and
overall sensory appeal. Late-season accumulation of aroma compounds and specific
phenolics further contributes to the wine’s distinctive character. Furthermore, the sugar
content influences the alcohol level, contributing to variations in wine styles and sensory
profiles [49–58]. Several studies corroborate this statement. In a prior 13-year study, a
rise in sugar concentration at harvest corresponded to a yearly 0.17% increase in potential
alcohol content in Australian wines [53]. Recent research by Van Leeuwen et al. [6] revealed
a 35-year trend in the Languedoc region of France, with wine alcohol content increasing
from 11% to 14%.

It is essential to highlight that the increase in alcohol content, in which ethanol is the
main component of wine alcohol, can significantly impact the sensory characteristics of
wine [28,54,55]. Indeed, a term encapsulates this concept—the “alcohol sweetspot”—which,
although still debated, signifies the optimal alcohol content of a wine that enhances its
sensory characteristics [56]. Wines with high alcohol contents, close to or above 14% to 16%
(v/v), are often perceived by consumers as unbalanced. This perception is not exclusively
attributed to a masking effect but also involves a reduction in volatility. Ethanol, the
dominating element, tends to overshadow the perception of other flavors, thus affecting
the wine’s complexity and elegance [24,28,56–59]. In addition, ethanol is responsible for
increasing bitterness [60], the burning sensation (at certain levels) [24,61], and the metallic
mouthfeel of wines [18,62], changing the perception of sweet [63] and sour [64], as well as
reducing the perceived astringency [65].

Escudero et al. [66] discovered that wines with alcoholic contents surpassing 14.5%
(v/v) lose their fruity aroma, as ethanol can suppress fruitiness by masking ester per-
ception [67,68]. This observation aligns with findings from King et al. [28], indicating a
negative correlation between alcohol levels and fresh fruity and floral aromas. Interestingly,
the study found that high alcohol concentrations had minimal to no significant impact on
wine viscosity or body, essential aspects of wine quality. However, negative impacts on the
sensorial perception of reducing alcohol in wines have been shown, namely reduced fruity
aromas and increased vegetative and musty aromas [67].

1.1.2. Imbalance Acidity and Perceived Sourness

Another notable effect of climate change, in addition to the increase in sugar concen-
trations, is the significant reduction in the acidity of wines, directly impacting wine quality.
The lack of acidity results in wines with changes at the sensory level, as well as being more



Fermentation 2024, 10, 36 5 of 45

predisposed to spoilage by harmful microorganisms (bacterial genera Lactobacillus (e.g., L.
hilgardii), Leuconostoc (e.g., L. mesenteroides), Pediococcus (e.g., P. damnosus and P. pentosaceus),
Acetobacter (e.g., A. aceti and A. pasteurianus), or Gluconobacter (e.g., G. oxydans), reducing
their chemical and microbial stability [6,22,41,69,70]. The tartaric, malic, lactic, and citric
acids are the primary acids that determine the total acidity of the wine, with tartaric and
malic acids representing approximately 90% of the whole berry acidity and contributing
to the pH of the juice, must, and wine [70,71]. The relationship between acidity and pH
depends on complementary factors, such as potassium accumulation. Potassium is influ-
enced by temperature, and in the context of climate change, with increasing temperature
during maturation, the accumulation of potassium ions increases (potassium enters berry
cells in direct exchange for protons), reacting with organic acids, affecting the acid-base
balance acidity and pH balance [72].

Several studies confirm tartaric acid’s stability with temperature changes, while malic
acid decreases at higher temperatures due to respiratory substrate consumption [73]. Gen-
erally, lower acidity levels correlate with higher grape pH [19]. Ganichot’s 22-year study
in southern France showed a decline in total acidity from 6 to 4 g/L (expressed as H2SO4)
and an increase in pH from 3 to 3.3 [74]. Similarly, a 35-year study in Languedoc, France,
noted reduced total acidity from 6.0 to 4.5 g/L and an increased pH from 3.5 to 3.75 [6].
Global studies reveal consistent trends of decreasing acidity and rising pH, indicating the
impact of climate change on grapes in various wine-producing regions [19]. These studies
highlight the trend in decreasing acidity and increasing the pH of grapes in the most varied
wine-producing regions of the world, and these trends are intrinsically linked to climate
change. These changes challenge the wine industry since acidity and pH are preponderant
in consumers’ perceived quality, taste, flavor, and color [75].

1.1.3. Phenolic Compounds and Health-Promoting Compounds Deficiency

Phenolic compounds are widely present in plants, encompassing a diverse category of
secondary metabolites produced through various branches of the phenylpropanoid path-
way [76]. These compounds perform several vital plant functions, including antioxidant
action, chemical communication, and pigmentation [35,77]. Moreover, they protect plants
from biotic and abiotic stresses [35,78].

Phenolic compounds, encompassing non-flavonoids and flavonoids, play crucial roles
in wine. Non-flavonoids, including hydroxycinnamic acids prevalent in wine grapes, con-
tribute to oxidative browning processes [79]. Phenolic compounds, especially flavonoids,
significantly influence a wine’s sensory profile, quality, and market value [78,80]. Notably,
flavonoids can be categorized into three subclasses: flavonols, anthocyanins, and polymeric
proanthocyanidin forms, commonly known as tannins [35,78]. Their presence and concen-
tration in grapes and wines are pivotal for determining color and shaping the wine’s flavor,
aroma profile, bitterness, astringency, and aging potential [6,19].

In a climate change scenario, in which an increase in average temperature and extreme
events’ frequency, intensity, and duration, the synthesis and concentration of flavonoids in
grapes are expected to be affected. For instance, anthocyanins, the pigments responsible for
the red color in grapes and wines, are highly sensitive to temperature fluctuations, especially
during the intermediate maturation of grapes when all genes are highly expressed, contrary
to what is observed in the pre-veraison stage [55,78,81]. Their accumulation occurs in the
skin of red berries during maturation and is present as glycosidic derivatives of delphinidin,
cyanidin, petunidin, peonidin, and malvidin [82].

Keller (2010) [83] established that the optimal temperature for synthesizing antho-
cyanins is around 30 ◦C. Therefore, an increase in temperature above this limit can be
significant in the phenolic composition of grapes, resulting in the degradation of antho-
cyanins or, more importantly, leading to irreversible inhibition of their synthesis. This
process, in turn, can lead to color changes in wines [84]. In a study conducted by Tarara
et al. [85], it was found that high temperatures were associated with reductions of antho-
cyanins based on delphinidin, cyanidin, petunidin, and peonidin in sun-exposed Merlot
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berries. However, no changes were observed in malvidin derivatives in the same study.
The synergistic interaction among anthocyanidins, such as malvidin, and other phenolic
compounds is crucial for the diversity of colors in red wines.

Consequently, exposure to high temperatures affects the production of anthocyanins
in the grapes, leading to a discoloration of the berry skin. However, this phenomenon
occurs not only due to the suppression of anthocyanin genes but also due to more complex
phenomena, such as changes in gene expression and enzymatic activity of anthocyanins [86].
Petoumenou et al. [37] also report a decrease in phenolic compound content resulting from
other abiotic constraints, such as the impact of hail, which might have inhibited phenolic
biosynthesis and promoted phenolic degradation.

Throughout the grape maturation process, climatic variables play an essential role
in forming volatile compounds responsible for the aromatic quality of wines [87]. This
complex interaction can affect the perception of aromas, as it is directly correlated with
phenolic compounds’ antioxidant power and reactivity. In climate change, primary flavors
are mainly the most affected. For example, high temperatures or U.V. radiation reduce
the aromatic expression of grape varieties such as Sauvignon Blanc and are associated
with undesirable high concentrations of TDN (1,1,6-trimethyl-1,2-dihydronapthalene) in
wines [80,88]. TDN contributes to petrol or kerosene aromas in wines, masking desired
fruity aromas [89]. In addition, nutty aromas or premature aging in wines may result from
climate change [80]. Climate change is thus creating changes in the aromatic profiles of
wines. This influence results from interaction with phenolic compounds and environmental
conditions, such as sun exposure and high temperatures.

Therefore, it is imperative to understand how phenolic compounds respond to temper-
ature changes since their decrease due to extreme events can have, in addition to damages
in terms of wine quality, significant implications for consumers’ health. Even considering
the presence of alcohol, bioactive compounds in wine are linked to health benefits [90]. The
positive effects of phenolic compounds on health promotion are widely recognized [91].
They possess antioxidant capacity as they can protect cells from oxidative stress, thereby
reducing the effects of neurodegenerative diseases and helping to prevent cardiovascular
disease [79]. Other studies potentiate phenolic compounds’ anti-inflammatory activity
and anticancer capacity [92,93]. Resveratrol is one of the most studied non-flavonoid phe-
nolic compounds in wine, which has cardioprotective, anti-inflammatory, and anticancer
properties [94]. Furthermore, Doshi et al. [95] have demonstrated the anti-diabetic activity
of flavonols.

2. Techniques to Decrease Alcohol Content in Wines

In recent years, consumer preferences have evolved substantially as they have become
increasingly demanding, conscious of the characteristics of the goods they choose, and
focused on products that promote a healthier lifestyle. This trend extends to the consump-
tion of wine, where consumers are more attentive and concerned about the health risks
associated with alcohol consumption. As a result, there is an increasing demand for wines
with reduced alcohol content [24–26], thus driving the production and sale of such wines.
In this regard, winemakers have been actively seeking technological strategies to decrease
or eliminate the alcohol content of wines. Furthermore, given the context of climate change,
which has significantly contributed to the production of grapes with higher sugar levels
and, consequently, an increase in the alcohol content of wines, the search for innovative
methods to meet this demand becomes imperative.

These strategies for winemakers to produce wines with reduced alcohol levels can be
categorized in several approaches. Still, more commonly, they are separated depending on
when they are applied in the wine production process. Some authors [96–98] indicate four
different categories, while other authors [99,100] divide these strategies into three, as will
be discussed in this document (Figure 2).
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2.1. Non-Microbial Alcohol Reduction in Wines
2.1.1. Reducing Fermentable Sugars in the Grapes

The first category, used during the pre-fermentation stage, focuses on reducing fer-
mentable sugars. This limits the amount of alcohol produced during fermentation, resulting
in wines with lower alcohol content right from the start [100]. It is one of the most com-
mon methods for producing wines with lower or reduced alcohol content. Techniques
such as juice dilution and juice filtration with membranes or enzymes are employed at
this stage. Additionally, viticultural practices such as early harvesting, growth regulators,
reducing leaf area to limit photosynthetic rate, and pre-harvest irrigation are cited by
Schelezki et al. [101]. Specific viticultural methods can produce a wine with lower alcohol
content and higher acidity, which can then be blended with a more mature fermented juice.
Although these methods are known to decrease ethanol concentration by 3% (v/v), the
resulting wines may have unpleasant, acidic, and unripe flavors [102,103].

In Table 2, a summary of non-microbial techniques applied during the pre-fermentation
phase for the reduction in alcohol content in wine is provided.
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Table 2. Non-microbial techniques employed in the pre-fermentation phase for alcohol content reduction in wine.

Method Used Type of Wine
Alcohol Reduction Advantages Disadvantages Ref.

