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Abstract: 4′-N-demethyl-vicenistatin is a vicenistatin analogue that has better antitumor activity with
promising applications in the pharmaceuticals industry. The harnessing of the complete potential
of this compound necessitates a systematic optimization of the culture medium to enable the cost-
effective production of 4′-N-demethyl-vicenistatin by Streptomyces parvus SCSIO Mla-L010/∆vicG.
Therefore, in this study, a sequential approach was employed to screen the significant medium com-
positions, as follows: one-factor-at-a-time (OFAT) and Plackett–Burman designs (PBD) were initially
utilized. Cassava starch, glycerol, and seawater salt were identified as the pivotal components influ-
encing 4′-N-demethyl-vicenistatin production. To further investigate the direct and interactive effects
of these key components, a three-factor, five-level central composite design (CCD) was implemented.
Finally, response surface methodology (RSM) and an artificial-neural-network-genetic-algorithm
(ANN-GA) were employed for the modeling and optimization of the medium components to enhance
efficient 4′-N-demethyl-vicenistatin production. The ANN-GA model showed superior reliability,
achieving the most 4′-N-demethyl-vicenistatin, at 0.1921 g/L, which was 17% and 283% higher than
the RSM-optimized and initial medium approaches, respectively. This study represents pioneer-
ing work on statistically guided optimization strategies for enhancing 4′-N-demethyl-vicenistatin
production through medium optimization.

Keywords: culture medium optimization; response surface methodology; 4′-N-demethyl-vicenistatin;
Streptomyces parvus; artificial-neural-network-genetic-algorithm

1. Introduction

Antibiotics are a significant class of metabolites produced by microorganisms, animals,
or plants. The biological activities of antibiotics, such as cytotoxicity, bacteriostatic, antimalar-
ial, and anti-parasitic properties, make them widely used in medicine, agriculture, animal
husbandry, the food industry, and other fields [1]. In recent years, the exploitation of antibiotic
resources has gradually shifted from soil to the ocean [2]. Typically, Streptomyces parvus is con-
sidered as a potential source of biologically active compounds that has been explored widely
for drug development [3]. For example, ZM-1 (identified as holomycin) was isolated from S.
parvus 33 and found to have strong antibacterial activity against plant pathogenic fungi [4]. S.
parvus NEAE-95 produced an anti-neoplastic agent, L-asparaginase, which was used in acute
lymphoblastic leukemia treatment [5]. LYRM03, isolated from S. parvus HCCB10043, showed
higher potent inhibitory activity against aminopeptidase N for cancer therapy than bestatin [6].
Eumelanin pigment, purified from S. parvus BSB49, could be utilized for pharmaceutic and
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cosmetic product development [7]. Silver nitrate nanomaterials from S. parvus Al-Dhabi-91
were a suitable active substance for treating infectious disease [8].

Vicenistatin, a 20-membered macrolactam core with an amino-sugar vicenisamine, was
first isolated from marine microorganisms, S. halstedii HC34, and showed great potential to
be used as an antitumor drug. It not only exhibits cytotoxicity against COLO205 and HL-60
cells, but also has antitumor activity toward Co-3 cells [9]. Recently, a vicenistatin analogue
(4′-N-demethyl-vicenistatin), which showed better antitumor activity and reduced cytotox-
icity than vicenistatin, was isolated from S. parvus SCSIO Mla-L010/∆vicG (a disruptant
of the N-methyltransferase gene). It was characterized as an macrolactam antibiotic and
impressive antitumor drug. In comparison to vicenistatin, 4′-N-demethyl-vicenistatin
exhibited good antimicrobial activities, including methicillin-resistant Staphylococcus au-
reus, methicillin-resistant Staphylococcus epidermidis, Micrococcus luteus, and Bacillus subtilis,
with low cytotoxicity [10]. However, the low product concentration of 4′-N-demethyl-
vicenistatin (4 mg/L) was the main limiting factor for subsequent medicinal property
evaluation and applications [11].

