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Abstract: Leghemoglobin (LegH) is a plant-derived hemoglobin that can be used as a food additive to
confer red color and meat flavor to plant-based meat products. Although LegH has been expressed in
Saccharomyces cerevisiae, the productivity is low at the shaking-flask level, and the downstream process
of purification is complicated. Herein, the intracellular expression of LegH reached 151.2 mg/L
through initial promoter modification. Then, the fermentation strategy was optimized, and the titer of
LegH reached 544.8 mg/L (5.2 mg/L/OD600 per unit yield) in the two-stage fed-batch fermentation
in a 5-L fermenter. After the modification of signal peptide and knockout of proteases, the secretory
expression of LegH was achieved in recombinant S. cerevisiae, and the final secretory titer of LegH
reached 88.5 mg/L at the 5-L fermenter level. Based on the results of this study, the secreted LegH
can be widely applied in the fields of food processing and biocatalysis in the future.
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1. Introduction

Leghemoglobin (LegH) is a hemoprotein produced by legumes infected with Rhizo-
bium bacteria [1]. Due to the biochemical properties of LegH, including the transport and
storage of oxygen, and the red color of legume nodules, it was applied in the field of food
processing [2,3]. In 2016, Impossible Food™ developed LegH as a food additive to simu-
late the meaty color and flavor and obtained the permission from the United States Food
and Drug Administration (FDA) for the production of commercial Impossible Burger™
hamburgers [4].

Currently, LegH is mainly extracted from soybeans, but the preparation procedure
is complex and time-consuming due to the low concentration of LegH in soybeans [5].
With the development of synthetic biology, the utilization of microbial fermentation to
produce LegH has attracted widespread attention. Although the titer of LegH synthesized
by E. coli could reach 170 mg/L at the shaking-flask level [6], the complicated renaturing
steps of inclusion bodies and the risk of endotoxins limited the food-grade production
and application on a large scale [7,8]. Recently, the hemoglobin produced in C. glutamicum
is up to approximately 20% of total protein [9], but the yield is not high and the process
of downstream purification is complicated. In addition, the highest yield of LegH in
microorganisms has been achieved in the methanol-induced K. phaffii, reaching up to
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3.5 g/L, including both the target protein and its degradation products [10]. However,
the application of recombinant proteins from K. phaffii in food and pharmaceutical fields
requires detailed scrutiny, and the strict purification and safety assessments are demanding.
Moreover, the food additive “LegH Prep”, which is synthesized in K. phaffii, only has a
purity of 65% [2].

Due to its clear genetic background, fast growth, ease of cultivation, and safety,
S. cerevisiae has been extensively utilized as a host for synthetic biology [11]. Moreover,
S. cerevisiae has shown great advantages in the synthesis of pharmaceutical proteins and
has a promising potential for the large-scale production of many other high-value-added
proteins in the future [12]. In a previous study, LegH was synthesized in S. cerevisiae
with a titer up to 124.3 ± 6.6 mg/L at the shaking-flask level [13]; its productivity is low
and not suitable for industrial large-scale production. Obviously, secretory expression
can simplify the downstream steps of purification and eliminate the residual proteins
from the host. Currently, the secretory expression of LegH has not been achieved in
S. cerevisiae.

It has been found that the upstream activator sequence (UAS) works cooperatively
with the core promoter, and the strength of the synthetic promoter constructed by replac-
ing the core promoter region of the PGAL1 is two-fold higher than that of the original
promoter [14]. In addition, an appropriate increase in the number of UAS elements can
enhance the strength of the promoters [15,16]. In the GAL regulatory system, the PGAL1
promoter is regulated by the transcriptional activator Gal4p and the transcriptional repres-
sor Gal80p. It has been proven that the knockout of GAL80 can improve the expressional
intensity of the PGAL1 promoter [17,18].