Original Alcohol
Content (% v/v)

Final Alcohol
Contente (% v/v)

Juice dilution Shiraz red wine
Fresh Fruits: 13.6
Mature Fruits:
15.5

9.6 to 14.5

Within legal limits, the addition of water
may have relatively limited effects on the
chemical composition of the wine,
preserving many of its characteristics.
Wines produced from mature grapes
tended to exhibit sensory characteristics
closer to the expectations of producers
and consumers.

Sensory analyses suggest that
dilution can lead to a diminished
perception of attributes such as
‘flavor intensity’ and ‘body,’ which
could impact the wine’s
overall acceptance.

[101]

Juice filtration
with

membranes

Nanofiltration
Garnacha red
wines and Verdejo
white wines

Garnacha red
wines: 12.40
Verdejo white
wines: 13.88

Garnacha red
wines: 11
Verdejo white
wines: 11.95

The two-stage NF process without
backflush is the most effective,
minimizing sugar content while
promoting higher recovery of
polyphenolic compounds. Red wines are
favorite for odor and color.

Sensory evaluation revealed no
consumer preference for wine
samples, although white wines
present lower persistence, possibly
related to their lower
alcohol degree.

[104]

Reverse Osmosis

The red wine
blends Tinta Roriz,
Syrah, and
Alicante Bouschet.

15.2 5.4 to 13.8
Production of beverages with lower
alcohol content without excessively
compromising sensory quality.

Beverages with lower alcohol
content were perceived by tasters to
have diminished color, reduced
aromatic intensity, and increased
detection of defects like oxidation
and hydrogen sulfite, negatively
affecting sensory persistence.

[105]

Use of
enzymes
(GOX)

Verdejo white wine 13.8 11.1 to 11.7

Enzymatic treatment led to more
balanced wines, reducing alcohol content
and pH. The chromatic properties of GOX
wines remained unchanged compared to
control wines, indicating color stability.
GOX wines had lower concentrations of
C6-alcohols associated with
green-herbaceous notes, contributing to
improved aroma.

GOX treatment resulted in lower
concentrations of certain wine
alcohols with floral notes. The
technique did not uniformly affect
all volatile compounds, influencing
the sensory
characteristics differently.

[106]
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Table 2. Cont.

Method Used Type of Wine
Alcohol Reduction Advantages Disadvantages Ref.

Original Alcohol
Content (% v/v)

Final Alcohol
Contente (% v/v)

Viticultural
practices

Early grape
harvesting

Tempranillo
red wine 14.8 10.61 to 10.63

The early harvesting of grapes, including
the use of must or wine obtained from
green pruning (green harvest), may lead
to producing wines with reduced alcohol
content. No significant changes in color
intensity and phenolic compounds were
observed. Early harvesting can contribute
to fresher and less mature wines,
although the outcomes may vary
depending on the specific conditions of
each vintage.

The resulting wines were perceived
as more acidic and less full-bodied. [107]

Pinot Noir and
Tannat red wines

Pinot Noir: 14.3
Tannat: 14.7

11.5 for both
Pinot Noir and
Tannat

Substituting ripe must with less ripe must
result in wines with lower alcohol content
(reduction of 14% to 21%) and lower pH.
Wines exhibited greater color intensity,
concentration of phenolic compounds,
total anthocyanins, proanthocyanidins,
and polysaccharide concentration.

Possible losses of anthocyanins may
occur. Results may vary depending
on the specific conditions of each
harvest.

[108]

Growth
regulators (Auxin
treatment)

Shiraz red wine 14.3 13.9 No significant differences were observed
in the sensory properties of the wine.

Potential alterations in the chemical
composition of the wine,
particularly in volatile compounds.
Understanding the long-term effects
of synthetic auxin application is
crucial before implementing it on a
large scale. The effects of NAA
application may vary with climatic
conditions and the environment.

[109]
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Table 2. Cont.

Method Used Type of Wine
Alcohol Reduction Advantages Disadvantages Ref.

Original Alcohol
Content (% v/v)

Final Alcohol
Contente (% v/v)

Viticultural
practices

Grapevine
canopy
management

Shiraz red wine

2010/2011: 12.40
2015/2016: 13.27
(Apical leaves
removal at
veraison)

2010/2011: 11.72
2015/2016: 12.94

Reduction in alcohol content in wine,
especially with apical defoliation.
Moderation of wine aromatic properties.
Potential mitigation of the effects of
global warming on the increase in alcohol
content of wine.

Variations in response to the
technique among different cultivars
and clones. Consider factors such as
timing, defoliation method, and
location for consistent results.
Limited influence of apical
defoliation on wine characteristics
compared to basal defoliation.

[110]

Aglianico red wine

2012: 14.1
2013: 13.1
2014: 13.3
(post-veraison
pruning
techniques, such
as leaf removal
and shoot
trimming)

2012: 13.2 to 13.8
2013: 11.8 to 12.2
2014: 2.2 to 12.5

The post-veraison pruning techniques,
such as leaf removal and shoot trimming,
have shown a significant decrease in
alcohol concentration in the wine. Both
leaf removal and moderate shoot
trimming resulted in improvements in the
overall sensory score of the wine.

Results may vary based on climate
and vine characteristics. Intensive
pruning, whether leaf removal or
shoot trimming, may negatively
impact wine sensory scores in
specific years. The concentration of
compounds like anthocyanins and
phenolic substances in the berries
fluctuated based on pruning
intensity and the year.

[111]
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Juice Dilution

The addition of water to the must to reduce the concentration of fermentable sugars
effectively reduced the characteristics of Cabernet Sauvignon and Shiraz wines. However, it
is necessary to find a limit to avoid changes in the sensory profile of wines, as demonstrated
in other studies [112].

Juice Filtration with Membranes

Nanofiltration, ultrafiltration, or reverse osmosis membranes retain sugar from the
must before fermentation. The filtered juice is then fermented to produce wine with
reduced alcohol content. Several studies have investigated this technology’s use and
reported positive results that do not affect essential compounds such as polyphenols,
malic acid, and tartaric acid, with no significant changes in the sensory profile of the
wines [104,105,113–115].

Use of Enzymes

The use of enzymes, specifically glucose oxidase (GOX), has shown to be an effective
technique in reducing the alcohol content of wines by reducing glucose in grape juice before
the fermentation process and has been the subject of numerous studies [106,116–119].
Derived from the fungus Aspergillus niger, the GOX enzyme promotes the conversion
of β-D-glucose into D-glucono-lactone, releasing H2O2, and subsequently catalyzes the
conversion of D-glucono-lactone into gluconic acid, producing gluconic acid [116]. These
reactions are responsible for the oxidation of fermentable sugars in the juice, thus preventing
ethanol formation during fermentation. Applying the GOX enzyme has been shown
in assays to decrease alcohol content by approximately 2% v/v [117] to 4.3% v/v [118].
Petkova et al. [119] found a 28% reduction in glucose after enzyme application, preserving
some glucose and fructose for yeast fermentation in a second treatment. Additional
studies observed not only reduced alcohol content but also decreases in heptyl acetate
concentration, certain alcohols with floral notes, and ketones with floral and fruity notes in
the wines [106].

Viticultural Practices

Early grape harvesting is another widely used pre-fermentation method to reduce
alcohol in wines, involving either early harvesting or blending mature grapes with early-
harvested ones. This approach has shown promise, achieving about a 3% v/v decrease
in ethanol content [107,120]. In studies with Pinot Noir and Tannat grape varieties, this
technique not only lowered alcohol content but also decreased pH and total acidity without
affecting other wine constituents [108].

Therefore, regarding viticultural practices, it is essential to carefully consider early
harvest to maximize grape flavor compounds for the final wine style. However, this
approach may not be appropriate for all wine styles. Early harvest can be beneficial when
there is a rapid onset of berry shrivel. Still, options for color enhancement in red wines
should be considered depending on how early the harvest is conducted [121,122].

Using growth regulators also appears to be a viable option, as they can reduce the
sugar concentration in the berries, resulting in lower wine alcohol content [123–125]. Naph-
thaleneacetic acid, used as an antitranspirant on Syrah grapes during pre-veraison, led to
delayed berry ripening. This delay allowed better management of sugar accumulation and
resulted in wines with no significant changes in sensory profiles [109].

Grapevine canopy management, a crucial viticultural practice for vineyard balance,
significantly influences sugar accumulation in grapes [126]. Reducing leaf area through
severe pruning or leaf removal at various growth stages minimizes fermentable sugar
accumulation, lowering ethanol content in the resulting wine [99]. Zhang et al. [110]
compared basal and apical defoliation, observing lower alcohol content in Shiraz grapes and
wines with minimal impact on aromatic properties. Similar outcomes were reported by Poni
et al. [127], achieving significantly reduced total soluble solids and alcohol concentration
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without affecting phenolic composition through leaf removal above the grape cluster zone
in Sangiovese after veraison. Other studies have aimed to reduce the alcohol content in
wine through leaf area reduction [111,128–130]. However, shoot thinning in Carot Noir
grapes (a red interspecific hybrid of Vitis) increased soluble solids and alcohol content [131],
as it did in Cabernet Sauvignon grapes [132]. Demonstration that the effects of shoot
thinning practices are unclear and depend on the grape variety. A previous study on shoot
thinning found that shoot-thinned Marechal Foch (a red interspecific hybrid of Vitis) vines
showed higher total soluble solids (◦Brix) and berry anthocyanin concentrations compared
to un-thinned vines [133]. However, the increase in berry anthocyanin did not result in
higher anthocyanin concentration in the final wine. Furthermore, shoot thinning did not
affect the sensory perception of the “fruitiness” of the wines [133]. In contrast, a study
focused on Corot noir and the implementation of shoot thinning provided inconsistent
results in grape and wine quality across a two-year evaluation (2008–2009). The evaluation
was determined by soluble sugars (◦Brix), pH, titratable acidity (TA), wine anthocyanin,
berry, and wine tannin content. The study found that shoot thinning increased berry ◦Brix,
wine alcohol concentration, and anthocyanin concentration only in the second year [131].

2.1.2. Reduce or Limit Ethanol after Winemaking

The following category relates to post-fermentation procedures. In this phase, physical
methods for alcohol removal, including extraction, membrane separation, or distillation,
are applied. In Table 3, a summary of non-microbial techniques applied during the post-
fermentation phase for the reduction in alcohol content in wine is provided.

Table 3. Non-microbial techniques employed in the post-fermentation phase for alcohol content
reduction in wine.

Method
Used

Type of
Wine

Alcohol Reduction

Advantages Disadvantages Ref.
Original
Alcohol
Content
(%, v/v)

Final
Alcohol

Contente
(%, v/v)

Extraction
processes CO2 Rose wine 11.3 1.1

Wine retained several aromatic
compounds from the original
wine. Slight modification in
antioxidant activity, with values
similar to the original wine.

Extremely expensive, and their
application in the food industry
for nonalcoholic wine production
is becoming rare.

[134]

Membrane
processes

Nanofiltration Cabernet
Sauvignon 13.62 7.38 to 11.01

Retention of desirable
compounds, including
polyphenols and aromas,
preserving wine’s sensorial
quality. The technical capability to
permeabilize acetic acid can be
explored to correct this
component in wine, providing
sensory improvements.