The compositions and concentration of a fermentation medium play a crucial role in
the growth of microorganisms and the formation of secondary metabolites. Thus, it is essen-
tial to identify and optimize the important components (such as carbon sources, nitrogen
sources, and inorganic salts) in the medium for efficient 4′-N-demethyl-vicenistatin pro-
duction. For fermentation medium optimization, the one-factor-at-a-time (OFAT) method
is a basic strategy and is frequently used, but it does not consider the interactions among
various factors [12]. In contrast, response surface methodology (RSM) can elucidate the
interactions among individual factors. Prior to employing RSM, the Plackett–Burman
design (PBD) was often conducted to identify the factors that exert a significant influence
on the outcomes [13,14]. Apart from the above classical methods, machine learning tools
such as the artificial-neural-network-genetic-algorithm (ANN-GA) have been confirmed
to possess a better predictive capability, especially for complex and nonlinear processes
like biological fermentation [15,16]. However, there is no related report concerning the
systematic study of the effects of medium compositions, nor the model for optimizing the
fermentation medium to enhance 4′-N-demethyl-vicenistatin production.

The aim of this study is to optimize the fermentation medium in order to achieve
efficient 4′-N-demethyl-vicenistatin production using S. parvus SCSIO Mla-L010/∆vicG
with the statistical design of experiments. First, the medium compositions were screened
by OFAT and PBD. Then, the comparative performance of RSM and ANN-GA for modeling
and optimizing the medium compositions was conducted. Finally, the predictive ability
of RSM and ANN-GA was experimentally confirmed and achieved a 226% and 283%
improvement in 4′-N-demethyl-vicenistatin production, respectively.

2. Results
2.1. Screening and Optimizing the Medium Compositions by OFAT

The medium compositions not only influence the production of the target compound,
but also influence the economics of the fermentation process. Therefore, the individual
effects of different medium components (including the nitrogen source, carbon source, and
inorganic salt) on 4′-N-demethyl-vicenistatin production were investigated sequentially
based on the AM3 medium.

To achieve the highest 4′-N-demethyl-vicenistatin production, it is critical to maintain
a balance between cell growth and secondary metabolite production, which is affected by
growth-limiting nutrients such as carbon and nitrogen sources [17]. Consequently, strate-
gies employing readily metabolized carbon sources for cell growth and sustained-release
carbon sources for metabolite synthesis are commonly employed in the fermentation of
secondary metabolites [18–20]. In addition, it is reported that the secondary metabolite
secretion in Streptomyces is typically stimulated by sustained-release carbon sources, such as
soluble starch, cassava starch, and dextrins [21]. In line with these findings, the effect of dif-
ferent readily metabolized carbon sources on the production of 4′-N-demethyl-vicenistatin
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was first studied and the results showed that glycerol produced the highest concentration,
followed by glucose and mannose (Figure 1A). Additionally, the results of concentration
screening showed that the maximum 4′-N-demethyl-vicenistatin production was achieved
at 15 g/L glycerol (Figure 1B). In terms of sustained-release carbon sources, the highest
4′-N-demethyl-vicenistatin production of 0.067 g/L was obtained when cassava starch
was used, which showed a significant increase compared to the control (soluble starch),
consistent with the previous studies of Streptomyces sp. fermentation for neomycin sul-
fate [22] and epsilon-poly-l-lysine production [23]. In contrast, lactose has a negative effect
on 4′-N-demethyl-vicenistatin production (Figure 1C). The screening of the optimum cas-
sava starch concentration showed the maximum 4′-N-demethyl-vicenistatin production
was observed at 8 g/L (Figure 1D). The inhibitory effect was observed at a higher carbon
source concentration (Figure 1B,D), which could be due to the increased osmotic pressure.
Moreover, the osmotic pressure of the fermentation medium in marine microorganisms
can be regulated by the concentration of seawater salt, thereby influencing the secretion of
secondary metabolites [24]. The optimal salt concentration for 4′-N-demethyl-vicenistatin
production was determined to be 30 g/L (Figure 1K), which aligns with the seawater salt
concentration in the AM3 medium.