As for the secretory expression in S. cerevisiae, 11 pre-peptides with high secretion
efficiency have been mined [19]. In a previous study, it was shown that the combination of
different pro-peptides and pre-peptides can produce hybrid signal peptides with different
secretion efficiencies [14]. The secretion of human hemoglobin has been achieved by
knocking out the proteases Pep4p and Vps10p in S. cerevisiae, but the expressional level
is extremely low, and the target protein can only be detected after the supernatant is
concentrated 360-fold [20]. Therefore, to improve the secretory production of heterologous
proteins, it is not only necessary to find the appropriate secretion signal peptide but
also to maintain the stability of target proteins by knocking out special proteases related
to degradation.

In this study, we started with the strain GAL1-LegH (CEN.PK2-1C strain harboring
plasmid pESC-PGAL1-LegH) [13] and then optimized the elements in the PGAL1 promoter.
To reduce the reliance of the expression on galactose and improve the intensity of PGAL1,
the gene GAL80 was knocked out. Next, the fermentation conditions were optimized at
the shaking-flask level, and a feasible two-stage fed-batch strategy for high-cell-density
fermentation was developed to efficiently synthesize LegH at the 5-L fermenter level. In
the following study, to simplify the purification procedure, an appropriate protein secretory
signal peptide for LegH was identified, and the associated proteases were knocked out
in the new engineered recombinant S. cerevisiae strain. Finally, based on all the effective
strategies, the highest secretory titer of LegH was achieved for S. cerevisiae on a large scale.

2. Materials and Methods
2.1. Strains and Culture Conditions

E. coli DH5α was used as the cloning host and cultivated at 37 ◦C and 220 rpm
in Luria–Bertani (LB) medium with 100 mg/L of ampicillin or 50 mg/L of kanamycin.
LegH was expressed in the S. cerevisiae CEN.PK2-1C strain, the genotypes of which
are provided in Table S1 for its derivative strains. YPD medium (10 g/L yeast extract,
20 g/L peptone, and 20 g/L glucose) was used to cultivate S. cerevisiae without special
needs. Synthetic dropout medium (YNB medium: 6.7 g/L of yeast nitrogen base without
amino acids, 20 g/L of glucose, 50 mg/L of leucine, 50 mg/L of histidine, and 50 mg/L
of tryptophan) was used to cultivate recombinant S. cerevisiae strains harboring the
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pESC-URA plasmids. YPD-F medium derived by adding 1 g of 5-fluoroorotic to YPD
medium was used to remove the plasmid in the recombinant S. cerevisiae strains.

2.2. The Construction of Recombinant Plasmids

The information for all plasmids constructed in this study is detailed in Table S1.
All of the primers used to construct recombinant plasmids are listed in Table S2, the
elements of the promoters are listed in Table S3, and the hybrid signal peptides are listed
in Table S4. Using the genome of S. cerevisiae CEN.PK2-1C as a template, the sequence
of the target promoter element was amplified via PCR, and the vector framework was
amplified by using pESC-PGAL1-LegH as a template. When designing the primers for the
signal peptide recombinant plasmid, the signal peptide sequences were inserted into the
5’ ends of the upstream and downstream primers. Then, pESC-PGAL1-LegH was used
as the template to amplify the linear fragment that replaced the original signal peptide.
The purified DNA fragments were assembled via Gibson assembly [21] to obtain the
target recombinant plasmids.

To construct plasmids for LegH expression with one to four tandem repeats of
UASGAL1 elements to the core promoter, the UASGAL1 fragment was obtained from pESC-
PGAL1-LegH using primers, followed by cutting the pESC-PGAL1-LegH at the restriction
endonuclease site EcoR I, and a long fragment containing an overlap to the UASGAL1
fragment was obtained after incubation for 1 h at 37 ◦C. The plasmids that randomly
assemble different numbers of UASGAL1 fragments were then obtained by assembling these
two fragments via Gibson assembly [21].