High energy consumption
requirements, especially when
dealing with low molecular
weight compounds, may lead to
increased membrane fouling.
Cooling is necessary, adding
complexity to the process and
potentially increasing operational
costs.

[115]

Red wine 12 7 to 8

Nanofiltration produces
dealcoholized wine with
preserved aromatic compounds,
enhancing the gustatory
experience.

The membrane selection is crucial,
and different membranes exhibit
distinct performances in terms of
ethanol rejection, aromatic
compound rejection, and
organoleptic properties.

[135]

RO

Sauvignon
blanc 13.6 10.5 to 12.2

Reducing alcohol can enhance
specific flavors and aromas,
providing a unique sensory
experience.

Professionals included terms such
as “less persistent” and “less
balanced”, suggesting a potential
loss of desirable characteristics.

[67]

Syrah 13.4 7.9 to 11.4

The reduction in alcohol-induced
an increase in the perception of
familiarity, harmony, and balance,
reaching an optimum of −4%.
The reduction in alcohol is
noticeable but not apparent to
consumers.

Reverse osmosis can impact the
overall sensory experience of
wine by decreasing complexity,
persistence, and the number of
aromas and influencing texture
and viscosity. However, it may
not be suitable for wines that are
sensitive to adjustments in alcohol
content.

[136]
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Table 3. Cont.

Method
Used

Type of
Wine

Alcohol Reduction

Advantages Disadvantages Ref.
Original
Alcohol
Content
(%, v/v)

Final
Alcohol

Contente
(%, v/v)

RO Red wine 16 14.1

No adverse effects on the treated
wines’ color, aroma, and taste
were observed, suggesting the
preservation of sensory quality.

A reduction in total phenols and
anthocyanins was noted, along
with a decrease in both total and
volatile acidity, concurrent with
the reduction in alcohol content.

[137]

Membrane
processes

OD

Montepulciano
d’Abruzzo
red wine

13.23 2.67 to 8.31

Preservation of satisfactory
sensory characteristics. The color
and flavor characteristics,
assessed by flavonoids and
phenolic compounds, remained
virtually unchanged in all
dealcoholized samples.

The taste of dealcoholized wine is
affected by acidity and pH
variations. The decline in ethanol
concentration affects the taste of
red fruits, spices, sweetness,
bitterness, and astringency.
Samples with less than 5.4% v/v
of alcohol are preferred.

[138]

Aglianico
red wine 13 0.19 to 6.52

Essential chemical and physical
properties, such as pH and total
acidity, remained unchanged from
the control wine.

There was a pronounced
reduction in volatile acidity. The
technique requires constant
monitoring throughout the
process.

[139]

Falanghina
white wine 12.5 0.3

No significant changes were
observed in the main quality
parameters, such as total acidity,
pH, organic acids, color, total
phenols, and flavonols, during the
dealcoholization process.
Preservation of antioxidant
compounds.

With increasing alcohol removal,
the quantity of volatile
compounds in the wine decreased
significantly. The fully
dealcoholized sample saw a total
loss of 96% in these compounds.
However, the completely
dealcoholized sample was
perceived as unbalanced in taste
and globally unacceptable.

[140]

PV
Cabernet
Sauvignon
red wine

12.5 <0.5

Enhanced smell and taste.
Effective separation of ethanol
and aroma substances.
Production of high-quality,
alcohol-free wine. Stable
membrane performance over
extended operation.

High investment and operating
costs for pilot-scale equipment.
Need for membrane cleaning after
red wine batches—potential
quality issues at higher operating
temperatures.

[141]

Multi-stage
membrane-

based
systems

NF–PV Verdejo
white wine 11.90 10.25

Wines resulting from the NF–PV
process exhibited aromatic
profiles similar to the original
wine.

Nanofiltration and pervaporation
equipment can be costly for
winemakers, and outcomes may
vary based on grape variety and
other factors.

[142]

RO–EP
5 Cabernet
Sauvignon
red wines

Wine A: 17.0
Wine B: 15.5
Wine C: 14.9
Wine D: 14.5
Wine E: 16.0

Wine A: 14.5
Wine B: 13.3
Wine C: 13.3
Wine D: 13.2
Wine E: 14.2

Applied in industrial volumes of
wine, the technique is suitable for
large-scale operations.
Preservation of specific volatile
and aromatic compounds in the
wine contributes to the retention
of desirable sensory
characteristics, with minor
decreases observed in the
intensity of specific flavors, such
as “dark fruit”, “sweet spice”, and
“chocolate”.

Modifications in “body”,
“acidity”, “bitterness”, and
“astringency” are particularly
evident in Wine A following a
2.5% ABV reduction. Installing
and maintaining RO–EP
equipment may constitute a
substantial investment for wine
producers.

[143]

Thermal
distillation

VD

Langhe Rose
Verduno
Pelaverga
red wine
Barbera red
wine

Langhe
Rose: 13.2
Verduno
Pelaverga
red wine:
15.2
Barbera red
wine: 14.6

5 for all
wines

Maintained a wine-like
physicochemical composition.
Richer aromatic profile,
particularly in ethyl esters and
isoamyl acetate.

Higher losses of alcohol were
observed. [144]

SCC

Shiraz
Sangiovese
red wine
Petit Verdot
Sangiovese
red wine

Shiraz
Sangiovese
red wine:
15.1
Petit Verdot
Sangiovese
red wine:
14.2

0.3 to 14.5
0.3 to 13.8

It selectively amplifies key
non-volatile elements like organic
acids, anthocyanins, and tannins,
heightening the sensory intricacy
of the wine.

Loss of desirable volatile
compounds responsible for fruity
and floral aromas compromises
the wine’s varietal expression.

[145]

RO (Reverse Osmosis); OD (Osmotic Distillation); PV (Pervaporation); NF–PV (Nanofiltration–Pervaporation);
RO–EP (Reverse Osmosis–Evaporative Perstraction); SCC (Spinning Cone Column).
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Alcohol Removal via Extraction Methods

Extraction can be carried out using gases, organic solvents (not for wine used commer-
cially), or adsorbents.

The unique properties of carbon dioxide (CO2), including its ability to transform
into a supercritical fluid under specific temperature and pressure conditions, make it an
effective compound for extracting organic compounds, such as ethanol in wine. In its
liquid state within the wine, CO2 has an affinity for the carbon chain of ethanol, facilitating
its dissolution. As it transitions back to a gaseous state, it carries the dissolved ethanol,
reducing the ethanol content in the wine [146]. According to Ruiz-Rodríguez et al. [134],
extraction carried out with supercritical CO2 in white, red, and rosé wines has proven
to be an advantageous alternative. Besides removing ethanol from beverages, it leaves
no residues in the wines and does not alter their aromatic profile or antioxidant activity.
Furthermore, it is an economical, safe, and easy-to-handle solvent [100]. Other organic
solvents like pentane and hexane are also used to remove ethanol from wines but may
remove other aromatic compounds, affecting the final taste of the wines [147]. Hydrophobic
adsorbents like zeolites are used in the production of dealcoholized wine. Nikolaou
et al. [148] reported a conversion rate of 69.2% of malic acid content and the production of
wines with low ethanol content. According to Akyereko et al. [149], this method enables
the production of wines with an ethanol content of 0.5% v/v.

Alcohol Removal through Membrane-Based Processes

The separation through the use of membranes refers to physical separation techniques
aimed at reducing or eliminating the alcohol content of wine through a semipermeable
membrane. In this method, a natural osmotic pressure occurs due to the difference in
concentration between two solutions flowing through the semipermeable membrane (tan-
gentially, in parallel, or circularly). As a result, alcohol and water from the wine move
from the more concentrated solution to the less concentrated one, reducing or eliminating
ethanol from the wine [105,150,151]. The most commonly used membrane separation
techniques include nanofiltration, reverse osmosis (RO), osmotic distillation (OD), and
pervaporation (PV).

Besides its application in pre-fermentation to lower the sugar content in the must,
nanofiltration can also be employed for alcohol removal from finished wines [105,152,153].
The semipermeable membrane has a size ranging from 1 to 10 nm, allowing the rejection of
smaller molecules (such as sugars and proteins) at a pressure of about 75 bar, surpassing ul-
trafiltration membranes [154]. Some studies demonstrate the advantages and effectiveness
of this technique compared to the reverse osmosis technique, which, in addition to reducing
the alcohol content of wine, preserves its organoleptic characteristics with fewer losses in
anthocyanins at lower pressures, making the process more cost-effective [115,135,137,155].

On the other hand, the RO process involves the application of high pressures, in the
range of 60 to 80 bar, under which water and ethanol molecules are forced through the
semi-permeable membrane, leaving behind a retentate with the remaining compounds.
Simultaneously, a permeate flow is generated, containing higher amounts of water and
ethanol due to their smaller molecular size [25,156]. However, adding water to the retentate
is necessary to achieve efficient dealcoholization, which becomes a disadvantage of this
process since it is generally illegal or restricted in many wine-producing countries. Addi-
tionally, this technique has other challenges related to dilution due to potential alterations
in the sensory properties of wines and the operation at high pressures [136,137,157].

Another membrane separation technique for producing low-alcohol wine is osmotic
distillation (OD), also referred to as evaporative perstraction (EP) or isothermal membrane
distillation [100]. This technique is based on two aqueous phases: the wine containing
volatile compounds and the water acting as the stripping liquid. Both circulate in counter-
current on opposite sides of a hydrophobic hollow fiber membrane module. The mechanism
of ethanol removal in this technique involves the initial evaporation of ethanol due to in-
creased temperature and the difference in partial pressure between ethanol in the wine and
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the space inside the membrane pores. Subsequently, the ethanol vapor diffuses through
the membrane pores and, upon emerging from these pores, mixes with the stripping water
solution. When the ethanol vapor comes into contact with the stripping water, it condenses
into a liquid state [113,151]. This evaporation, diffusion, and condensation process allows
ethanol removal from wine, with values ranging from 1.3% to 10.5% v/v, while preserving
some essential components [138–140]. Reducing alcohol in wine can negatively affect its
quality, causing loss of aroma, oxidation, and spoilage due to microorganisms. Therefore, it
is crucial to follow the manufacturer’s recommendations and perform the alcohol reduction
with care [140,158,159].

In contrast to OD, vapor permeation (PV) is a separation technique that employs
dense and non-porous membranes to separate components from liquid mixtures based on
partial evaporation. In this technique, the liquid mixture comes into direct contact with the
selective side of the membrane (chemical affinity). In contrast, the permeate is collected
in vapor form on the opposite side of the membrane. Separation occurs due to a driving
force, a vacuum, a sweep of inert gas (such as nitrogen), or a temperature difference. This
technique has three main steps: adsorption of the target component onto the membrane,
diffusion of this component through the membrane, and desorption on the permeate
side [141,160]. This technique has been explored as a promising method for reducing the
alcohol content in wines due to several advantages applied in this context: it allows for the
selective removal of ethanol from wine while preserving its aromatic profile, thus avoiding
significant losses in sensory quality; it is more energy-efficient compared to traditional
distillation; there is a lower possibility of contamination of the final product; it operates
at lower temperatures than other dealcoholization methods; it is a “clean” technique as it
produces water and ethanol as byproducts that can be reused [141,161,162]. Nevertheless,
this technique faces limitations, such as high investment costs, a limited membrane market,
low permeation rates at low temperatures, and the need to optimize operating conditions
to achieve desired results [99,151,162].