The nitrogen source is an essential element for the microbial synthesis of cellular
metabolites, nucleic acids, and proteins. Thus, fermentation media consisting of multiple
nitrogen sources to meet microbial nutrient requirements are commonly used [25]. Soy-
bean meal, as an organic nitrogen source, contains numerous nutritious elements, such
as a carbohydrate, protein, fatty acid, and trace element contents (potassium, magne-
sium, sodium, iron, etc.) [26], which has been reported for clavulanic acid production by
Streptomyces clavuligeru [27] and valinomycin production by Streptomyces sp. ZJUT-IFE-
354 [28]. Similarly, soybean meal was proved to be an efficient nitrogen source among
the selected five nitrogen sources for 4′-N-demethyl-vicenistatin production by S. parvus
SCSIO Mla-L010/∆vicG. It resulted in a remarkable 66% increase compared to the control
(1.5% bacterial peptone and 0.5% soybean meal) (Figure 1E). Surprisingly, it was found
that a lower concentration of soybean meal at 5 g/L yielded the highest production of
4′-N-demethyl-vicenistatin (Figure 1F).

Minerals, which act as the cofactors for biosynthetic enzymes to catalyze the necessary
reactions, are another necessary component to enhance secondary metabolite secretion in
a fermentation medium [29]. For example, Mo6+ is normally involved in cell metabolism
as the cofactor of reductases, oxidases, and dehydrogenases, and can promote cell pro-
liferation [30] and mupirocin production [31]. Co2+ is able to significantly increase the
activity of methylmalonyl-CoA mutase and methylmalonyl-CoA transcaboxylase in S.
erythromycin, as well as fluxes in the glucose metabolism pathway [32]. Mg2+ and Fe2+

were reported to paly vital functions for lipostatin [33], antimicrobial compounds [34],
and staurosporine [35] production. Thus, the effects of Na2MoO4·2H2O, MgSO4·7H2O,
FeSO4·7H2O, and CoSO4·7H2O on 4′-N-demethyl-vicenistatin production were evaluated
in this study. As shown in Figure 1G, the results demonstrate that only FeSO4·7H2O ex-
hibited significant positive effects, while CoSO4·7H2O had a detrimental impact on the
production of 4′-N-demethyl-vicenistatin among the selected inorganic salts. Moreover,
the optimum concentration of FeSO4·7H2O was determined to be 40 mg/L (Figure 1H).

Finally, the impact of various inorganic nitrogen sources on the production of 4′-N-
demethyl-vicenistatin was investigated. The results demonstrate that ammonium citrate
exhibited the highest production (Figure 1I), potentially due to its provision of both ammo-
nium ions and citric acid, which promote microbial growth and substrate utilization [36].
Subsequent optimization revealed that an ammonium citrate concentration of 6 g/L was
optimal (Figure 1J).
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Figure 1. Optimization of 4′-N-demethyl-vicenistatin production by S. parvus SCSIO Mla-L010/∆vicG
using the OFAT approach. (A) Effect of readily metabolized carbons, (B) Effect of various sustained-
release carbons, (C) Effect of organic nitrogens, (D) Effect of inorganic salts, (E) Effect of inorganic
nitrogens, (F) Effect of glycerol concentration, (G) Effect of cassava starch concentration, (H) Effect of
soybean meal concentration, (I) Effect of FeSO4·7H2O concentration, (J) Effect of ammonium citrate
concentration, and (K) Effect of seawater salt. The different lowercase letters on the bars indicate
statistically significant differences (p < 0.05).
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2.2. Searching for the Most Significant Medium Components by Plackett–Burman Design (PBD)

After conducting a thorough screening and optimization of the medium compositions
using the OFAT approach, PBD was employed to identify the key medium components
significantly influencing the production of 4′-N-demethyl-vicenistatin. Three concentration
levels (−1, 0, and 1) for six factors (cassava starch, glycerol, soybean meal, ammonium
citrate, FeSO4·7H2O, and seawater salt) were used in this study, which produced a total of
fifteen experimental runs (Table 1). Based on these data, the first-order model equation for
the prediction of 4′-N-demethyl-vicenistatin production was obtained and is given below
as follows:

Y = 0.09062 + 0.02675 X1 + 0.02587 X2 + 0.00146 X3 + 0.00603 X4−
0.00664 X5 − 0.01598 X6 − 0.0001 CT PT ,

(1)

where Y is the predicted 4′-N-demethyl-vicenistatin concentration; and X1, X2, X3, X4, X5,
and X6 are the concentrations of cassava starch, glycerol, soybean meal, ammonium citrate,
FeSO4·7H2O, and seawater salt, respectively.