2.3. The Construction of Engineered Strains

Applying CRISPR/Cas9 system for gene editing, the pML104 plasmid was used
to knock down the GAL80, MCA1, PEP4, and VPS10 genes [22]. The sgRNA targeting
sequences of target genes were designed according to CHOPCHOP (http://chopchop.cbu.
uib.no/ (accessed on August 9, 2023)). The S. cerevisiae S288C genome database from SGD
(https://www.yeastgenome.org/ (accessed on October 24, 2022)) served as the basis for
the creation of homologous fragments. Using the S. cerevisiae genome as a template, the
upstream and downstream homology arms of target genes were amplified and assembled.
The purified fusion DNA fragments of target genes and the pML104 plasmid containing
the sgRNA sequence of target genes were transformed into S. cerevisiae strains. The donors
were introduced into S. cerevisiae via the LiAc/SS carrier DNA/PEG method [23].

2.4. The Culture Conditions for LegH Expression at the Shaking-Flask Level

The engineered strain was cultivated on YNB plates at 30 ◦C for 2 days, and single
colonies were then selected and inoculated into 3 mL of YNB medium, which was then
shaken for 18 h at 220 rpm. After that, the seed solution was moved to a 250 mL shaking-
flask with 50 mL of YPD medium at an inoculum volume of 1%. And the flask was then
incubated for 90 h at 30 ◦C at 220 rpm. Next, 2% Galactose was added as the inducer for
LegH expression at 18 h, and 2% glucose was added for the GAL80 knockout strain.

YPD medium, Li medium [24], Whang J medium [25], and Van Hoek medium [26]
were selected for the single-factor optimization of the medium. Different carbon sources
(glucose, glycerol, ethanol, and sorbitol) and nitrogen sources (peptone, corn steep liquor,
beef extract, and ammonium sulfate) were selected for the single-factor optimization of
media composition, all of which were added at a final concentration of 20 g/L. Furthermore,
to determine the appropriate initial addition amount, several concentrations of hemin (2.5,
5.0, 10.0, and 20.0 mg/L) were added to the modified YPD medium. The single-factor
optimizations of the fermentation temperature were conducted at 25 ◦C, 30 ◦C, and 35 ◦C.

2.5. The Culture Conditions for LegH Expression at the 5-L Fermenter Level

The engineered strain was cultivated on YNB plates at 30 ◦C for 2 days, and single
colonies were then selected and inoculated into 3 mL of YNB medium, which was then
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shaken for 18 h at 220 rpm. Then, the primary seed cultures were inoculated at 1% inoculum
into three 250 mL shaking-flasks containing 100 mL of YNB medium and incubated at
30 ◦C and 220 rpm for 18 h.

The secondary seed culture (300 mL) was inoculated into a 5 L bioreactor (T&J
Bioengineering, Shanghai, China) containing 2.7 L of YPD medium. The temperature
was controlled at 30 ◦C, and the pH was maintained at 5.5 using 50% NH4OH. The
dissolved oxygen (DO) was maintained at 30% of air saturation by varying the agitation
speed from 300 to 600 rpm, while the airflow rate was fixed at 3 L/min. The final
concentrations of 20.0 g/L of inducer (glucose or galactose) and 5 mg/L of hemin were
added to the medium at 18 h.

To achieve high-cell-density fermentation, a two-stage feeding strategy was used. In
order to maintain rapid cell development, 500 g/L of glucose and 120 g/L of yeast extract
were fed in the beginning. In order to support efficient LegH expression, the solution was
changed to 300 g/L glucose and 32 mg/L hemin during the second stage.

2.6. The Methods for LegH Purification

LegH was purified using His-Affinity (Ni-NTA-agarose) gravity columns. Yeast cells
were collected and resuspended in 50 mL of 20 mM phosphate-buffered saline buffer (PBS,
pH 7.4). The cells were crushed using a high-pressure cell crusher instrument (Union
Biotech, Shanghai, China) at 4 ◦C using 700–800 bar. After breaking, the broken cells were
collected for centrifugation, and the supernatant obtained from centrifugation was used as
the crude protein solution. For secreted LegH, the fermentation supernatant is the crude
protein solution. The washing buffer and elution buffer used were 50 mM imidazole in
20 mM PBS buffer and 1 M imidazole in 20 mM PBS buffer, respectively.