Alcohol Removal: Thermal Processes in Winemaking

Thermal processes are widely employed to reduce the alcohol content in wines. Vac-
uum distillation (VD) and spinning cone column (SCC) are methods based on the funda-
mental principle of heating and evaporation.

Vacuum distillation (VD) is another process for producing low-alcohol wines. It is
a thermal process that, under vacuum conditions, concerns evaporation, distillation, and
condensation [144]. VD entails heating the wine to relatively low temperatures (typically
between 15 ◦C and 20 ◦C) compared to traditional distillation. Heating is essential for
evaporating volatile compounds, particularly ethanol, from the wine. The alcohol vapor
is then separated under vacuum conditions and condensed into liquid form, yielding a
distillate containing the extracted alcohol. After alcohol removal, the remaining wine
has a significantly lower alcohol content, and retention of the aromas and flavors present
in the original wine can occur under certain conditions [99]. Furthermore, it allows for
flexible adjustment of wine alcohol content based on producer and consumer preferences.
The recovered distillate can be added to the dealcoholized portion [99,141]. Nevertheless,
studies indicate that while VD enhances volatile compounds, it may significantly reduce
esters, alcohols, and terpenes, impacting the wine’s aromatic complexity and sensory
profile [100,163].

The SCC technique, widely used in the beverage industry for producing low-alcohol
beverages, efficiently preserves aromatic compounds [164]. It involves rotating vertically
stacked cones within a column [124]. The alcohol removal occurs in two phases: first, the
wine undergoes SCC at a moderate temperature (26–28 ◦C) and reduced vacuum pressure
(0.04 atm) to extract aromatic compounds. In the second phase, at higher pressure and
temperature (38 ◦C), the alcohol content is reduced, resulting in a low-alcohol or non-
alcoholic wine, depending on the remaining ethanol. Aromas recovered in the first phase
enhance the final wine’s aroma [165,166]. Studies highlight the effectiveness of SCC in
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reducing wine alcohol content and recovering aromatic compounds from red, white, and
rosé wines [151,164–167]. Furthermore, a study conducted by Puglisi et al. [145] suggests
SCC, combined with adsorbents, as a profitable strategy for remediating “smoke taint” in
wines from grapes affected by wildfires. However, SCC technology is costly and involves
expense management [100].

Multi-Stage Membrane-Based Systems

Recently, an innovative approach has emerged for producing low-alcohol bever-
ages, aiming to prevent the loss of desirable aromatic compounds associated with single-
membrane dealcoholization methods (such as NF, PV, RO, and OD) and thermal separation
processes [25,138,139,144,151]. This approach uses an integrated membrane and distilla-
tion system called a multi-stage membrane-based system [151]. This technique combines
two or more alcohol removal methods to remove ethanol from wines and beers. Com-
monly used multi-stage membrane-based systems include nanofiltration and pervaporation
(NF–PV) systems [142], pervaporation units combined with distillation [135], and reverse
osmosis-evaporative pertraction (RO–EP) systems [143], with the RO–EP system being the
most widely used. These combined systems have proven highly efficient for producing
low-alcohol wine, as they not only maintain aroma characteristics similar to the original
wine but often achieve improved versions compared to the original product [142,168,169].
Despite some losses of desirable aromatic compounds such as ethyl esters, acetate esters,
and monoterpenes [143,170], the ability of these systems to preserve the wine’s aroma and
volatiles constitutes a promising strategy in the production of low-alcohol or alcohol-free
beverages, meeting the growing consumer demand for healthier and high-quality products.

2.2. Microbial Strategies for Producing Low-Alcohol Wines

The increasing trend of alcohol content in wines, linked to climate change, might result
in changes in flavor and complexity and, given the current consumer preferences, might
negatively impact commercialization. Therefore, strategies limiting alcohol production or
its reduction must be defined. These techniques can be categorized into three fundamental
approaches, as mentioned earlier: pre-fermentation, fermentation processes, and post-
fermentation techniques [171]. Focusing on microbial strategies, emphasis must be placed
on the selection of fermentation microorganisms, their proportion or time of inoculation
on grape must, and the conditions during fermentation. The goal is to reduce or restrict
ethanol production during the fermentation phase. Specific yeast strains (genetically
modified or non-Saccharomyces yeasts) can also be used to reduce yeast biomass (keeping
the fermentation rate of fermentable sugars as low as possible) [100], or techniques such
as interrupted fermentation are employed for this purpose. Table 4 briefly overviews
the microbiological techniques employed to reduce wine alcohol content during grape-
must fermentation.
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Table 4. Overview of microbiological techniques employed to reduce wine alcohol content during fermentation.

Approaches Used Approach or Microorganism Approximate Decrease
in Ethanol Content (%) Inoculation Regime Scale of Fermentation Grape Variety or Media Ref.

GMO-based approaches

Over-expressed GPD1
35 Unspecified Unspecified YEPD [172]

3 Single Laboratory MS [173]

10.5–17.5 Single Laboratory MS [174]

Over-expressed GPD2 24 Single Laboratory Synthetic Leu-free [174]

PDC2 deletion mutant
28–45 Unspecified Unspecified YEPD [172]

2 Single Laboratory Diluted white must [175]

Alcohol dehydrogenase
(ADH) mutants 63 Single Laboratory YEPD [176]

Triose phosphate isomerase
(TPI) mutants Undetermined Single Laboratory YEPD [177]

NADH oxidase (NOX) mutants 7 Single Laboratory Synthetic MS medium [178]

Glycerol transporter (FPS) mutants 10 Single Laboratory Synthetic MS medium [173]

Glucose oxidase (GOX) mutants 2 Single Laboratory Chardonnay grape juice [179]

Hexose transporter (HXT) mutants Undetermined Single Laboratory 5× defined minimal medium [180]

non-Saccharomyces
(NS) yeasts

C. stellata 19 Single Laboratory Grape juice
[181]

C. zemplinina 57 Single Laboratory Grape juice

H. uvarum 33 Single Laboratory Grape juice

[182]
Z. sapae 14 Single Laboratory Grape juice

Z. bailii 4 Single Laboratory Grape juice

Z. bisporus 7 Single Laboratory grape juice

M. pulcherrima
0.9 Sequential fermentations

with S. cerevisiae Laboratory Chardonnay

[183]
1.6 Sequential fermentations

with S. cerevisiae Laboratory Shiraz
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Table 4. Cont.

Approaches Used Approach or Microorganism Approximate Decrease
in Ethanol Content (%) Inoculation Regime Scale of Fermentation Grape Variety or Media Ref.

non-Saccharomyces
(NS) yeasts

M. pulcherrima 0.9
Sequential fermentations
with Saccharomyce
bayanus, and S. cerevisiae

Laboratory Sila [184]

P. kudriavzevii 52 Sequential inoculation Laboratory CDGJ medium
[185]

Z. bailii 16 Sequential inoculation Laboratory CDGJ medium

S. pombe 4.9 Single Laboratory Airen [186]

S. pombe 3.1 Sequential fermentations
with S. cerevisiae Laboratory Airen [186]

H. uvarum 1 Sequential fermentations
with S. cerevisiae Laboratory Synthetic grape juice and

natural grape juice [187]

H. uvarum 1.3 Sequential fermentations
with S. cerevisiae Laboratory Pinotage [188]

H. uvarum 0.8 Sequential fermentations
with S. cerevisiae Laboratory Sauvignon Blanc [188]

H. uvarum 3.3 Sequential fermentations
with S. cerevisiae Laboratory Negroamaro [189]

H. osmophila 1.2 Sequential fermentations
with S. cerevisiae Laboratory synthetic grape juice and

natural grape juice [187]

H. opuntiae 2 Sequential fermentations
with S. cerevisiae Laboratory Pinotage [188]

H. opuntiae 11 Sequential fermentations
with S. cerevisiae Laboratory Sauvignon Blanc [188]

M. pulcherrima 67 Single Laboratory Tinta Roriz [190]

M. pulcherrima 7 Co-fermentations with S.
cerevisiae Laboratory Tinta Roriz [190]

M. pulcherrima 8 Co-fermentations with S.
cerevisiae Laboratory Malvasia and Viura [191]
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Table 4. Cont.

Approaches Used Approach or Microorganism Approximate Decrease
in Ethanol Content (%) Inoculation Regime Scale of Fermentation Grape Variety or Media Ref.

non-Saccharomyces
(NS) yeasts

M. pulcherrima and S. uvarum
mixed inoculum 1.6 Sequential fermentations

with S. cerevisiae Laboratory CDGJ medium [192]

M. pulcherrima 1.3 Sequential fermentations
with S. cerevisiae Laboratory Synthetic grape juice and

natural grape juice [187]

M. pulcherrima 7 Single pilot-scale Viura-Malvasía [193]

T. delbruekii 4 Single pilot-scale Viura-Malvasía [193]

L. thermotolerans 1 Sequential fermentations
with S. cerevisiae Laboratory Riesling [186]

P. kluyveri 1.8 Sequential fermentations
with S. cerevisiae Laboratory Riesling [186]

M. pulcherrima 1 Sequential fermentations
with S. cerevisiae Laboratory Riesling [186]

L. thermotolerans 1 Co- fermentations with
S. cerevisiae industrial Sangiovese [194]

L. thermotolerans 5 Sequential fermentations
with S. cerevisiae industrial Sangiovese [194]

L. thermotolerans 3 Sequential fermentations
with S. cerevisiae Pilot scale Shiraz [195]

L. thermotolerans 0.5 Co- fermentations with
S. cerevisiae Laboratory Airen [196]

L. thermotolerans 3 Sequential fermentations
with S. cerevisiae Laboratory Airen [196]

L. thermotolerans 8 Sequential fermentations
with S. cerevisiae Laboratory Tempranillo [197]

T. delbrueckii 3 Single pilot-scale Viura-Malvasía [193]

T. delbrueckii 2 Sequential fermentations
with S. cerevisiae pilot-scale Airén [198]
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Table 4. Cont.