Table 1. Plackett–Burman experimental design, response values, and ANOVA.

Run

X1 X2 X3 X4 X5 X6 Y

Cassava
Starch Glycerol Soybean

Meal
Ammonium

Citrate FeSO4·7H2O Seawater
Salt

4′-N-Demethyl-
Vicenistatin

(g/L) (g/L) (g/L) (g/L) (mg/L) (g/L) (g/L)

1 6(−1) 10(−1) 2.5(−1) 7.5(+1) 60(+1) 36(+1) 0.1070 ± 0.0039
2 10(+1) 20(+1) 7.5(+1) 4.5(−1) 60(+1) 36(+1) 0.1061 ± 0.0684
3 10(+1) 10(−1) 7.5(+1) 4.5(−1) 30(−1) 24(−1) 0.1099 ± 0.0214
4 10(+1) 10(−1) 7.5(+1) 7.5(+1) 30(−1) 36(+1) 0.1042 ± 0.0203
5 6(−1) 20(+1) 7.5(+1) 4.5(−1) 60(+1) 24(−1) 0.1173 ± 0.0575
6 10(+1) 20(+1) 2.5(−1) 7.5(+1) 30(−1) 24(−1) 0.1609 ± 0.0195
7 8(0) 15(0) 5(0) 6(0) 40(0) 30(0) 0.0832 ± 0.0211
8 6(−1) 10(−1) 2.5(−1) 4.5(−1) 30(−1) 24(−1) 0.0606 ± 0.0066
9 10(+1) 10(−1) 2.5(−1) 4.5(−1) 60(+1) 36(+1) 0.0564 ± 0.0075

10 8(0) 15(0) 5(0) 6(0) 40(0) 30(0) 0.0922 ± 0.0162
11 6(−1) 20(+1) 2.5(−1) 4.5(−1) 30(−1) 36(+1) 0.0571 ± 0.0060
12 6(−1) 10(−1) 7.5(+1) 7.5(+1) 60(+1) 24(−1) 0.0241 ± 0.0008
13 6(−1) 20(+1) 7.5(+1) 7.5(+1) 30(−1) 36(+1) 0.0908 ± 0.0251
14 8(0) 15(0) 5(0) 6(0) 40(0) 30(0) 0.0960 ± 0.0213
15 10(+1) 20(+1) 2.5(−1) 7.5(+1) 60(+1) 24(−1) 0.1667 ± 0.0139

Model
Adj SS 0.008588 0.008028 0.000026 0.000436 0.000529 0.003064 0.020671
Adj MS 0.008588 0.008028 0.000026 0.000436 0.000529 0.003064 0.002953
F-Value 23.49 21.96 0.07 1.19 1.45 8.38 8.08
p-Value 0.002 0.002 0.799 0.311 0.268 0.023 0.007

The analysis of variance (ANOVA) indicated that the model was statistically significant
(p = 0.007) (Table 1). Among the six factors, cassava starch and glycerol were extremely
significant (p < 0.01), seawater salt was significant (p < 0.05), and soybean meal, ammonium
citrate, and FeSO4·7H2O were not significant (p > 0.05).

The steepest ascent design (SAD) was used to search for the highest response rates
by increasing the concentrations of cassava starch and glycerol (positive coefficient), while
decreasing the concentration of seawater salt (negative coefficient) (Table 2). As a result, the
highest 4′-N-demethyl-vicenistatin concentration was obtained at 11 g/L cassava starch,
18 g/L glycerol, and 27.5 g/L seawater salt. To sum up, cassava starch, glycerol, and
seawater salt were identified as the most significant medium components affecting 4′-N-
demethyl-vicenistatin production, and this point (11 g/L cassava starch, 18 g/L glycerol,
and 28 g/L seawater salt) was selected for further optimization.
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Table 2. Steepest ascent experiment design and response values.

