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Abstract: Pennycress (Thlaspi arvense L.) is an annual cover crop known for its exceptional cold toler-
ance and high oil and protein yields. Pennycress can be integrated into a corn–soybean rotation in the
U.S. However, the utilization of pennycress biomass remains largely unexplored, including assessing
compositional changes through its growth and organic matter digestibility. This study harvested pen-
nycress at three growth stages, characterized the biomass for anaerobic digestion (AD), and tested the
effects of concurrent alkali pretreatment and ensiling on the biomass methane yield. Results showed
that the biomass harvested when the plants were undergoing senescence (“third-harvest”) had higher
contents of acid detergent fiber, neutral detergent fiber, and lignin, while the biomass harvested when
80–90% of the pods were fully-sized (“second-harvest”) had the highest protein content. The AD ex-
periments showed that the first-harvest biomass (90% of flowers opened) failed to produce biogas due
to a drop in the pH and alkalinity, the second-harvest biomass was inhibited for methane production
(45.74 ± 0.20 L/kg-VS), and the third-harvest biomass had a methane yield of 171.80 ± 4.82 L/kg-VS.
After the alkali pretreatment and ensiling, a methane yield of 270.4 ± 3.10 L/kg-VS was obtained
from the second-harvest biomass, representing a significant 4.5-fold increase (adjusted for the organic
matter loss) relative to the untreated second-harvest biomass.

Keywords: anaerobic digestion; biogas; compositional change; Thlaspi arvense L.; pennycress; biomass;
silage; cover crop

1. Introduction

Cover crops have been traditionally used to provide ecosystem services, such as re-
ducing soil erosion, retaining nutrients in farm fields, holding soil moisture, and improving
biodiversity and soil health [1–3]. Recently, cover crops have been evaluated for their effects
on soil organic carbon, nitrous oxide emissions from soil, and improving soil microbial
communities [4]. Cover crops can bring additional benefits to farming operations by sup-
pressing weeds, improving nutrient cycling, providing a habitat for beneficial insects and
pollinators, and acting as a climate-smart practice by sequestering carbon and reducing the
adverse effects of droughts and floods caused by climate change [4–13]. The adoption of
cover crops on a large scale could reduce agriculture greenhouse gas emissions by 10%,
with a 116 g CO2 e/m2-year reduction from nonlegumes and a 135 g CO2 e/m2-year re-
duction from legumes, respectively [12,14]. According to the USDA survey report released
in 2021, to prepare for the planting of summer cash crops, most winter cover crops are
terminated with herbicide or tillage, but also can be grazed or harvested as hay, silage, or
for other applications [1,12,15–18]. Cover crop biomass can contribute to energy production
by producing biogas, syngas, bio-oil, and sustainable aviation fuel (SAF) [19]. Several cover
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crops, such as cereal rye, carinata, camelina, rapeseed, and pennycress, have been tested
for bioenergy production potential [19–21].

Pennycress (Thlaspi arvense L.), also referred to as field pennycress, stinkweed, and
frenchweed, is a winter annual plant belonging to the Brassicaceae family. Pennycress
is widely distributed in temperate regions of all continents except Antarctica, including
throughout North America, having remarkable adaptability to many environmental con-
ditions [2,22]. Pennycress natural populations are inherently exceptionally cold tolerant,
withstanding temperatures below −20 ◦C, which is significant for the intended use of
domesticated varieties as an overwintering crop [2]. Pennycress can be integrated into a
two-year corn–soybean rotation, widely practiced among producers in the U.S. [23,24]. Do-
mesticated pennycress [25–27], commercially released as CoverCressTM, produces oilseeds
during the off-season in the lower U.S. Midwest Corn Belt, thereby resulting in farm field
revenue from three crops in two years [28,29]. The biomass production of pennycress
ranges from 5000 to 8500 kg/ha (harvest index of about 0.3), while the output of its seed oil
is 400–800 L/ha [30–32].