2.7. Analytical Methods

The cell density was measured at 600 nm using a spectrophotometer. The concentra-
tions of glucose and ethanol were analyzed using an M100 biosensor analyzer (Sieman
Bio-Medical Solutions Company, Shenzhen, China). The nucleic acid fragments were sep-
arated using a DYY-6C electrophoresis apparatus (Beijing Liuyi Electrophoresis Factory,
Beijing, China). The expression of LegH was detected using a protein electrophoresis
instrument (Thermo Fisher, Waltham, MA, USA). The concentration of proteins was
measured using the Bradford protein assay kit (Beyotime Biotech, Shanghai, China). The
software of Image Lab was used to analyze the percentage of target bands. All data were
collected from three independent clones, and significance analysis was performed using
GraphPad Prism8.

3. Results and Discussion
3.1. The Optimization of PGAL1 Promoter Elements

In previous research, the original PGAL1 promoter was used to induce the expres-
sion of LegH [13]. However, the expressional level of target proteins can be further
enhanced via the modification of the PGAL1 promoter [14,18]. To improve the expres-
sion of LegH, the elements of the PGAL1 promoter were modified to enhance its strength
(Figure 1A). The CRMGAL1-CORETEF1-LegH, CRMGAL1-CORETDH3-LegH, and CRMGAL1-
COREGAL7-LegH strains with different hybrid promoters were constructed by replacing
the PGAL1 core promoter with CORETEF1/CORETDH3/COREGAL7 (the core promoter of the
PTEF1/PTDH3/PGAL7). However, the titers of LegH were significantly decreased by 77.6%
in the CRMGAL1-CORETEF1-LegH strain (29.0 mg/L), 29.0% in the CRMGAL1-CORETDH3-
LegH strain (91.8 mg/L), and 41.8% in the CRMGAL1-COREGAL7-LegH strain (75.2 mg/L),
respectively (Figure 1B). Thus, the increase in the UAS numbers was alternatively at-
tempted [15,27]. One to three tandem repeats of UASGAL1 were fused to the original PGAL1
promoter with one UASGAL1, and three strains were generated (GAL1-UAS × 2-LegH
strain, GAL1-UAS × 3-LegH strain, and GAL1-UAS × 4-LegH strain) (Figure 1C). Unfortu-
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nately, the results were also not positive (Figure 1D). Thus, the original PGAL1 promoter
was employed to control the expression of LegH.Fermentation 2024, 10, x FOR PEER REVIEW 6 of 16 
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Figure 1. The engineered strains with different hybrid promoters. (A) The structure of the hybrid
promoter. CRM: upstream cis-regulatory module; CORE: core promoter sequence. (B) The expres-
sional level of LegH in recombinant strains with different core regions. (C) A schematic diagram
of the heterozygous promoters. (D) The expression of LegH in recombinant strains with different
tandem repeats of UASGAL1.

Besides the modification of the PGAL1 promoter, knocking out the GAL80 gene to remove
the inhibition of Gal4p (the transcriptional activator of the PGAL1 promoter) is a useful strategy
to increase the strength of PGAL1 [17,28]. Although the titer of LegH decreased by 36.5% in
the GAL80 knockout strain in the previous study [13], the LegH expression was elevated by
20.3% (151.2 mg/L) after the knockout of the GAL80 gene (GAL1-LegH-∆GAL80 strain) in this
study (Figure 2). This result may be due to the addition of 2% glucose during the fermentation
process, and this strategy was applied to obtain a higher titer of LegH.Fermentation 2024, 10, x FOR PEER REVIEW 7 of 16 
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In the previous study, the secretory expression of β-glucosidase under the control of
PGAL1 in the GAL80 deletion strain in the presence of galactose was slightly higher than that
under glucose growth conditions [18]. Therefore, to explore the effect of galactose on LegH
expression, three different combinations of carbon sources were performed: (i) GAL1-
LegH-∆GAL80 GLC+GAL—2% glucose, 2% galactose (143.0 mg/L); (ii) GAL1-LegH-
∆GAL80 GLC+GLC—2% glucose, 2% glucose (151.2 mg/L); (iii) GAL1-LegH-∆GAL80
GAL+GAL—2% galactose, 2% galactose (31.7 mg/L) (the former carbon source was added
at the beginning of fermentation, and the latter carbon source was added at 18 h of fermen-
tation) (Figure 2). The results showed that the expression of LegH (GAL1-LegH-∆GAL80
strain) increased by 13.8% compared with the control (GAL1-LegH strain, 125.7 mg/L)
when galactose and glucose were mixed (2% glucose + 2% galactose). When only glucose
was used as a carbon source (2% glucose + 2% glucose), the expression of LegH (GAL1-
LegH-∆GAL80 strain) increased by 20.3%, while when only galactose was used as a carbon
source (2% galactose + 2% galactose), the expression of LegH (GAL1-LegH-∆GAL80 strain)
decreased by 74.8%. Thus, we finally chose the carbon source addition of 2% glucose + 2%
glucose for fermentation.