Run
Cassava Starch Glycerol Seawater Salt 4′-N-Demethyl-

Vicenistatin

(g/L) (g/L) (g/L) (g/L)

Step size +3 +3 −2.5
1 8 15 30 0.1070 ± 0.0037
2 11 18 27.5 0.1399 ± 0.0036
3 14 21 25 0.0159 ± 0.0007
4 17 24 22.5 0.0022 ± 0.0003
5 20 27 20 0.0013 ± 0.0007

2.3. Modeling and Optimization of Medium Compositions by Response Surface
Methodology (RSM)

Based on the results of PBD and SAD, the optimal proportion of the medium com-
ponents were further optimized by RSM using three-factor, five-level central composite
design (CCD) (Table 3). Based on the data of 20 experimental runs, the multivariate non-
linear regression equation associated with the production prediction model is presented
as follows:

Y = 0.13993 − 0.00748X1 + 0.00811X2 + 0.00630X3 − 0.02123X2
1−

0.05481X2
2 + 0.00848X2

3 − 0.02940X1X2 + 0.01521X1X3 − 0.02487X2X3,
(2)

where Y is the predicted 4′-N-demethyl-vicenistatin concentration; and X1, X2, and X3 are
concentrations of cassava starch, glycerol, and seawater salt, respectively.

Table 3. Central composite design with experimental data and predicted data by RSM.

Run

X1 X2 X3 Y

Cassava Starch Glycerol Seawater Salt 4′-N-Demethyl-Vicenistatin

(g/L) (g/L) (g/L) (g/L)

1 11(0) 9(−1.5) 28(0) 0.0157 ± 0.0049
2 5(−1) 24(+1) 34(+1) 0.0896 ± 0.0414
3 5(−1) 12(−1) 22(−1) 0.0266 ± 0.0098
4 5(−1) 12(−1) 34(+1) 0.0539 ± 0.0100
5 5(−1) 24(+1) 22(−1) 0.1566 ± 0.0275
6 17(+1) 12(−1) 22(−1) 0.0330 ± 0.0075
7 11(0) 18(0) 28(0) 0.1323 ± 0.0274
8 11(0) 18(0) 28(0) 0.1424 ± 0.0380
9 11(0) 18(0) 19(−1.5) 0.1476 ± 0.1049

10 11(0) 18(0) 28(0) 0.1443 ± 0.0048
11 11(0) 18(0) 37(+1.5) 0.1719 ± 0.0388
12 2(−1.5) 18(0) 28(0) 0.0982 ± 0.0011
13 17(+1) 24(+1) 34(+1) 0.0392 ± 0.0028
14 11(0) 18(0) 28(0) 0.1453 ± 0.0061
15 17(+1) 12(−1) 34(+1) 0.1263 ± 0.0066
16 17(+1) 24(+1) 22(−1) 0.0505 ± 0.0596
17 11(0) 27(+1.5) 28(0) 0.0191 ± 0.0008
18 20(+1.5) 18(0) 28(0) 0.0877 ± 0.0090
19 11(0) 18(0) 28(0) 0.1372 ± 0.0037
20 11(0) 18(0) 28(0) 0.1370 ± 0.0179

The adequacy and fitness of this model were statistically analyzed using ANOVA, as
shown in Table 4. In general, it has a low p-value (0.183 × 10−7) and high F-value (93.65).
In addition, the p-value and F-value of the “lack-of-fit” were 0.083 and 3.85, respectively,
demonstrating that this model was statistically significant and could explain the responses
accurately. The high R2 of 0.9883 and Adj R2 of 0.9777 indicated that it was reliable to use
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this model to predict the 4′-N-demethyl-vicenistatin production. Moreover, the p-values
for the linear, squared, and interaction terms were less than 0.05, indicating that they all
had a significant influence on 4′-N-demethyl-vicenistatin production.

Table 4. ANOVA for the RSM model.