Pennycress seeds contain 20–25% crude protein and 30–36% oil content by dry weight [33].
Because of the high protein content, the whole seed or seed press cake after oil extraction
can be used as an ingredient in feed for poultry, swine, cattle, fish, and pets [34,35]. The
high oil content in pennycress grain makes it a valued feedstock for renewable diesel,
biodiesel, and SAF [29,36]. It was estimated that pennycress can provide the aviation fuel
industry with 800 million gallons per year [37]. Growing domesticated pennycress in the
Midwest Corn Belt has the potential to replace approximately 5% of the present petroleum
supplies in the U.S. [28,30].

The use of the pennycress biomass, either as senesced stems and leaves after grain
harvest or in its entirety before full maturity, has been little studied despite the biomass
yield being significant, ranging from 5000 to 8500 kg/ha [30,31]. Pennycress plant tissues
naturally contain a high concentration of glucosinolate, making it a potential source for
use in biofumigation for weed control and an effective biocide against several pathogenic
organisms, which could be beneficial to organic growers [38,39]. Pennycress stems and
leaves have a similar composition to other lignocellulosic biomass; therefore, they can
be used in anaerobic digestion (AD) to produce biogas. While domesticated pennycress
grain has the highest commercial value, harvesting the biomass in its entirety before full
maturity could be an option in years when prolonged cold spring weather prevents full
maturation in time to plant the summer crop. Harvesting before full maturity could also be
an attractive option, e.g., in the northern U.S. Midwest, where growing days are fewer and
pennycress grain production does not fit within the corn–soybean rotation.

AD is a highly tolerant bioconversion technology and has been used to produce
biogas from various organic wastes, such as animal waste, municipal solids, food waste,
and lignocellulosic biomass [40–43]. Biogas mainly contains methane and CO2, and can
be used to generate heat, electricity, or transportation fuels [44,45]. While pennycress
grain production has been intensively studied, to our knowledge, no publications exist
on the utilization of pennycress biomass for AD. Analyzing the digestibility and potential
methane yield of pennycress biomass can be one important step in determining the value
and economic feasibility of harvesting and processing pennycress at different growth stages
suited for different crop rotations and agricultural regions.

The primary objective of this research was to investigate the AD of pennycress biomass
at different growth stages. Domesticated pennycress integrated within a corn–soybean
rotation is usually planted in mid-September to mid-October and harvested in mid-May
to early June in the U.S. Midwest. Verhoff et al. recently introduced a method for the
phenological staging of pennycress, which started with stage 0—germination and ended
with stage 9—maturity [46]. We were particularly interested in researching the biomass
characteristics and biogas yields from pennycress biomass at the later growth stages, includ-
ing stage 7—seed fill, stage 8—ripening, and stage 9—maturity (see Materials and Methods,
Section 2.2, for additional phenological staging details). It is common to see biomass com-
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positional and weight changes at different growth stages from other crops [47,48], but how
that affects the pennycress biogas yield has not been studied. Also, the storage of biomass,
especially green biomass, is necessary in the biomass feedstock logistics supply chain, but
can be challenging, as organic matter can be lost and acids can be generated [49]. Therefore,
we intended to evaluate the effects of a commonly used storage/pretreatment method on
the pennycress biogas yield. The specific objectives of this study were to: (1) characterize
the pennycress biomass at three growth stages/harvest dates; (2) evaluate the biogas yields
from pennycress biomass and optimize the AD conditions to improve the methane yields;
(3) test the effects of a concurrent alkali pretreatment and ensiling of pennycress biomass
on the methane yield.

2. Materials and Methods
2.1. Overall Experimental Design

The overall experimental design is shown in Figure 1. Pennycress biomass was
harvested at three growth stages and used as feedstock in AD. The effects of the total
solids (TSs), inoculation rate, and particle size on the methane yield were evaluated. In
addition, the harvested biomass was pretreated with alkali and ensiling, and then used as
AD feedstock for the methane yield.
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2.2. AD Feedstocks, Inoculum, and Micronutrients