3.2. The Optimization of Fermentation Conditions at the Shaking-Flask Level

The fermentation medium was optimized based on the previously selected carbon
source. At first, YPD medium, Li medium (trace-metal solution) [24], Whang J medium (a
mixture of organic and inorganic nitrogen sources) [25], and van Hoek medium (inorganic
salt medium with trace elements) [26] were chosen for the expression of LegH. According
to the results, the highest titer of LegH (149.2 mg/L) was obtained in the YPD medium,
while 99.6 mg/L and 112.2 mg/L were obtained in the Li medium and Whang J medium,
respectively. In contrast, only 8.7 mg/L was produced in the van Hoek medium (Figure 3A).
Therefore, the components of the YPD medium were further optimized. Firstly, four
carbon sources, glucose, glycerol, ethanol and sorbitol, were selected for the single-factor
optimization, and the concentrations of all carbon sources were set at 20 g/L. The results
showed that there were certain effects of different carbon sources on the expression of
LegH, and when glucose was used as the carbon source, the expression of LegH could reach
up to 150.06 mg/L (Figure 3B). Next, based on the optimal carbon source, single-factor
optimization was performed for peptone, corn steep liquor, beef extract, and (NH4)2SO4,
and the concentrations of all nitrogen sources were set at 20 g/L. The results showed that
the organic nitrogen sources were more effective at promoting the growth of the strain and
the expression of target proteins compared to the inorganic nitrogen sources. Among all
the tested organic nitrogen sources, the higher expressional level of LegH (150.63 mg/L)
was achieved by peptone (Figure 3C).

Hemin is an essential co-factor in the composition of heme-binding proteins. To
efficiently synthesize LegH, it is necessary to add hemin to alleviate the insufficient intracel-
lular hemin supply. The concentration of hemin addition was performed via single-factor
optimization based on the optimal carbon and nitrogen sources. It can be seen that the
concentrations of hemin (2.5, 5.0, 10.0, and 20.0 mg/L) had little effect on the expression
of LegH (Figure 3D). Hence, considering the cost of supplementing hemin for large-scale
industrial production, it is appropriate to control the concentration of hemin at 2.5 mg/L.
Finally, the fermentation temperatures (25, 30, and 35 ◦C) were optimized. The expression
of LegH decreased significantly at 35 ◦C, which showed that the higher temperature was
unfavorable to the expression of LegH. There was no significant difference in the expression
of LegH between 25 ◦C and 35 ◦C (Figure 3E). In order to reduce the use of condensed water
in the fermenter, the fermentation temperature was controlled at 30 ◦C. Finally, the highest
titer of LegH (153.3 mg/L) was achieved in modified YPD medium (20.0 g/L glucose,
20.0 g/L peptone, 10.0 g/L yeast extract, and 2.5 mg/L hemin) at 30 ◦C.
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“****” p < 0.0001 vs. compared group; “ns” stands for “not significant”.