Approaches Used Approach or Microorganism Approximate Decrease
in Ethanol Content (%) Inoculation Regime Scale of Fermentation Grape Variety or Media Ref.

non-Saccharomyces
(NS) yeasts

T. delbrueckii 0.8 Co- fermentations with
S. cerevisiae pilot-scale Amarone [199]

T. delbrueckii 3 Sequential fermentations
with S. cerevisiae pilot-scale Amarone [199]

T. delbrueckii 4 Sequential fermentations
with S. cerevisiae Semi-industrial scale Chardonnay [200]

T. delbrueckii 1 Sequential fermentations
with S. cerevisiae Semi-industrial scale Palomino Fino [200]

T. delbrueckii 4 Sequential fermentations
with S. cerevisiae Laboratory Verdejo [201]

C. stellata 54 Single Laboratory Chardonnay [202]

C. stellata 0.8 Co- fermentations with
S. cerevisiae Laboratory Chardonnay [202]

C. stellata 6 Sequential fermentations
with S. cerevisiae Laboratory Chardonnay [202]

C. stellata 6
Immobilized and
sequential fermentations
with S. cerevisiae

Semi-industrial scale Grape must [203]

Abiotic factors control

Controlled factor

M. pulcherrima 42 Controlled aeration Laboratory Synthetic grape must [204]

M. pulcherrima 14
Controlled aeration and
Co- fermentations with
S. cerevisiae

Laboratory Natural white grape must [191]

M. pulcherrima 4 Controlled aeration Laboratory Riesling must [205]

S. cerevisiae 30 Controlled aeration Laboratory Natural white must [206]

S. cerevisiae 15 Controlled temperature Laboratory Concentrated white must [207]

S. cerevisiae 9 Controlled temperature Laboratory Modified MS300 medium [208]

S. cerevisiae 3 Controlled temperature Laboratory Carinyena [209]
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Table 4. Cont.

Approaches Used Approach or Microorganism Approximate Decrease
in Ethanol Content (%) Inoculation Regime Scale of Fermentation Grape Variety or Media Ref.

M. pulcherrima 6

Controlled temperature
and sequential
fermentations with S.
cerevisiae

Semi-industrial scale Merlot [210]

Abiotic factors control

M. guilliermondii 3

Controlled temperature
and sequential
fermentations with S.
cerevisiae

Semi-industrial scale Merlot [210]

W. saturnus 3
Controlled temperature
and Co-fermentations
with S. cerevisiae

Laboratory Emir [211]

Carbonic maceration 16 Unspecified Laboratory Carlos [212]

Carbonic maceration 5 Unspecified Laboratory Noble [212]

Carbonic maceration 1.5 S. cerevisiae Laboratory Muscat Hamburg [213]

Carbonic maceration 25 Several species Semi-industrial scale Tempranillo [214]

Carbonic maceration 24 Unspecified Semi-industrial scale Tempranillo and Graciano [215]

YEPD (yeast extract, peptone, and dextrose); YNB (Yeast Nitrogen Base); MS (Standard defined medium); CDGJ (chemically defined grape juice medium.



Fermentation 2024, 10, 36 22 of 45

2.2.1. GMO Microorganisms

Recently, genetic modifications or adaptive evolution and selection have developed
modified yeast strains capable of reducing wine alcohol content during
fermentation [134,135,216,217]. However, their use may pose challenges, such as pro-
ducing undesired secondary metabolites, like acetaldehyde and acetoin, that can affect
wine characteristics [184,218]. Another challenge in using such yeast strains is consumer
acceptance of genetically modified organisms in food and beverages.

Given the relative simplicity of the yeast genome, its modification can be achieved. To
obtain low-ethanol wine, the logical step would be to limit the expression of the enzyme al-
cohol dehydrogenase (ADH), Figure 3, which catalyzes the final step in ethanol production
during alcoholic fermentation. However, this approach was deemed unpractical because
strains with ADH deletion could not grow under anaerobic conditions and the production
of higher levels of acetic acid and acetaldehyde [176,219]. Hence, novel targets had to
be found to redirect the metabolism from ethanol production to other end-products [98].
However, these changes in the metabolic pathways must be carefully monitored, as other
products can impact the overall quality of the wine [220].
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Figure 3. Main target specific enzymes and genes in yeast cells that may lead to lower ethanol yields.
HXT—hexose transporter; Fps1p—aquaglyceroporin; GPD—glyceraldehyde-3-phosphate dehydro-
genase; TPI1—triosephosphate isomerase; PDC—pyruvate decarboxylase; ADH—alcohol dehydro-
genase and ALDH—Aldehyde dehydrogenase. GOXp—Glucose-oxidase—and Lact—lactonase—are
expressions, in yeasts, of non-yeast genes.

One of the modifications that can be used to reduce ethanol production is linked to
the overexpression of glycerol-3-phosphate dehydrogenase isozymes, namely through
Gpd1 and Gpd2 genes [221], Figure 3. Glycerol production usually uses about 4% of grape
juice carbon during fermentation by S. cerevisiae, generally in the initial stages of biomass
formation [222]. Glycerol has two essential functions: to combat osmotic stress and to
maintain the oxidation-reduction balance. The reaction behind glycerol formation is linked
to the correction of redox balance within cells [223]. The overexpression of these genes
increases glycerol synthesis while decreasing ethanol synthesis [224]. This increase in glyc-
erol production can reach as much as 548%, while the reduction in ethanol can be of great
significance, as shown in early works [172]. Other results indicate an increase in glycerol
production ranging from 109 to 275% and a reduction in ethanol from 3 to 24%, depending
on the experimental medium (yeast extract, peptone, dextrose medium, yeast nitrogen base
medium, synthetic medium, grape juice or synthetic Leu-free) or the overexpressed gene
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(Gpd1 or Gpd2) [220]. However, other metabolites are also more produced and can cause
changes in the quality of wine. Of those, succinate, acetate, acetaldehyde, acetoin, and
2,3-butanediol [174,225], Figure 3, must be referred to, as their presence above the sensory
threshold may be detrimental to perceived wine quality [220,226]. Mutant yeasts with
modifications of GPD need further genetic modifications to avoid excessive production of
these metabolites. One modification is the deletion of aldehyde dehydrogenases, namely
the Ald6 gene, that contribute to the formation of acetic acid [227]. This modification de-
creased the formation of acetic acid, with increased glycerol production and lower ethanol
yield [225]. However, a subsequent problem arose, as the deletion of Ald6 increased acetoin
production, negatively affecting wine aroma. Ehsani and collaborators [228] obtained a
strain that produced lower ethanol levels (3%, v/v less) and higher glycerol production
with a reduced impact on sensory parameters in the final wine.

Other changes in glycerol metabolism can be achieved by changing the expression of
genes linked to Fps1p, an aquaglyceroporin channel that controls the intracellular glycerol
concentration [229–231]. The production of glycerol is controlled by a regulatory domain
located in the N-terminal extension of Fps1p. This domain regulates glycerol transport;
when removed, the channel becomes hyperactive. As a result, glycerol continuously leaks
out of the cell, and the cell compensates for the loss by producing more glycerol [173,230].
Varela et al. [218] observed that the increased glycerol production, due to deleting the
regulatory domain of Fps1p, lowered ethanol formation considerably (Figure 3).

Another gene modification to reduce ethanol production can be deleting Pyruvate
decarboxylase (PDC) genes. This enzyme catalyzes the decarboxylation of pyruvate to
acetaldehyde and CO2, being three genes known in S. cerevisiae (Pdc1, Pdc5, and Pdc6)
up-regulated by the transcription factor Pdc2p; however, only Pdc1p and Pdc5p are known
to be active in yeast during fermentation [232], Figure 3. Modifying the PDC genes resulted
in diverse outcomes. Deleting Pdc1 resulted in lower activity and increased pyruvate levels,
which are undesirable, considering microbial stability and balance of sulfur dioxide. Still,
no reduction in ethanol, while deleting Pdc2, led to a considerable decrease in ethanol levels
and increased glycerol production while maintaining sufficient pyruvate decarboxylase ac-
tivity to support glucose growth [172]. Further changes in this set of genes were performed
by Cuello et al. [175], which resulted in a strain with reduced ethanol production without
effect on other fermentation kinetics.

Another gene editing that can be used to reduce the production of ethanol is modifying
the expression of triose-phosphate isomerase, encoded by the Tpi1, which is the enzyme
catalyzing the interconversion between dihydroxyacetone phosphate and glyceraldehyde
3-phosphate, the two products following the breakdown of fructose 1,6-bisphosphate [219],
Figure 3. The lack of this gene resulted in high amounts of glycerol, with a reduced ethanol
yield [177]. However, the deletion of the Tpi1 gene caused the inability of this strain to grow
in a glucose medium, probably due to the reduced content of NADH, which is produced
during the conversion of glyceraldehyde 3-phosphate into pyruvate [233,234]. A complete
loss of activity of the TPI1 enzyme seems like it would be more feasible, as a reduction
in yeast growth with attendant fermentation problems is likely to occur. Still, a partial
reduction in its activity could provide an opportunity for low alcohol-producing yeast.
This partial reduction can be achieved by changing regulatory genes, like Gcr1 and Gcr2
(transcription factor for glycolytic genes), that can reduce the expression of Tpi1 [235], with
mutations in other genes, like Reb1 (an essential gene that maps on chromosome), Rap1
(Repressor Activator Protein), and Grc1 (component of the minus-end located γ-tubulin ring
complex) also able to reduce TPI1 activity [236]. Avoiding glucose repression of respiration
has also been a target for producing low-alcohol wines. This approach relied on the use of a
chimeric glucose transporter, comprised of the amino-terminal part of HXT and the carboxy-
terminal region of Hxt7 (HXT1, 2, 3, 4, 6, and 7 are intramembrane transporter proteins
known to be involved in the transport of glucose) [237]. Using a yeast strain with deleted
Hxt1, 2, 3, 4, 6, and 7 resulted in a respiratory phenotype with low ethanol production [180],
even though results were achieved using low sugar concentrations medium (5%, w/v)
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compared to grape juice. This shifts the metabolism from the Pasteur effect (under low O2
concentrations, yeasts conduct alcoholic fermentation forming ethanol and CO2, or, under
high O2 concentrations, aerobic fermentation occurs with lower glucose consumption) to
the Crabtree effect, where, in the presence of high sugar content (about 200 g/L), regardless
of O2 presence, fermentation can occur [238].

A different approach is the expression, in yeasts, of non-yeast genes. Reducing the
content of sugars in grape juice before fermentation can be achieved by glucose oxidase
(GOXp), an oxygen-dependent dehydrogenase that catalyzes the first step of a two-step
process associated with converting glucose to gluconic acid [220]. Besides treating grape
juice with GOX to reduce the sugar content, a strategy that has several limitations, even
though it can reduce up to 40% of ethanol production [239], the introduction of the gene en-
coding this enzyme has already been performed in S. cerevisiae [179]. Microvinifications of
Chardonnay juice samples resulted in wines containing 1.8–2.0% less alcohol, possibly due
to the use of glucose to produce D-glucono-δ-lactone and gluconic acid by GOX (Figure 3).
Other authors overexpressed the gene noxE from Lactoccocus lactis, encoding H2O-forming
NADH oxidase, NoxEp, that uses NADH, oxidizing it when oxygen is available [178]. The
introduction of this NADH oxidase can decrease the available intracellular NADH pool,
affecting alcohol dehydrogenase (ADH), hence resulting in reduced ethanol formation [98].
This resulted in using only half the available sugar but with paralleled changes in other
metabolic pathways, increasing acetaldehyde production, impairing growth, and fermenta-
tion performance. All these genetic manipulation approaches to low ethanol-producing
yeast, as well as others that might arise, will be dependent on the acceptability of both the
industry and consumers of using such yeast, pushing current research on the search for
non-GMO alternatives [97].