Cover crop biomass. Pennycress breeding line B36, which did not contain domestica-
tion traits, including the reduced seed coat fiber “yellow-seed” trait, was planted on the
Illinois State University (ISU) farm near Lexington, IL (lat. 40◦30′ N), USA, and harvested
three times in 2023. The first harvest was on 27 April 2023. The plants were at the growth
stages of 6.9–7.1, close to their final total height, and 90% of flowers opened. The biomass
was green and had a high moisture content. The second harvest was taken on 12 May 2023
at the growth stage of 7.8–7.9, with 80–90% of pods fully sized. Biomass had started to turn
yellow. The third harvest was on 26 May 2023 at the growth stage of 9; the plants were
mature and uniformly yellow, but the pod shatter was not yet occurring. More information
about the pennycress crop growth stages can be found in [46]. The length and weight of
the plant biomass were measured using 10 randomly selected stalks with the root tissue
removed. Biomass (without the root) was chopped to 2.54 cm (1 inch) or 1.27 cm (0.5 inch)
pieces, and then stored at −10 ◦C prior to use.

Biomass concurrent alkali pretreatment and ensiling. Pennycress biomass was chopped
into 2.54 cm pieces and then loaded into plastic silage bags. NaOH (97+%, Certified ACS,
Fisher Chemical, Norristown, PA, USA) powders were added at a dosage of 5% of the
biomass dry matter, similar to the dosages (4–10%) used in other studies [50,51]. The alkali
powders were mixed with the biomass by shaking. The bags were pressed to push out
air, then sealed and put inside of an airtight plastic container for one month in a dark
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environment at room temperature (approximately 20 ◦C). Both the fresh and pretreated
biomass were used as AD feedstocks.

Effluent and micronutrients. The inoculum utilized in this study was digestion efflu-
ent obtained from a mesophilic anaerobic digester operated by BNWRD (Bloomington
Normal Water Reclamation District in Bloomington, IL, USA). Municipal sewage sludge
was fed into this digester. Digestion effluent contains nutrients and microbes adapted to
the anaerobic digestion process. To preserve the quality of the inoculum, it was kept in a
37 ◦C incubator before use. Because most lignocellulosic biomass, including the pennycress
biomass, lack adequate micronutrients for AD, commercial BioGas1 AD micronutrients
(purchased from Aquafic, Inc., Madison, WI, USA) containing cobalt, nickel, and iron were
added to help stabilize the AD process.

2.3. AD Experimental Setup

Batch AD experiments were carried out in 0.5-L glass reactors. Each condition was
triplicated. Reactors were kept inside of incubators with temperature controlled at 37 ◦C. To
test the effects of solids content on the methane yield, digestion effluent and deionized (DI)
water were added to achieve overall total solid (TS) contents of 4%, 6%, and 8% (wet basis).
The inoculation rate (feedstock/inoculum, also known as F/I ratio, based on volatile solid
contents) was controlled at 2.0. A total of 54 reactors (3 growth stages × 2 biomass sizes
× 3 solids contents × 3 reactors for each condition) were created as treatments and two
reactors without feedstock were created as controls. In addition, 6 reactors were created
to test the effects of inoculation rate (adjusted the F/I ratio from 2.0 to 1.0) and another
6 reactors were created to test the effects of the concurrent alkali pretreatment and ensiling
on biogas yield, respectively. Each reactor received 1 mL of BioGas1 micronutrient based
on the manufacturer’s recommendations. A 5 L gas bag (purchased from the CEL Scientific,
Santa Fe Springs, CA, USA) was connected to each reactor to collect biogas every 2–7 days,
depending on the volume of biogas produced during the experimental period.

2.4. Sampling and Analytical Methods

The concentrations of CH4 in the collected biogas samples were measured using a
biogas analyzer (Landtec Biogas 5000, Dexter, MI, USA). The analyzer was calibrated by the
manufacturer before the test and was checked monthly using the calibration gas (mixture
3: 60% CH4 and 40% CO2) and 100 ppm H2S, both purchased from Landtec. To reduce
the interference of water vapor on the biogas measurement, an in-line membrane filter
was installed to remove water vapor prior to the analysis. The filter was replaced every
month. The volume of the biogas produced from the bench tests was measured at a normal
lab condition (approximately 20 ◦C) using the built-in flowrate meter with a flowrate of
0.55 lpm (liter per minute).