3.3. Intracellular Expression of LegH in High-Cell-Density Fermentation

Based on the optimized conditions at the shaking-flask level, batch fermentation
was performed first. During batch fermentation, it can be seen that LegH started to be
expressed after 12 h and reached the highest titer of 340.8 mg/L (4.8 mg/L/OD600) at
48 h (Figure 4A,B). To further increase the titer of LegH, fed-batch fermentations were
carried out. DO-STAT, pH-STAT, and exponential feeding strategies were used, but it
was found that high-cell-density fermentation [29] could not be achieved (Figures S1–S3).
Thus, we adopted a two-stage fed-batch fermentation system to achieve high-cell-density
fermentation.

In the first stage, a feeding solution containing 500.0 g/L glucose and 120.0 g/L
yeast extract was fed to the bioreactor at a constant rate (8.0 mL/h). During this stage,
the GAL1-LegH-∆GAL80 strain grew rapidly. After glucose consumption, the second
stage started, and another feeding solution II containing 300.0 g/L glucose and 32.0 mg/L
hemin was fed to the bioreactor using an index feeding strategy. During the second stage,
the GAL1-LegH-∆GAL80 strain gradually utilized ethanol instead of glucose, and LegH
began to be expressed due to the derepression of the PGAL1 promoter by glucose. The
results showed that the expression of LegH reached the highest titer of 544.8 mg/L at
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36 h (5.2 mg/L/OD600) (Figure 4C,D). Based on this two-stage fed-batch strategy, high-cell-
density fermentation was achieved, and the highest OD600 could reach 128.7 [29].
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3.4. The Optimization of Signal Peptides for the Secretory Expression of LegH

The secretory expression is preferred for the industrial production of recombinant
proteins because it simplifies the downstream process of purification. S. cerevisiae can only
secrete a small amount of its own proteins during fermentation [30], and many signal
peptides can be used to secrete recombinant proteins [31,32]. Therefore, it is possible
to establish the strategy of LegH secretory expression through the rational design of
signal peptides in S. cerevisiae. Firstly, the commercially applied MFα signal peptide was
selected to realize the secretory expression of LegH, and the titer of secreted LegH could
reach 15.7 mg/L (Figure 5A). Then, to obtain the optimal signal peptide for LegH secretory
expression, three different strategies were selected to modify the MFα signal peptide: (i) the
truncated or extended pro-peptide of α-factor signal peptide (the truncated or extended
pro-peptides are determined by the secondary structure predicted by Jpred and the tertiary
interactions predicted by the knob-socket model [14]) fused with the pre-Ost1 signal peptide
or pre-α factor signal peptide; (ii) single-amino-acid substitutions located within the MFα
signal peptide and the single-amino-acid substitutions obtained via directed evolution [33];
(iii) the pro-peptide of α-factor signal peptide fused with endogenous signal pre-peptides
with strong secretory ability from S. cerevisiae [19].

In strategy (i), the Ost1(∆30-43)-∆GAL80 strain (24.0 mg/L) had the highest secreted
titer of LegH of all the constructed strains, which was 1.53-fold higher than the secreted
titer obtained for the MFα-∆GAL80 strain (Figure 5A). In strategy (ii), the secretion titer
of LegH was 1.25-fold higher in the MFαL63S-∆GAL80 strain (20.7 mg/L) than the titer
in the MFα-∆GAL80 strain (Figure 5B). Of the 11 hybrid signal peptides constructed via
strategy (iii), the highest secreted titer of LegH was obtained for the FLO10-∆GAL80
strain (24.4 mg/L), which was 1.54-fold higher than the titer for the MFα-∆GAL80 strain
(Figure 5C). In addition, the FLO10(∆30-43)-∆GAL80 strain (deletion of 44 to 70 residues
in the pro-peptide of α-factor signal peptide) was constructed because the pro-α(∆30-43)
showed better secretory effect fused with both pre-Ost1 and pre-α. And the FLO10αL63S-
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∆GAL80 strain was constructed by the FLO10-∆GAL80 strain with the L63S single mutation
in the pro-α. Finally, the FLO10(∆30-43)αL63S-∆GAL80 strain was constructed based on the
FLO10(∆30-43)-∆GAL80 strain with the L63S single mutation in the pro-α.Fermentation 2024, 10, x FOR PEER REVIEW 11 of 16 
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LegH in the recombinant strains with different heterozygous signal peptides; (B) the secreted titer of
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titer of LegH in recombinant strains with different signal peptides obtained via the hybridization of
endogenous pre-peptide with pro-α; (D) the secreted titer of LegH in recombinant strains combining
the optimal pre-peptide and pro-peptide.