2.2.2. Yeast Selection for Low Alcohol Production

One alternative to avoid GMO yeasts, designed for low-ethanol production, is to
isolate those that naturally present that trait. However, this effort for S. cerevisiae can be
complex, as biochemical and physiological characteristics and the underlying genetics
of this yeast have been pushed by natural selection to favor the yield of ethanol [97,240].
This has resulted in a slight variation in this phenotype [241], with currently available S.
cerevisiae wine yeasts resulting in similar ethanol production when fermenting the same
must [242]. Hence, the option would be selecting non-Saccharomyces (NS) yeasts that
preferentially consume sugars by respiration rather than fermentation [238]. Therefore,
evaluation of ethanol production variation among NS yeasts has been addressed. Using
non-Saccharomyces yeasts has garnered significant interest from the scientific community
and winemakers, as the available data state (e.g., [197,243,244]). These yeasts can divert
carbon or sugar metabolism into other pathways, thus avoiding ethanol production during
fermentation [183,197,243–245]. Several studies have shown significantly reduced wine
ethanol levels when using these yeasts. For instance, Magyar and Toth [181] identified
Saccharomyces uvarum, Candida stellata, and C. zemplinina strains with exciting properties.
These strains produced, in laboratory fermentations, similar residual concentrations of
sugars but with considerable chances in alcohol production, namely for C. zemplinina, with
approximately half the alcohol content that was recorded for S. cerevisiae.

Another exciting work was performed by Gobbi et al. [182], using Zygosaccharomyces
bailii, Z. sapae, Z. bisporus, C. zemplinina, C. stellata, Hanseniaspora uvarum, Saccharomycodes
ludwigii, Dekkera bruxellensis, and S. cerevisiae, for fermentation tests with grape juices.
Results showed significantly low ethanol production in Z. bailii, Z. sapae, Z. bisporus, and
C. zemplinina, but more prominently when using H. uvarum, confirming data observed
by other authors [246,247]. Low ethanol production has also been reported for strains of
Metschnikowia pulcherrima, Schizosaccharomyces malidevorans and C. stellata [183], Torulaspora
delbrueckii [246], Pichia kudriavzevii and Z. bailii [185]. Schizosaccharomyces pombe reduced
0.65% of ethanol in the fermentation of white Airén grapes [186], and some Saccharomyces
species can also provide low ethanol-producing strains. A reduction of 0.7% was achieved
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with the use of S. uvarum [248], with S. kudriavzevii also presenting interesting results [249].
However, some adverse effects have also been linked to the use of these alternative strains
if partial aeration strategies during fermentation are applied to allow the use of sugar to
be consumed via respiration rather than alcoholic fermentation, namely the formation of
undesirable volatile compounds, including acetic acid [185,191,250], even though positive
effects on sensory characteristics also occur [98].

Additionally, non-Saccharomyces yeasts play a multifaceted role in wine fermentation,
potentially enhancing its sensory profile and aromas and contributing to wine stability and
complexity [182,183,187,197,243–245,250–254]. Some non-Saccharomyces possess antimicro-
bial properties, including the production of Killer factors (mycocins), which inhibit the
growth of undesirable yeasts (Zygosaccharomyces genus, Brettanomyces bruxellensis, among
others), providing an additional advantage [255]. These “Killer factors”, such as CpKT1
and CpKT2 produced by Candida pyralidae, have demonstrated effectiveness in controlling
the population of undesired yeast strains, such as B. bruxellensis, in winemaking conditions,
without adversely affecting the fermentation processes of S. cerevisiae or the tested lactic
acid bacteria [256]. Other “Killer factors”, such as KTCf20 and Pikt (produced by Wicker-
hamomyces anomalus), Kwkt (produced by Kluyveromyces wickerhamii), PMKT and PMKT2
(produced by Pichia membranifaciens), have also demonstrated potential in controlling
unwanted yeast strains in vinification environments [257–260].

2.2.3. Co-Inoculations and Sequential Inoculations (Non-Saccharomyces and S. cerevisiae)

Considering some of the previously referred advantages and drawbacks of using
different yeasts, two approaches to reducing the ethanol content in wine are co-inoculation
of those yeasts or their sequential introduction in fermentation. The first approach (co-
inoculation) involves concurrent inoculations of non-Saccharomyces or other Saccharomyces
non-cerevisiae yeasts at high cell concentration with S. cerevisiae, and the second approach
(sequential inoculation) consists of the start of fermentation with non-Saccharomyces or
other Saccharomyces non-cerevisiae yeasts, occurring for a given duration and inoculating S.
cerevisiae to take over and complete the fermentation [261].

The critical factors affecting fermentation and oenological outcomes of this approach
are the time leading to the inoculation of S. cerevisiae (in sequential fermentations) and
the ratio of S. cerevisiae and other yeast [252]. Besides ethanol changes, non-Saccharomyces
or other Saccharomyces non-cerevisiae yeasts are essential due to their contribution to wine
aroma and flavor, with several yeasts already described as contributors to that profile.
Padilla et al. [252] and Ivit et al. [243] point out several yeasts as having great oenological
interest and used in co- or sequential inoculations, which will be briefly reviewed here.

One of the most important genera is Hanseniaspora, which comprises at least ten species,
H. uvarum and H. guilliermondii being the most common. Several Hanseniaspora species have
been tested in sequential or co-inoculated fermentation with S. cerevisiae, with a recorded
reduction in the ethanol content of wines. Reductions of around 1% were achieved using
sequential inoculation of H. uvarum and S. cerevisiae in synthetic grape juice [187], and, in
white (Sauvignon blanc) and red (Pinotage) musts, reductions in ethanol were also achieved
of around 1.3% and 0.8%, for white and red musts, respectively [188]. Furthermore, three
strains of H. uvarum, in sequential or co-inoculated fermentations with S. cerevisiae, resulted
in lower ethanol concentration when compared to fermentations with the latter only [189].
Also, in synthetic grape juice, a reduction in alcohol was recorded with sequential inocula-
tion of H. osmophyla and S. cerevisiae [187] and white (Sauvignon blanc) and red (Pinotage)
musts; the use of H. opuntiae also resulted in less production of ethanol [188]. However,
some studies point out the increase in acetic acid when fermentations are performed using
Hanseniaspora yeast strains [189].

Another important yeast already known to have essential winemaking traits is Schizosac-
charomyces pombe. Besides being able to moderate wine acidity by metabolizing malic acid,
this strain enhances the color of red wine and reduces Ochratoxin A, biogenic amines, and
ethyl carbamate [244]. In addition, some S. pombe strains used in sequential fermentation
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resulted in lower ethanol content [186], even though a lack of reduction or even increase in
alcohol has been reported when using S. pombe, or even the presence of unsuitable aroma
produced by the fermentative metabolism of S. pombe [262].

An alternative non-Saccharomyces yeast of great importance is Metschnikowia pulcher-
rima. This non-Saccharomyces yeast is commercially available from many suppliers and
is known to improve several organoleptic characteristics of wines [263]. Furthermore,
the production of wines with lower ethanol in sequential fermentations with S. cere-
visiae has been reported in several works, either with grape juice [190], synthetic grape
must [204], Chardonnay and Shiraz musts [183], and in white grape must (mixture of
Malvasia and Viura varieties) [191]. A reduction of up to 1.6% in ethanol was recorded
in Shiraz wines [183], with a drop of alcohol further confirmed in later works [192]. The
use of M. pulcherrima and S. uvarum mixed inoculum, sequentially used with S. cerevisiae,
reduced 1.7% v/v of ethanol compared to wine fermented with S. cerevisiae [192]. When
immobilized, the sequential inoculation of M. pulcherrima could also reduce ethanol content
in synthetic or natural grape juice [187]. However, results are linked to several conditions,
namely aeration regimes, that must be carefully monitored [191,193].

Lachancea thermotolerans (previously Kluyveromyces thermotolerans) is a commercially
available yeast that positively influences wine’s sensory profile and total acidity [253].
Besides organoleptic advantages, reduction in ethanol content has been achieved in se-
quential or co-inoculation. A fermentation started with L. thermotolerans and a sequential
inoculation, after two days, with S. cerevisiae, led to a reduction in ethanol up to 0.7%
v/v [194,195,251]. Mixed or sequential fermentation with L. thermotolerans and S. cerevisiae
also reduced alcohol production [196]. Further works prove that sequential fermentations
with L. thermotolerans and S. cerevisiae can reduce the ethanol content in must of Tempranillo
grapes. Mixed fermentations of S. pombe and L. thermotolerans can lower the ethanol content
in wine but may also increase the acetaldehyde content [197]. The sensory threshold for
acetaldehyde ranges from 100–125 mg/L. Typically, table wines have acetaldehyde levels
below 75 mg/L immediately after fermentation. However, if the levels exceed 125 mg/L, it
can result in unpleasant odors such as ‘over-ripe bruised apples’, ‘stuck ferment’ character,
or ‘sherry’ and ‘nut-like’ characters.

Torulaspora delbrueckii was one of the first commercially accessible non-Saccharomyces
yeasts, as they had similar fermentation patterns as S. cerevisiae and were able to en-
hance aroma composition and positively impacting properties for traditional methods
of sparkling wine [264]. Several studies have proven that its use in mixed or sequential
fermentation resulted in reduced ethanol. Most of these studies refer to reductions of 0.5%
or below [193,198–201,265]. Higher reductions of ethanol were recorded in other works,
like 1% less alcohol using Chardonnay [254] or less than 1.5% using chemically defined
grape juice [192]. However, to achieve higher levels of alcohol reduction, using T. delbrueckii
in regular fermentations must be combined with high aeration processes [266].

Another yeast commonly studied due to positive contributions during fermentations is
Starmerella bombicola (formerly known as Candida stellata). Early works by Soden et al. [202]
with mixed and sequential fermentations with C. stellata and S. cerevisiae resulted in less
alcohol than the mono-inoculated S. cerevisiae control. Further works with sequential
fermentations using Starmerella bombicola and S. cerevisiae in Chardonnay juice yielded lower
ethanol concentrations when compared to S. cerevisiae fermentations [202]. Immobilizing
Starmerella bombicola is a practical approach to reducing the final ethanol content in grape
must. Studies have shown that using this yeast species in the Trebbiano Toscano grape-must
and the Verdicchio grape-must significantly reduce the final ethanol content [187,203].