Liquid and solid samples were collected at the beginning and the end of the experi-
ments. The digested feedstock samples were stored in a−20 ◦C freezer before analysis. The
TSs, volatile solids (VSs), pH, alkalinity, and ammonium-N of the samples were measured
based on a slightly revised Standard Methods Examination of Water and Wastewater [52].
Specifically, the samples were dried in an oven (Fisher Scientific Isotemp) at 105 ◦C for 24 h
to calculate the TS content based on the weight difference. The dried samples were then put
into a 450 ◦C oven (Fish-Scientific Isotemp Muffle Furnace, West Sacramento, CA, USA) for
4 h to measure the volatile compounds. The pH value and alkalinity were found by diluting
a 10 g sample with DI water for a total of 100 g and then measured using a pH titrator (Hach
AT1000 Potentiometric Titrator, Hach Company, Loveland, CO, USA). Ammonium-N was
analyzed using a Hach DR1900 Spectrophotometer, following the Hach method 10031.
Solid samples were analyzed by a commercial lab (Rock River Laboratory, Watertown,
WI, USA) for the crude protein, ADF (acid detergent fiber), NDF (neutral detergent fiber),
lignin, total C, and total N using AOAC and Ankom Technologies methods.
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2.5. Data Analysis

Measured biogas and methane production data were fitted into a modified Gompertz
model (Equation (1)) to determine the theoretical cumulative methane potential (P), maxi-
mum daily methane yield (Rm), and lag phase (λ) during the AD process, where H is the
amount of methane that is calculated at a given time t.

H(t) = P×
{
− exp

[
Rm × e

P
(λ− t) + 1

]}
(1)

Details about this model have been provided in a previous study [53]. The three
parameters and their standard errors were calculated using an online tool (https://mt.
procycla.es/bmp/app, accessed on 30 November 2023). ANOVA (analysis of variance)
and t tests were conducted to compare the digester performance, such as the methane
yields, using software R Studio (Version 2023.09.1 + 494, Posit Software, Boston, MA, USA,
Statistical analysis). For the figures and tables, the mean averages and standard errors were
reported. Outliers were removed prior to the mean average and standard error calculations.
A significance level of 0.05 was used. Figures were created using the software SigmaPlot
(Version 13, SPSS Inc., Chicago, IL, USA).

3. Results and Discussions
3.1. Effects of Harvest Date on Biomass Characteristics

Pennycress plants from the first harvest (see Materials and Methods) were relatively
shorter than the plants from the other two harvests, while the biomass from the third
harvest had a significantly (p < 0.05) lower wet weight per stem (Figure 2 and Table 1). The
measured dry matter per stem was almost the same from each of the three harvests. The
contents of ADF, NDF, lignin, and C increased significantly as the plants grew and matured.
The C content in the third-harvest biomass (49.0%) was much higher than its content in
the first-harvest biomass (40.7%). The crude protein and N contents increased from the
first harvest to the second harvest, but then slightly decreased in the third harvest as the
plant reached full maturity and the yellowing stage. Similar compositional changes were
observed by Meserszmit et al. [48], who reported higher contents of lignin and NDF in
Molinia meadows biomass collected on later harvest dates and lower N content at maturity.
Yield and changes in pennycress biomass composition can be important factors for farmers
to determine harvest timing.
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Table 1. Composition of the pennycress biomass.

Composition 1st Harvest 2nd Harvest 3rd Harvest

Length, cm 41.28 ± 1.46 46.29 ± 1.59 46.48 ± 1.64
Wet wt, g/stem 6.95 ± 0.20 7.25 ± 0.16 3.20 ± 0.17

Dry matter, g/stem 1.65 ± 0.04 1.67 ± 0.04 1.62 ± 0.09
Total solids, % 23.81 ± 0.35 23.03 ± 0.13 50.55 ±1.13

Volatile solids, % 21.62 ± 0.31 21.34 ± 0.11 45.97 ± 1.02
Protein, % 13.56 ± 0.91 14.44 ± 0.01 13.19 ± 0.28

ADF, % 32.69 ± 1.40 37.84 ± 0.58 41.47 ± 1.50
NDF, % 36.59 ± 0.01 43.85 ± 1.29 44.95 ± 0.01

Lignin, % 6.81 ± 0.17 8.71 ± 0.01 8.95 ± 0.02
C, % 40.70 ± 1.10 43.65 ± 0.25 49.00 ± 0.10
N, % 2.09 ± 0.07 2.31 ± 0.01 2.12 ± 0.05

Note: Composition was measured from plant biomass (stems and leaves) cut into 2.54 cm lengths. Wet weight,
total solids, and volatile solids are the wet basis. All others are the dry basis.