Source DF Adj SS Adj MS F-Value p-Value

Model 9 0.052301 0.005811 93.65 0.183 × 10−7

X1 1 0.000699 0.000699 11.26 0.007
X2 1 0.000822 0.000822 13.25 0.005
X3 1 0.000496 0.000496 7.99 0.018
X12 1 0.004644 0.004644 74.84 0.590 × 10−5

X22 1 0.030963 0.030963 498.96 0.727 × 10−9

X32 1 0.000741 0.000741 11.94 0.006
X1 × X2 1 0.006916 0.006916 111.45 0.965 × 10−6

X1 × X3 1 0.001852 0.001852 29.84 0.276 × 10−3

X2 × X3 1 0.004950 0.004950 79.76 0.443 × 10−5

Error 10 0.000621 0.000062
Lack-of-Fit 5 0.000493 0.000099 3.85 0.083
Pure Error 5 0.000128 0.000026

Total 19 0.052922

R2 = 0.9883 Adj R2 = 0.9777 RMSE = 0.0056

Based on the RSM analysis, 3D surface plots were produced to visualize the interactive
effects among the experimental variables (Figure 2). As shown in Figure 2A, 4′-N-demethyl-
vicenistatin production increased with an increasing concentration of cassava starch and
glycerol until the central level (0), when the concentration of seawater salt was fixed. The
lowest concentration values were observed at high or low cassava starch and glycerol
combinations. Figure 2B shows the interaction of cassava starch and seawater salt on
4′-N-demethyl-vicenistatin production, when the concentration of glycerol was fixed. The
highest concentration was observed at a high concentration of seawater salt and a moderate
concentration of cassava starch, with the lowest concentration being observed on the high
cassava starch and low seawater salt combinations. It can be seen from Figure 2C that a
high concentration of 4′-N-demethyl-vicenistatin was obtained at a central-level glycerol
concentration and a high/low-level seawater salt concentration. In summary, the order
of significance of these three variables on 4′-N-demethyl-vicenistatin production was as
follows: glycerol > cassava starch > seawater salt (Table 4). The model predicted that the
highest 4′-N-demethyl-vicenistatin concentration (0.1848 g/L) would be obtained when
the medium contained 4 g/L cassava starch, 22 g/L glycerol, and 19 g/L seawater salt.
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2.4. Modeling and Optimization of Medium Compositions by
Artificial-Neural-Network-Genetic-Algorithm (ANN-GA)

The backpropagation (BP) learning algorithm is a commonly employed method for
training artificial neural networks (ANNs) and is frequently utilized as a statistical data
modeling tool in the optimization process of fermentation [16,37]. In this study, the widely
adopted technique of k-fold cross-validation was implemented to address the small sample
sizes during the training process of ANNs (Figure 3A) [38]. Additionally, the GA model is
commonly employed as an optimization tool for identifying optimal conditions, utilizing
the trained ANN as the fitness function [39,40].
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Typically, prior to training an ANN model, the optimal number of neurons in the
hidden layer, training algorithm, and activation function are first determined based on
minimizing the MSE [16,41,42]. In terms of neurons in the hidden layer, as shown in
Table 5, the MSE value fluctuated in the range of 0.2588 to 0.3331 when increasing the
number of neurons from 3 to 12. The optimal architecture of six neurons was selected due
to its lowest MSE value (0.2588). Therefore, 3-6-1 topology was finally chosen to estimate
4′-N-demethyl-vicenistatin production. The selection of appropriate transfer functions and
backpropagation training algorithm is an essential step in the design of ANN. To determine
the optimum combination of transfer functions for hidden and output layers, the compari-
son of six different combinations was performed, with the training algorithm chosen as
‘traingd.’ The results showed that the combination of logsig and purelin yielded the lowest
MSE value of 0.2177 (Table 5). Then, 11 different backpropagation training algorithms (as
shown in Table 5) were tested to search for an applicable training algorithm for the accurate
prediction of 4′-N-demethyl-vicenistatin production. The optimum training algorithm of
trainlm was selected because it obtained the minimum MSE value of 0.2453. The finalized
ANN architecture (3-6-1) containing transfer functions and the backpropagation training
algorithm for the prediction of 4′-N-demethyl-vicenistatin production is summarized in
Figure 3B.