2.2.4. Abiotic Factors Control during Fermentation

Control of abiotic factors can also be used to reduce alcohol levels in wines. One of
those approaches is the use of aeration. This alternative uses the oxidative metabolism
observed in some non-Saccharomyces species that can use oxygen for growth regardless of
sugar concentration and, therefore, reduce those that would contribute to ethanol forma-
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tion [219]. Under low sugar concentrations and with aeration, respiration is favored for S.
cerevisiae, and this technique can be used for lowering ethanol content in wines. However,
this approach can produce higher amounts of acetic acid, negatively affecting wine sensory
characteristics [192,204]. For this approach to be successful, yeast strains that can withstand
the conditions available for respiration within the grape must be found without negative
impacts on the wine itself. Recently, Tronchoni et al. [206] identified strains with acceptable
outcomes after aerobic fermentation, including low volatile acidity, acetic acid levels, and
low ethanol production. Still, the most feasible approach is suggested to be the use of a
non-Saccharomyces species yeast under aeration conditions for a defined amount of time,
after which S. cerevisiae would be inoculated [245] or co-inoculation strategies. For instance,
Morales et al. [191] identified one strain of M. pulcherrima and, in a co-inoculation with S.
cerevisiae in laboratory-scale bioreactors, and depending on the condition, a reduction of
2.2% (v/v) in ethanol content was achieved, while maintaining acceptable volatile acidity
levels. Using the same yeast, a decrease in ethanol of 1.5% was recorded, and, for certain
aeration conditions (5 mL/min aeration, 0.025 volume of air per volume of culture per
minute, for 72 h), changes in wine volatile profile were considerably acceptable and results
similar to those observed using Zygosaccharomyces bailii [254]. On the other hand, other
works using strains of M. pulcherrima show higher decreases in ethanol content but with
a parallel increase in off-flavors (solvent-like notes, indications of oxidation, a reductive
impression, a reduction in the overall purity and fruity characteristics, and the presence of
undesirable aromas like “Maggi-flavour”, “cheesy” and, “sweaty”), negatively impacting
wine sensory analysis [205]. The same authors also recorded adverse effects on sensory
analysis when Candida zemplinina, Pichia guilliermondii, and P. kluyveri conducted fermen-
tation. Even though promising results might be found, the most common pattern is a
decrease in sensory quality with the increase in aeration, pointing out the need for further
studies that might convert this strategy into an industrial feasible solution.

Control of the temperature in which fermentation occurs is critical in the wine indus-
try. Low temperatures during fermentations affect wine’s final sensory attributes [267],
changing several metabolic pathways of yeasts [268]. Still, it can result in sluggish fer-
mentation, which is not a standard method. Even though there is widespread knowledge
about the influence of temperature on the fermentation processes, the effect of this factor
on the population dynamics of S. cerevisiae is still largely unknown. One critical work is
from Torija et al. [207], which clearly shows the effect of temperature on the population of
S. cerevisiae during fermentation. Different strains could be separated by their ability to
perform better at higher or lower temperatures, even though the size of the population
was the same, independently of the fermentation temperature. The wine composition
reflected the population changes, with higher alcohol at low temperatures and secondary
metabolites positively affected by temperature increase. However, correlations between
temperature and secondary metabolites rely on intricate and dynamic metabolic pathways
and do not always present the same trend [208]. Ethanol formation has been negatively
correlated with temperature for S. cerevisiae [268], linked to higher growth rates, diverting
carbon sources, and reduced ethanol production [269]. Rodrigues et al. [270] also observed
the same pattern and recorded a reduction in ethanol yield with increasing temperature
of S. cerevisiae. The use of preadapted inoculum (grown at a fermentation temperature
of 13 or 17 ◦C) can be a helpful approach, as results showed a reduction in alcohol pro-
duction, even though these results are dependent on the used strains [209]. Hence, using
low-temperature fermentations to reduce the ethanol content of wines must rely on using
non-Saccharomyces yeasts. The temperature at which fermentation occurs is a critical factor
regarding non-Saccharomyces’ growth [222] due to the increased tolerance to alcohol at
reduced temperatures [271]. Indeed, even early data indicate that non-Saccharomyces yeast
keeps their viability for extended periods at lower temperatures when compared to S.
cerevisiae [272,273]. Further works have shown that ethanol concentration can be reduced
in fermentations performed by Metschnikowia pulcherrima and Meyerozyma guilliermondii
before inoculation of S. cerevisiae, using lower temperatures, without compromising the
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sensory attributes of wine [210]. Similar results were observed using Williopsis saturnus
var. saturnus or Metschnikowia pulcherrima [211,274]. Using non-Saccharomyces strains in
low-temperature fermentations can be a feasible approach to reducing ethanol content in
wines. Still, it must be combined with a carefully planned co- or sequential inoculation
of traditional yeasts or fermentation times [275]. However, this short fermentation period
cannot convert most must sugars, resulting in a wine with high residual sugar content.
Preservation with sulfur dioxide or pasteurization is an additional and complementary pro-
cedure to ensure microbiological stability and wine storage [118,276]. Studies indicate that
the short fermentation period also limits the production of monoterpenes, ethyl esters, and
acetates, compounds responsible for desirable floral and fruity aromas in wines, leading to
wines with poor aromatic profiles [276–279]. The study by Nikolaou and Kourkoutas [280]
explored high-temperature effects on low-alcohol wine production with immobilized kefir
cultures. Both wet and freeze-dried immobilization proved effective for simultaneous
alcoholic and malolactic fermentation at over 30 ◦C, with operational stability for three
months. Ethanol levels and daily productivity met industry standards. The research also
examined using immobilized kefir cultures at 45 ◦C for low-alcohol wines with a sweet
(liquored) character despite higher residual sugars, offering innovative approaches to
sustainable production.

Carbonic maceration is a fermentation technique in which grape clusters are placed
in a carbon dioxide-rich atmosphere inside a closed tank [281]. These conditions lead to a
metabolic change in grapes, from a respiratory metabolism to an anaerobic fermentative
metabolism called intracellular fermentation, without yeast intervention, with the formation
of alcohol (1.5–2% alcohol) and reduced malic acid content. The resulting wines possess
distinct characteristics, namely in flavor and color, but might not age well [282]. The effect
of this practice on wine alcohol is variable, depending on several factors. Indeed, some
early works recorded higher values of ethanol in wine from carbonic maceration [283],
while other works found lower ethanol content [212] or no changes at all [284]. More
recent works show that carbonic maceration increases the ethanol content in wine from
Tempranillo red grapes [285], while a slight decrease (non-significant) was recorded in
Muscat Hamburg vines [213]. Using carbonic maceration proves to be a practical alternative
if the resulting wine is separated into two different fractions: one, the free liquid resulting
from the fermentation, and, two, the liquid obtained after pressing the grapes [214,215].
Both these works show considerably lower ethanol content of the first fraction, the free
liquid resulting after carbonic maceration, without significant variations on the oenological
attributes of the wine. This strategy can be used to produce wines of low ethanol content,
less affected by color and aromatic changes when compared to other methods used to
reduce the alcohol content of wines.

Reducing yeast biomass during fermentation is another method to produce non-
alcoholic or low-alcohol wines. This method involves periodically reducing the yeast
population during the must fermentation to keep the fermentation rate of fermentable sug-
ars as low as possible, thus preventing excessive ethanol formation [100,286–289]. However,
this approach often leads to fermented beverages with substantial amounts of unfermented
sugars, making them vulnerable to spoilage issues and potential deterioration [288], with
negative off-flavors.

2.2.5. Wines Biological Dealcoholisation

Alcoholic fermentation is a biochemical process responsible for producing food prod-
ucts such as bread and various beverages, including wine, beer, and other alcoholic
drinks [290–292]. In wine production, alcoholic fermentation is crucial in transforming
grape must into wine, a time-honored tradition fundamental in creating a wide range of
unique flavors and aromatic profiles [293].

This process is pivotal in the conversion of sugars into ethanol and carbon dioxide,
along with other metabolites such as glycerol, acetate, succinate, pyruvate, higher alco-
hols, and esters, a process carried out by various yeast species, representing the primary
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biotechnological process on a global scale [291]. Within the yeast species, Saccharomyces
cerevisiae yeast dominates the wine fermentation process [245,294]. However, it is present
on the surface of grapes and in vineyard soils in much lower numbers relative to other yeast
species belonging to Hanseniaspora (the predominant) Candida, Hansenula, Kluyveromyces,
Metschnikowia, Pichia, Rhodotorula, and Torulaspora genera [290]. The former is recognized to
prevail during the initial stages of alcoholic fermentation [245,293].

Under anaerobic conditions, the yeast S. cerevisiae utilizes pyruvic acid generated
from sugar catabolism as a sink for the reduced coenzyme NADH. Subsequently, pyruvic
acid is converted via acetaldehyde into ethanol, enabling the regeneration of NAD+ in a
final step catalyzed by alcohol dehydrogenase to allow glycolysis and ATP production
to proceed. In the fermentation process, and for the conversion of glucose into ethanol
and CO2, 12 enzymes are involved, with ten degrading glucose to pyruvate with ATP
production for yeast growth and two enzymes for the conversion of pyruvate into the
final fermentation products to preserve yeast redox balance. The pyruvate decarboxylase
and alcohol dehydrogenase, the last enzymes in the yeast fermentative pathway, require
magnesium and zinc ions to convert sugar into ethanol efficiently [295].

Saccharomyces cerevisiae is a yeast capable of fermenting pyruvate to ethanol when high
glucose concentrations are present. However, when these carbon sources are depleted, S.
cerevisiae switches to aerobic respiration, using ethanol as a carbon source. This process is
known as diauxic shift. This phenomenon is similar to what happens in Sherry wines that
use specialized “sherry” or “flor” strains of S. cerevisiae [296]. One unique characteristic
of sherry strains of S. cerevisiae, compared to other fermentation strains, is their ability to
form a biofilm or “flor” on the surface of alcoholic wine material. In this biofilm, ethanol is
oxidized to acetaldehyde under the action of alcohol dehydrogenase [297], Figure 4. The
ability of sherry yeast to work under high alcohol content conditions is their adaptive
mechanism, which affects the oenological characteristics [298]. This reversion of metabolic
pathways might be a promising alternative to reducing the ethanol contents of wine after
fermentation. Ethanol degradation by yeasts involves a three-step pathway, beginning with
its oxidation to acetaldehyde by alcohol dehydrogenase enzyme (ADH), followed by the
conversion of acetaldehyde to acetate by the aldehyde dehydrogenase (ALDH), and, finally,
acetyl-CoA synthetase (ACS) ligates acetate with coenzyme A to produce acetyl-CoA [299],
Figure 4. However, ADH and ADLH have several isozymes in S. cerevisiae, and, at least
for ADH, those isozymes can substitute functionally for one another, even though the
ethanol production yield or oxidation rate is quite different among them [299]. The alcohol
dehydrogenase ADH1 is regarded as primarily responsible for the regeneration of NAD+