After comparing the secretory effect in FLO10(∆30-43)-∆GAL80, FLO10αL63S-∆GAL80,
and FLO10(∆30-43)αL63S-∆GAL80 strains with the effect in Ost1(∆30-43)-∆GAL80, MFαL63S-
∆GAL80, and FLO10-∆GAL80 strains, the results revealed that the highest secreted titer was
achieved in the FLO10αL63S-∆GAL80 strain (25.8 mg/L), which was 1.62-fold higher than
that of the MFα-∆GAL80 strain (Figure 5D). Furthermore, through the comparison of four
engineered strains (FLO10-∆GAL80, FLO10αL63S-∆GAL80, FLO10(∆30-43)-∆GAL80 and
FLO10(∆30-43)αL63S-∆GAL80 strains), it was found that the hybrid signal peptide obtained
via the fusion of pro-α(∆30-43) with pre-FLO10 had a negative effect on the secretory
expression of LegH, whereas the L63S mutation partially rescued some of the inhibition
caused by pro-α(∆30-43).

3.5. Knockout of Degradation-Related Proteases to Increase LegH Expression

In previous studies, it was found that LegH was severely degraded during the secretion
of K. phaffii [10], and the knockout of PEP4 reduced the degradation of porcine myoglobin
secreted by the engineered K. phaffii [34]. Similarly, the biosynthesis of human hemoglobin
could be elevated after PEP4 knockout in engineered S. cerevisiae [20]. Additionally, the
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knockout of VPS10 prevented the targeting of heterologous proteins to vacuoles [35], and
knockout of MCA1 (YCA1) increased the aggregation of foreign proteins [36].

To reduce the degradation of secreted LegH, the α-∆GAL80-∆PEP4, α-∆GAL80-∆VPS10,
and α-∆GAL80-∆MCA1 strains were constructed via the single knockdown of the PEP4,
VPS10, and MCA1 (YCA1) genes, respectively. The secretory expression of LegH was
significantly higher in the α-∆GAL80-∆PEP4 strain (24.8 mg/L), which was 1.69-fold higher
than in the MFα-∆GAL80 strain (Figure 6A). As the degradation of human hemoglobin
could be further reduced by the double-knockout of the PEP4 and VPS10 genes [20], the
α-∆GAL80-∆PEP4-∆VPS10 strain was constructed (Figure 6B). The result demonstrates
that knocking out VPS10 and PEP4 at the same time has no synergistic effect on the secreted
expression of LegH, and the negative effect of VPS10 knockdown may be attributed to the
increasing extracellular levels of carboxypeptidase Y (CPY) and other vacuolar hydrolases,
which lead to the degradation of LegH [37–39].
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Figure 6. Knockout of genes related to the degradation of heterologous proteins: (A) the effect of
protease knockout on LegH secretion; (B) the effects of PEP4 and VPS10 knockout on LegH secretion.
“***” p < 0.001 vs. compared group; “ns” stands for “not significant”.