3.2. Effects of Harvest Date, Solids Content, and Particle Size on Methane Yield

Methane yields from the biomass harvested at three different stages varied dramati-
cally. Digesters with the first-harvest biomass failed to produce biogas from all solids and
particle size conditions (Figure 3), likely due to the low pH (below 6.5) and alkalinity condi-
tions (Table 2) [54]. Digesters usually need to be kept at a pH of 7.5–8.5 and an alkalinity of
3000–5000 mg/L CaCO3 for normal operation [54]. It is likely that the organic compounds
in the immature first-harvest biomass were quickly converted into short-chain fatty acids
(SCFAs), which caused the pH drop and digestion failure. Reducing the biomass size to
1.27 cm could have enhanced the transportation and formation of SCFAs, which lowered
the pH values even more (Table 2). Inhibition due to a low pH also occurred in the digesters
with the second-harvest biomass. The methane yields were below 50 L/kg-VS. Digesters
with the third-harvest biomass had normal pH conditions and produced 171.80 ± 4.82 L
of methane per kg-VS at a TS of 4%, as shown in Figure 2A and Table S1, which is still
lower than reported methane yields from the other lignocellulosic biomass. For example,
previous studies have reported methane yields of 187, 182–285, and 179–274 L/kg-VS from
cereal rye [55], corn stover [56,57], and wheat straw [58,59], respectively.

Fermentation 2024, 10, x FOR PEER REVIEW 6 of 13 
 

 

Protein, % 13.56 ± 0.91 14.44 ± 0.01 13.19 ± 0.28 
ADF, % 32.69 ± 1.40 37.84 ± 0.58 41.47 ± 1.50 
NDF, % 36.59 ± 0.01 43.85 ± 1.29 44.95 ± 0.01 

Lignin, % 6.81 ± 0.17 8.71 ± 0.01 8.95 ± 0.02 
C, % 40.70 ± 1.10 43.65 ± 0.25 49.00 ± 0.10 
N, % 2.09 ± 0.07 2.31 ± 0.01 2.12 ± 0.05 

Note: Composition was measured from plant biomass (stems and leaves) cut into 2.54 cm lengths. 
Wet weight, total solids, and volatile solids are the wet basis. All others are the dry basis. 

3.2. Effects of Harvest Date, Solids Content, and Particle Size on Methane Yield 
Methane yields from the biomass harvested at three different stages varied 

dramatically. Digesters with the first-harvest biomass failed to produce biogas from all 
solids and particle size conditions (Figure 3), likely due to the low pH (below 6.5) and 
alkalinity conditions (Table 2) [54]. Digesters usually need to be kept at a pH of 7.5–8.5 
and an alkalinity of 3000–5000 mg/L CaCO3 for normal operation [54]. It is likely that the 
organic compounds in the immature first-harvest biomass were quickly converted into 
short-chain fatty acids (SCFAs), which caused the pH drop and digestion failure. 
Reducing the biomass size to 1.27 cm could have enhanced the transportation and 
formation of SCFAs, which lowered the pH values even more (Table 2). Inhibition due to 
a low pH also occurred in the digesters with the second-harvest biomass. The methane 
yields were below 50 L/kg-VS. Digesters with the third-harvest biomass had normal pH 
conditions and produced 171.80 ± 4.82 L of methane per kg-VS at a TS of 4%, as shown in 
Figure 2A and Table S1, which is still lower than reported methane yields from the other 
lignocellulosic biomass. For example, previous studies have reported methane yields of 
187, 182–285, and 179–274 L/kg-VS from cereal rye [55], corn stover [56,57], and wheat 
straw [58,59], respectively. 