from NADH by reducing acetaldehyde to ethanol [300]. Growth conditions can repress the
activity of this enzyme, while others are derepressed to reutilize the previously produced
ethanol. One of the critical enzymes is alcohol dehydrogenase 2 (ADH2), which is thought
to catalyze ethanol oxidation preferentially to acetaldehyde due to its relatively low Km
for ethanol. The oxidation of ethanol forms acetaldehyde, which is converted to acetate
by ALDH2 and activated into acetyl-CoA, entering the glyoxylate and TCA cycles [301].
Even in the first steps of this conversion of ethanol to acetyl-CoA, there is the need for
a transcriptional activator, Cat8p, essential for the growth of yeast on nonfermentable
carbon sources, with the expression of the Cat8 gene and transcriptional activation by Cat8p
regulated by glucose [302]. This transcriptional activator controls many genes essential
to yeast use of ethanol, going from ethanol to acetyl-CoA and even four steps of the
glyoxylate cycle, besides other proteins with functions not linked directly to the utilization
of ethanol [303]. If glucose is present, Cat8 expression is repressed by Mig1 (a Cys2His2
zinc finger protein), possibly by directly binding this regulator to the Cat8 promoter [304].
This protein can be targeted by Snf1, a central serine–threonine kinase, leading to positive
regulation of the expression of Cat8 [304]. This complex set of regulations for ethanol
oxidation in yeasts provides numerous targets for future metabolic engineering, aiming to
reduce the ethanol in a post-fermentation phase.
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As referred before, the use of non-Saccharomyces (NS) yeasts during fermentation can
be an option to reduce alcohol content in wines. Moreover, some commercial S. cerevisiae
strains also have this ability. Therefore, can these yeasts be used as a potential approach to
reduce alcohol content in wines post-fermentation? Studies have highlighted the capability
of specific yeast strains to consume acetic acid during refermentation, enhancing sensory
qualities by reducing undesirable acidity levels in wines [305–309]. Interestingly, during
the deacetification processes, ethanol content also decreased. In the work of Vilela-Moura
et al. [305], during the deacetification process, it was observed that the amount of ethanol
present was reduced by 37.5% under aerobic conditions and by 13.5% under limited aerobic
conditions. Additionally, when using immobilized yeasts in double-layer alginate-chitosan
beads, a decrease in the ethanol content between 6–11.2% was also observed. Therefore, by
understanding and comprehending the pathways of ethanol degradation and exploring
the metabolic versatility of yeasts, the possibility of modifying the composition of wines in
a post-fermentation stage will increasingly become a reality, making way for new strategies
that will help mitigate the adverse effects of climate change on viticulture.
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Figure 4. Schematic representation of yeast cells’ cellular respiration and ethanol consumption. Yeast
proliferation under the prevailing oxidative conditions is also facilitated by the antioxidant defense
system protecting cells from reactive oxygen species (ROS) formed during the oxidative metabolism
of non-fermentable carbon sources such as ethanol. ROS are deleterious on mitochondrial DNA
(mtDNA), probably due to the former’s proximity to the major sites of the endogenous production
of ROS. Moreno-García et al. [310], in a work about differential proteome analysis of a “flor” yeast
strain under biofilm formation in sherry wines, detected proteins preventing these adverse effects
and various others repairing the resulting damage.

3. Consumers Perception and Behavior Related to Low-Alcohol Wine

As mentioned above, consumer preferences and behavior regarding wine have under-
gone significant shifts in recent years. One such change pertains to the growing demand
for wines with low alcohol content (9% to 13% v/v). With increasing awareness of health
and well-being, as well as social responsibility and safety considerations, consumers
are becoming more attentive and open to alternatives that align with their values and
lifestyles [23–26,311]. In this regard, wines with low alcohol content have emerged as a
new wine category, progressively gaining popularity and capturing consumers’ interest.

But what exactly constitutes wine with low alcohol content? The term ‘low alcohol
wine’ may vary between countries and according to prevailing legislation. For instance,
in Australia and New Zealand, a beverage with more than 1.15% alcohol by volume
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cannot be considered low alcohol, while in the United Kingdom, the limit is 1.2% [23].
The taxation applied to wines also varies; some countries employ fixed rates, while in
others, taxes are based on alcohol concentration [312]. The precise definition of wines
with low alcohol content is not universal, as it may vary according to regional norms and
regulations established by specific governmental bodies or wine authorities. Frequently,
the term ‘wines with reduced alcohol content’ applies to wines that possess significantly
lower alcohol content compared to traditional wines [313]. In Figure 5, wines with reduced
alcohol content are generally classified as detailed.

Fermentation 2024, 10, x FOR PEER REVIEW 32 of 47 
 

 

demand for wines with low alcohol content (9% to 13% v/v). With increasing awareness 
of health and well-being, as well as social responsibility and safety considerations, con-
sumers are becoming more attentive and open to alternatives that align with their values 
and lifestyles [23–26,311]. In this regard, wines with low alcohol content have emerged as 
a new wine category, progressively gaining popularity and capturing consumers’ interest. 

But what exactly constitutes wine with low alcohol content? The term ‘low alcohol 
wine’ may vary between countries and according to prevailing legislation. For instance, 
in Australia and New Zealand, a beverage with more than 1.15% alcohol by volume can-
not be considered low alcohol, while in the United Kingdom, the limit is 1.2% [23]. The 
taxation applied to wines also varies; some countries employ fixed rates, while in others, 
taxes are based on alcohol concentration [312]. The precise definition of wines with low 
alcohol content is not universal, as it may vary according to regional norms and regula-
tions established by specific governmental bodies or wine authorities. Frequently, the 
term ‘wines with reduced alcohol content’ applies to wines that possess significantly 
lower alcohol content compared to traditional wines [313]. In Figure 5, wines with reduced 
alcohol content are generally classified as detailed. 

 
Figure 5. A suggested classification of wines with reduced alcohol content. 

The growing consumer concern regarding health issues leads them to choose health-
ier products. In the context of wine, this translates into the preference for wines with re-
duced alcohol content. According to Bucher et al. [312], beverages with low alcohol con-
tent can be considered healthier for consumers aiming to maintain a balanced and healthy 
lifestyle and a conscious diet. In addition to containing fewer calories than traditional al-
coholic beverages, these drinks may have a lesser impact on the consumer’s overall health 
[314]. 

Numerous studies emphasize the harmful effects of alcohol consumption on human 
health. Alcohol is classified by the World Health Organization (WHO) as a toxic and psy-
choactive substance that induces addiction [315]. Moreover, it is considered a risk factor 
for premature death, with approximately three million deaths per year attributed to alco-
hol consumption. It is also linked to the development of various diseases, including can-
cer, stroke, liver diseases, high blood pressure, and mental health disorders. Additionally, 
alcohol intake is associated with higher risks of accidents and injuries [311,312,316]. 

Currently, available information regarding the impact of alcohol and wine on health 
is contradictory and confusing. Despite the potential harms of alcohol consumption, sev-
eral decades of studies have found beneficial effects of “moderate wine consumption” 
[317]. This is attributed to the presence of phenolic compounds derived from grapes in 
wine, which suggests that moderate wine consumption may offer health benefits, unlike 
other alcoholic beverages [318]. 

”Moderate consumption”, according to many health guidelines for healthy adults, is 
defined as the intake of two standard drinks per day (or “unit of alcohol” in the UK), not 
exceeding four standard drinks [312] per day. The definition of a traditional drink pertains 
to the amount of alcohol an average adult can metabolize in an hour. However, it is essen-
tial to highlight that the alcohol content in a standard drink can vary across countries, not 

Figure 5. A suggested classification of wines with reduced alcohol content.

The growing consumer concern regarding health issues leads them to choose healthier
products. In the context of wine, this translates into the preference for wines with reduced
alcohol content. According to Bucher et al. [312], beverages with low alcohol content can
be considered healthier for consumers aiming to maintain a balanced and healthy lifestyle
and a conscious diet. In addition to containing fewer calories than traditional alcoholic
beverages, these drinks may have a lesser impact on the consumer’s overall health [314].

Numerous studies emphasize the harmful effects of alcohol consumption on human
health. Alcohol is classified by the World Health Organization (WHO) as a toxic and
psychoactive substance that induces addiction [315]. Moreover, it is considered a risk factor
for premature death, with approximately three million deaths per year attributed to alcohol
consumption. It is also linked to the development of various diseases, including cancer,
stroke, liver diseases, high blood pressure, and mental health disorders. Additionally,
alcohol intake is associated with higher risks of accidents and injuries [311,312,316].

Currently, available information regarding the impact of alcohol and wine on health is
contradictory and confusing. Despite the potential harms of alcohol consumption, several
decades of studies have found beneficial effects of “moderate wine consumption” [317].
This is attributed to the presence of phenolic compounds derived from grapes in wine,
which suggests that moderate wine consumption may offer health benefits, unlike other
alcoholic beverages [318].

“Moderate consumption”, according to many health guidelines for healthy adults,
is defined as the intake of two standard drinks per day (or “unit of alcohol” in the UK),
not exceeding four standard drinks [312] per day. The definition of a traditional drink
pertains to the amount of alcohol an average adult can metabolize in an hour. However,
it is essential to highlight that the alcohol content in a standard drink can vary across
countries, not only in Europe but globally (Figure 6): countries like France and Spain define
a traditional drink as one containing 10 g of pure alcohol, as in Australia, whereas in the
UK and Iceland, it is 8 g. In the USA, a standard drink contains 14 g of pure alcohol, while
Japan has 20 g of alcohol [319,320].
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According to the review conducted by Minzer et al. [322], when consumed moderately
and regularly, wine can benefit heart health, reduce the risk of strokes and diabetes, and
aid in preventing conditions such as hypertension, dyslipidemia, cancer, and dementia.
Furthermore, the phenolic compounds in wine have been linked to improved lipoproteins
and endothelial function, protecting against oxidative stress and vascular damage [318,323].
However, do consumers truly understand what “moderate drinking” entails and what
constitutes a standard drink? According to Mongan and Long [319], consumers do not
understand these concepts. They struggle to define moderate wine consumption and the
number of standard drinks that can be considered healthy.

While the debate continues on whether the potential positive effects of wine outweigh
the negative ones, consumers are encouraged to consider alternatives as a thoughtful
approach to enjoying this versatile beverage [313]. This may involve selecting wines
with reduced alcohol content or exploring the increasing availability of non-alcoholic
wine options.

Therefore, low-alcohol wine emerges as a healthier and safer option that has piqued
the interest of consumers conscious of the adverse effects of alcohol consumption on health,
who aim to enjoy wine without compromising their well-being. However, according to
Bucher et al. [324], public awareness regarding the advantages and quality of low-alcoholic
wine remains somewhat limited, necessitating further studies and the need to educate
consumers about the available options in the market.

4. Final Remarks

Considering the expected increase in temperature in the upcoming decades, it is
essential for research and the wine industry to investigate the relationship between the
final wine alcohol content, bioactive compounds, and various climatic conditions. This
knowledge will help develop suitable strategies for viticultural and enological practices,
ensuring the production of high-quality wines rich in health-benefiting compounds and
low in alcohol concentration.

Producing low-alcohol wines involves various viticultural practices, starting from
the vineyard management stage. It is important to note that the goal is not just to reduce
alcohol but to balance alcohol, acidity, and other components to produce a harmonious
and expressive wine that reflects its terroir. Sustainable and holistic vineyard management
practices often play a significant role in achieving these goals.
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Reducing alcohol production during fermentation is a complex task because alcohol is
a natural byproduct of fermentation, where yeast converts sugars into alcohol and carbon
dioxide. However, winemakers can use several strategies and techniques, such as the
choice of yeast species, the time of inoculum, and temperature, among other factors, to
influence or control wine alcohol levels.

Regarding physical methods for alcohol removal in wines, the choice of method
depends on factors such as the wine’s composition, the desired level of alcohol removal, and
economic considerations. Each method has advantages and limitations, and the selection
is often based on the specific application’s requirements. Furthermore, it is essential to
discover cost-effective techniques to reduce the wine’s alcohol content when it exceeds the
desired limit during fermentation.

The current post-fermentation procedures involve physical methods for alcohol re-
moval, such as extraction, membrane separation, or heat treatment, which require expensive
and specialized equipment. Therefore, bio-dealcoholization of wines could be an attractive
alternative strategy. Yeasts can perform the process without specific equipment, making
this a cost-effective procedure.
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