3.6. The Secretory Expression of LegH at the Fermenter Level

The optimal signal peptide (pre-FLO10 with the single mutation L63S of the pro-α)
and the optimal modified strain (∆GAL80-∆PEP4) were used to obtain the final secretory
expression strain FLO10αL63S-∆GAL80-∆PEP4 (FL63S), which had a titer of LegH that was
1.78-fold higher (28.3 mg/L) than that of the MFα-∆GAL80 strain (Figure 7A). Then, batch
and fed-batch fermentations were carried out for high-cell-density culture in accordance
with the optimal fermentation conditions. In batch fermentation, LegH was secreted from
12 h until it reached the highest titer of 47.7 mg/L at 48 h (Figure 7B). At 12 h, almost no
protein was present in the fermentation supernatant, and after glucose was depleted at 24 h,
the promoter PGAL1 was activated and LegH began to be gradually secreted (Figure 7C).
Then, the concentration of total proteins still increased, but the secreted level of LegH began
to decrease. Compared with the original MFα-∆GAL80 strain, the secretory expression of
LegH increased 3.26-fold.

Finally, the two-stage fed-batch fermentation was performed for the best secretory
strain (FL63S). It was observed that the titer of secreted LegH significantly increased from
12 to 60 h, and the highest titer reached 88.5 mg/L at 60 h (Figure 8A,B). The concentration
of total supernatant proteins continued to rise in the late fermentation period, which may
have been caused by autolysis [40].
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4. Conclusions

In this study, the efficient secretory production of LegH was achieved in S. cerevisiae.
At first, by knocking out GAL80, the activity of PGAL1 was enhanced, resulting in an
increasing level of LegH expression. Subsequently, a hybrid signal peptide, FLO10αL63S,
was engineered to optimize the secretion of LegH by comparing various engineering
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strategies for signal peptides. To inhibit the degradation of LegH during fermentation,
the protease PEP4 was knocked out. Finally, by employing a two-stage fed-batch strategy,
the secretory expression of LegH reached 88.5 mg/L, which was the highest secretion of
LegH in S. cerevisiae (Table 1). The results laid the foundation for the large-scale industrial
production of LegH.

Table 1. The latest studies of microbial synthetic leghemoglobin.

Host Strategy Expressional Level Refs.

E. coil Intracellular inducible expression by vector 170.0 mg/L
(shaking-flask level) [6]

C. glutamicum Intracellular inducible expression by vector; promoter
engineering; Lba saturation synonymous mutagenesis

20% of total protein
(shaking-flask level) [9]

K. phaffii Extracellular inducible integrated expression; heme
synthetic pathway engineering

3.5 g/L
(fed-batch fermentation in a 10-L fermenter) [10]

S. cerevisiae Intracellular inducible expression by vector; heme
synthetic pathway engineering

124.3 ± 6.6 mg/L
(shaking-flask level) [13]

K. phaffii Extracellular inducible integrated expression; heme
synthetic pathway engineering

286.53 ± 14.29 mg/L
(shaking-flask level) [34]

K. marxianus Intracellular constitutive expression by vector; heme
synthetic pathway engineering

7.3 g/L
(fed-batch fermentation in a 5-L fermenter) [41]

S. cerevisiae Extracellular inducible expression by vector; signal
peptide optimization; promoter engineering

88.5 mg/L
(fed-batch fermentation in a 5-L fermenter) This study

Apart from S. cerevisiae, K. phaffii is also regarded as one of the most promising current
hosts for the large-scale synthesis of LegH. Compared to S. cerevisiae, which boasts a
well-established safety record and extensive research on its impact on human metabolism,
K. phaffii is considered to be a suitable host for LegH production due to its high capability for
protein expression and rapid growth rate. The yield of LegH in K. phaffii has reached 3.5 g/L
(including degraded bands), which is promising for future scaling up. Additionally, with
the advancements in synthetic biology, other species of yeast or non-yeast microorganisms
may be developed, offering new possibilities for the large-scale production of LegH.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation10030146/s1, Figure S1: The DO-STAT strategy
used for fed-batch fermentation at 5-L fermenter level (S4 strain); Figure S2: The pH-STAT strategy
used for fed-batch fermentation at 5-L fermenter level (S4 strain); Figure S3: The exponential feeding
strategy used for fed-batch fermentation at 5-L fermenter level (S4 strain); Table S1: Strains and
plasmids used in this study; Table S2: Primers used in this study; Table S3: Elements of the promoters
used in this study; Table S4: Hybrid signal peptides used in this study.
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