 
Figure 3. Measured methane yields at a F/I ratio of 2, from biomass cut to 2.54 cm lengths (A) or to 
1.27 cm lengths (B). Legend for the biomass type assayed is located above the graphs. Numerical 
data are available in Table S1. 

The effects of the solids content on the biogas yield were also significant. At a TS of 
6% and 8%, the methane yields were much lower than at a TS of 4%. A high solids content 
could have accumulated inhibitors, such as NH4-N (Table 2), and reduced the accessibility 
of biodegradable organic compounds to methanogens, resulting in the inhibition in the 
biogas production [60]. In most conditions, the reduced particulate size can increase the 
biogas yield as it improves the lignocellulosic degradability [61]. However, for feedstocks 
that contain or can generate high levels of fatty acids, such as food waste, an excessive 
reduction in the particle size of the feedstock can result in fatty acid accumulation, which 
reduces the methane production and digester stability [62]. For this study, lower pH val-
ues were noted in the digesters with the 1.27 cm biomass, suggesting an overaccumulation 

TS=4% TS=6% TS=8%

2nd harvest 3rd harvest1st harvest

TS=4% TS=6% TS=8%

M
et

ha
ne

 y
ie

ld
, L

/k
g-

V
S

0

50

100

150

200
(B)(A)

Figure 3. Measured methane yields at a F/I ratio of 2, from biomass cut to 2.54 cm lengths (A) or to
1.27 cm lengths (B). Legend for the biomass type assayed is located above the graphs. Numerical
data are available in Table S1.
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Table 2. Characteristics of feedstocks after AD.

2.54 cm Biomass 1.27 cm Biomass

TS 1st Harvest 2nd Harvest 3rd Harvest 1st Harvest 2nd Harvest 3rd Harvest

pH pH
4% 5.94 ± 0.07 7.24 ± 0.61 8.13 ± 0.14 5.02 ± 0.04 7.27 ± 0.90 7.91 ± 0.20
6% 6.22 ± 0.02 6.47 ± 0.30 8.12 ± 0.06 5.41 ± 0.02 6.46 ± 1.17 8.31 ± 0.13
8% 6.48 ± 0.14 7.35 ± 0.59 8.27 ± 0.27 5.49 ± 0.02 6.39 ± 0.98 7.95 ± 0.10

Alkalinity, mg/L CaCO3 Alkalinity, mg/L CaCO3
4% 1854 ± 0 2414 ± 177 3058 ± 243 1052 ± 219 2679 ± 612 2710 ± 254
6% 3507 ± 157 3240 ± 197 3616 ± 143 3244 ± 79 2995 ± 658 3461 ± 56
8% 4665 ± 91 4457 ± 379 4331 ± 34 3469 ± 5 3713 ± 425 4293 ± 76

NH4-N, mg/L NH4-N, mg/L
4% 787 ± 34 692 ± 34 617 ± 29 663 ± 3 675 ± 25 608 ± 18
6% 1067 ± 44 1035 ± 51 842 ± 25 1220 ± 0 953 ± 28 903 ± 43
8% 1475 ± 13 1353 ± 34 1190 ± 30 1220 ± 35 1228 ± 18 1163 ± 23

The effects of the solids content on the biogas yield were also significant. At a TS of
6% and 8%, the methane yields were much lower than at a TS of 4%. A high solids content
could have accumulated inhibitors, such as NH4-N (Table 2), and reduced the accessibility
of biodegradable organic compounds to methanogens, resulting in the inhibition in the
biogas production [60]. In most conditions, the reduced particulate size can increase the
biogas yield as it improves the lignocellulosic degradability [61]. However, for feedstocks
that contain or can generate high levels of fatty acids, such as food waste, an excessive
reduction in the particle size of the feedstock can result in fatty acid accumulation, which
reduces the methane production and digester stability [62]. For this study, lower pH values
were noted in the digesters with the 1.27 cm biomass, suggesting an overaccumulation of
fatty acids which caused the lower methane yields with a higher variance than the digesters
with the 2.54 cm biomass [63].