To construct the ANN model successfully, a complete set of data from CCD was
divided into a training set (14), testing set (3), and validation set (3). Figure 4A clearly
shows the performance evaluation results of the ANN model during the training, testing,
and validation. The developed ANN achieved the best validation performance at three
epochs, with an MSE value of 0.0139. The training was stopped at five epochs, since the
validation error did not decrease continuously for five epochs. Figure 4B displays the
distribution of the fitting error of the training data. The fitting errors on most of the training
data were quite close to zero and spread over a reasonable range. Figure 4C shows that
good R values were obtained for training (0.999), validation (0.995), test (0.999), and all
combined (0.996), respectively, suggesting an excellent correlation between the actual and
predicted values.
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Table 5. Optimization of the number of neurons, transfer functions, and backpropagation training
algorithm for the ANN model.

Parameters MSE

Number of neurons

3 0.3331
4 0.3181
5 0.3138
6 0.2588
7 0.2733
8 0.2833
9 0.2789
10 0.2812
11 0.3034
12 0.2868

Transfer functions

logsig + purelin 0.2177
tansig + purelin 0.2539
logsig + tansig 0.2202
tansig + logsig 0.3618
tansig + tansig 0.2703
logsig + logsig 0.3234

Backpropagation training algorithm

trainbr 0.4448
traincgb 0.3799
traincgf 0.3392
traincgp 0.3746
traingd 0.4474

Backpropagation training algorithm

traingda 0.4341
traingdm 0.5184
traingdx 0.5052
trainlm 0.2453
trainrp 0.3207
trainscg 0.3811
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Finally, GA was performed to give an optimized solution in a region of the parameter
space with the trained ANN model as the fitness function [43]. As shown in Figure 4D,
the maximal 4′-N-demethyl-vicenistatin production of 0.1885 g/L was achieved at the
following medium compositions: 12 g/L cassava starch, 17 g/L glycerol, and 34 g/L
seawater salt.

2.5. Comparison and Assessment of RSM and ANN-GA Models

The comparison and evaluation of ANN-GA and RSM were conducted based on the
models’ error, R2, MSE, RMSE, and APD values, as well as the radar map and parity plot.
First, in comparison to the RSM model, the ANN-GA model exhibits superior predictive
and extrapolative capabilities, as evidenced by its lower error value (ANN-GA: 1.90% vs.
RSM: 11.40%), lower APD value (ANN-GA: 5.88 vs. RSM: 10.58), and lower RMSE value
(ANN-GA: 0.0051 vs. RSM: 0.0056) (Table 6). In addition, the statistical evaluation of the
model’s predictive values for 4′-N-demethyl-vicenistatin production is visually depicted
using a radar map (Figure 5A) and parity plot (Figure 5B), based on the predicated data
from two models utilizing 20 sets of experimental operating conditions, as listed in the
CCD design. The results depicted in Figure 5 demonstrate a high level of coincidence and
accuracy between both of the models with the experimental data. However, the ANN-GA
model exhibited a superior predictive performance compared to the RSM model in this
study, as evidenced by its higher R2 value (ANN-GA: 0.9962 vs. RSM: 0.9883) and lower
MSE value (ANN-GA: 2.62 × 10−5 vs. RSM: 3.11 × 10−5) (Table 6). In the end, the RSM
and ANN-GA models were finally experimentally verified for 4′-N-demethyl-vicenistatin
production (Table 6). In regard to the RSM model, 0.1637 g/L 4′-N-demethyl-vicenistatin
was reached using the optimized fermentation medium containing 4 g/L cassava starch,
22 g/L glycerol, and 19 g/L seawater salt, which was significantly inferior to the predicted
value of 0.1848 g/L. In contrast, the experimental 4′-N-demethyl-vicenistatin concentration
was 0.1921 g/L in the ANN-GA-optimized medium consisting of 12 g/L cassava starch,
17 g/L glycerol, and 34 g/L seawater salt, which was comparable to the predicted value of
0.1885 g/L. It should be noted that the 4′-N-demethyl-vicenistatin concentration obtained
by using the ANN-GA-optimized medium was 17% and 283% higher than those achieved
using the RSM-optimized medium and the initial medium, respectively. Although the
RSM model has been widely employed for process parameter optimization, its application
has been limited due to its ability to only construct a second-order polynomial regression
model. In contrast, the ANN-GA model possesses the capability to predict almost all forms
of nonlinearity [44]. Therefore, all of these results indicated that the ANN-GA model had a
better optimization and prediction capability than the RSM model.