3.3. Effects of Inoculation Rate and Concurrent Alkali Pretreatment and Ensiling on Methane Yield

Adding the extra inoculum, i.e., adjusting the F/I ratio from 2 to 1, did not save the
digesters with the first-harvest biomass or improve the performance of digesters with the
second-harvest biomass (Figure 4A vs. Figure 3A). An even higher inoculation rate likely
will be needed to buffer the acids generated from this biomass. The methane yield from
the third-harvest biomass increased 17.50% from 171.80 ± 4.82 to 202.00 ± 2.17 L/kg-VS
(Figure 4A and Table S2). The average pH value (8.65), alkalinity (5435 mg/L CaCO3), and
NH4–N concentration (1252 mg/L) were all slightly higher than at F/I of 2 and were within
normal ranges [60,64].
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Figure 4. Measured methane yields from biomass cut into 2.54 cm lengths. (A) Biomass with an
increased inoculation rate of F/I = 1; (B) Biomass after concurrent alkali pretreatment and ensiling.
Numerical data are available in Table S2.
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After the concurrent alkali pretreatment and ensiling, the average methane yield from
the third-harvest biomass was 193.9 ± 21.2 L/kg-VS (Figure 4B and Table S2), which was
higher, but not significantly different (p = 0.416), from the same biomass without the alkali
pretreatment (171.80 ± 4.82 L/kg-VS, Figure 3A). The third-harvest biomass was dry, so the
distribution of alkali and its reaction with fatty acids during the ensiling process could be
uneven, which could have caused the high variance of methane yields (Figure 4B). The pH
and alkalinity of the digested feedstock are included in Supplementary Materials Table S3.

The methane yields from the second-harvest biomass (270.4± 3.10 L/kg-VS, Figure 4B
and Table S2) were 5.9-fold and significantly higher than the biomass without the alkali
pretreatment (45.7 ± 0.21 L/kg-VS, Figure 3A). It is well established that organics can be
converted to acids during wet ensiling [65]. These acids can be neutralized by the added
alkali, resulting in the organics being suitable for methanogens to produce methane gas.
The pH value and alkalinity were 7.96 and 4,676 mg/L CaCO3, respectively, which are
within the normal operational ranges. The 5.9-fold increase in the methane production
shows the potential of using concurrent alkali pretreatment and ensiling as an effective
method to buffer acids and improve biogas production for wet pennycress biomass. Similar
synergistic effects were reported in previous studies. For example, a 5–15% methane
yield increase was observed from coensiling cover crops and barley straw [66], and a
significant methane yield increase was obtained from two cover crops after long-term
alkaline pretreatment and storage [67,68].

The reactors with the first-harvest biomass, however, still failed to produce methane
gas after the pretreatment due to the low pH condition (5.47 ± 0.09, Table S3). Likely an
even higher alkali dosage, i.e., 8–10% of biomass dry matter, will be needed to produce
methane gas from early harvested pennycress [50,51]. However, this will increase the cost
of digestion.

The biomass characteristics and AD conditions also impacted the methane production
dynamics. As shown in Figure 5, different cumulative methane yield curves were obtained
from the four experiments. The third-harvest biomass that was alkali pretreated showed
the greatest initial rate of methane production and cumulative yield. These data support
the hypothesis that the concurrent alkali pretreatment and ensiling prepared the biomass
for AD by converting organic compounds into digestible acids for methane production. The
extremely short lag phase (λ), 0.28 days based on modeling results (Table 3), also suggested
that the compounds were immediately available for methane production [69]. Similarly, a
short lag phase (1.35 days) and a high maximum daily yield (Rm = 21.2 L/kg-VS.d) were
obtained from the pretreated second-harvest biomass (Table 3). The higher inoculation rate
(F/I of 1) also shortened the lag phase (5.92 days) compared to the experiment using F/I of
2 (20.6 days; Table 3).
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Table 3. Modeling results based on the modified Gompertz equation.

Biomass, AD Conditions P (L/kg-VS) Rm (L/kg-VS.d) λ (d)

1.27 cm, 3rd harvest, F/I = 2, TS = 4% 130 ± 6.09 6.24 ± 0.49 12.8± 0.73
2.54 cm 3rd-harvest biomass, F/I = 2, TS = 4% 181 ± 4.5 9.15 ± 0.50 20.6± 0.51
2.54 cm 3rd-harvest biomass, F/I = 1, TS = 4% 200 ± 8.2 8.22 ± 0.78 5.92± 1.13
2.54 cm, 3rd harvest, F/I = 2, TS = 4%, pretreated 191 ± 3.31 11.7 ± 0.81 0.28± 0.63
2.54 cm, 2nd harvest, F/I = 2, TS = 4%, pretreated 266 ± 3.01 21.2 ± 1.08 1.35± 0.37

Organic matter loss and associated energy loss are other important factors to consider
for biomass storage. Organics can be vaporized, contaminated, used by microbes for
reproduction, or converted to CO2, and losses may reach up to 60% [70]. There are several
important factors affecting the organic matter and energy loss during storage, such as the
moisture content and compactness of the biomass, the amount of oxygen available to the
microbes, the pH and temperature conditions, and the storage duration. Inappropriate
storage can cause methane yield reduction. For example, Vlierberghe et al. reported that
the wet storage of cover crops led to a high butyric acid accumulation and a 13% reduction
in the biomethane potential [67]. For this study, a decrease in the VS content (wet basis)
was observed in all samples. On average, reductions of 23.9%, 9.9%, and 3.3% in the VS
content were measured from the first-, second-, and third-harvest biomass, respectively,
after the concurrent alkali pretreatment and ensiling. The wet samples lost more volatile
solids than the dry samples, which is similar to findings in other studies [67,68].

With the VS reduction considered, the concurrent alkali pretreatment and ensiling
still increased the overall methane yield by 450% (4.5-fold), and 6% for the second- and
third-harvest biomass, respectively. The 6% increase from the third-harvest biomass was
not significant, but the AD retention time likely can be shortened for large-scale applica-
tions. The 4.5-fold increase for the second-harvest biomass was significant and may be
further improved if the alkali dosage and ensiling conditions are optimized. A longer-term
(4–8 months) concurrent alkali pretreatment and ensiling test will be needed to evalu-
ate its effects on organic matter loss and methane yield for year-round biomass storage
and anaerobic digestion. Based on the data obtained from this experiment (methane
yield = 270.4 L/kg-VS, VS/TS = 0.93, VS loss during ensiling = 9.88%, biogas tempera-
ture = 20 ◦C), the estimated pennycress dry matter yield of 2 MT/ha [71], and the 70%
of biogas energy available for output, the potential energy output from the pretreated
second-harvest biomass was estimated to be 11,496 MJ/ha, equal to 95 GGE/ha (gallon
gasoline equivalent).

4. Conclusions

The harvest date affected the pennycress biomass length, wet weight, composition,
and biogas yield. Higher contents of ADF, NDF, lignin, and C were found in biomass
collected on later harvest dates. The digesters with the first-harvest biomass failed due to
the pH drop, and the performance did not improve with a higher inoculation rate. Without
the alkali pretreatment, the highest methane yield of 171.80 ± 4.82 L/kg-VS was obtained
from the 2.54 cm, third-harvest biomass at a solid content of 4% and a feedstock/inoculum
ratio of 2. After the one-month concurrent alkali pretreatment and ensiling, the volatile
solid content was reduced by 23.9%, 9.9%, and 3.3% in the first-, second-, and third-harvest
biomass, respectively. However, this pretreatment conditioned the biomass to reduce the
inhibition, and the overall methane yield from the pretreated second-harvest biomass was
significantly increased to 270.4 ± 3.10 L/kg-VS, a 4.5-fold increase from the untreated
second-harvest biomass with the organic matter loss adjusted. Modeling results suggested
that the treatment also shortened the anaerobic digestion lag phase. We conclude that, with
proper pennycress biomass pretreatment, it could be an attractive feedstock for biomethane
production. Pilot-scale tests, technoeconomic analysis, and environmental impact studies
can be the next steps.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fermentation10020096/s1, Table S1: Measured methane yields (L/kg-VS)
at an F/I ratio of 2 from biomass cut to 2.54 cm or 1.27 cm lengths. Table S2: Measured methane
yields (L/kg-VS) from biomass cut into 2.54 cm lengths. Table S3: Characteristics of the AD digestate
after alkali pretreatment and ensiling.
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