Table 6. Comparison of medium compositions and prediction capability between RSM and ANN-GA.

Model

Process Parameter Statistical Values 4′-N-Demethyl-
Vicenistatin (g/L)

Cassava
Starch Glycerol Seawater

Salt Error R2 MSE RSME APD Experimental
Data

Predicted
Data

(g/L) (g/L) (g/L)
AM3 15 15 30 - - - - - 0.0502 ± 0.0041 -
RSM 4 22 19 11.4% 0.9883 3.11 × 10−5 0.0056 10.58 0.1637 ± 0.0036 0.1848

ANN-GA 12 17 34 1.9% 0.9962 2.62 × 10−5 0.0051 5.88 0.1921 ± 0.0052 0.1885
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3. Discussion

The optimized medium formulation (12 g/L cassava starch, 17 g/L glycerol, 34 g/L
seawater salt, 7.5 g/L soybean meal, 7.5 g/L ammonium citrate, 30 mg/L FeSO4·7H2O,
2 g/L calcium carbonate) achieved through the implementation of OFAT, CCD, and ANN-
GA in this study resulted in a remarkable 38-fold increase in yield compared to the previ-
ously reported value of approximately 5 mg/L [11]. Moreover, 4′-N-demethyl-vicenistatin
exhibited excellent antibacterial activity and displayed promising potential for patenting
purposes [11]. Consequently, this enhanced production can serve as a solid foundation for
subsequent derivatization experiments and other research and development endeavors.

The focus of this discussion will be on the following two key aspects: the optimization
strategy for medium formulation and the selection of research methods.

The first aspect pertains to the optimization of the medium formulation strategy. This
study revealed that the composition and proportion of carbon sources (glycerol and cassava
starch), in conjunction with seawater salt concentration, exerted a significant influence on
secondary metabolite production (4′-N-demethyl-vicenistatin) by S. parvus SCSIO Mla-
L010/∆vicG. The p-values of glycerol, cassava starch, and seawater salt in Table 1 were all
found to be less than 0.05, indicating the significant impact of their concentration changes
on the production of 4′-N-demethyl-vicenistatin. In comparison to the formula (15 g/L
glycerol, 15 g/L soluble starch, 30 g/L seawater salt) utilized in the AM3 medium, the opti-
mized formula (17 g/L glycerol, 12 g/L cassava starch, 34 g/L seawater salt) predicted by
the ANN-GA model resulted in an increased yield, from 0.0502 g/L to 0.1921 g/L (Table 6).
The composition and concentration of the medium can exert a significant influence on
microbial fermentation production [45–47]. This is particularly applicable to microbial sec-
ondary metabolic processes, where the composition and concentration of the carbon sources
in the medium can significantly impact the fermentation of secondary metabolites, such as
pigment fermentation and antibiotic production [48–50]. The choice of carbon source can
exert a significant influence on the biosynthesis of specific secondary metabolites, owing to
its capacity to inhibit gene expression and repress enzyme activity [51]. For example, the
production of cephamycin C, a β-lactam antibiotic synthesized by Streptomyces clavuligerus,
encounters challenges in the presence of glycerol, due to its suppressive impact on the
activity of cephamycin C synthetase and expandase enzymes [52]. Glucose exerts a sup-
pressive effect on afsR2 mRNA synthesis, encoding a global regulatory protein responsible
for facilitating secondary metabolite biosynthesis in Streptomyces lividans, thereby resulting
in the inhibition of actinorhodin (a polyketide) production [53]. While glycerol enhances
cellular growth and internal ATP levels, it hinders the synthesis of spiramycin. Spiramycin,
a potent macrolide antibiotic derived from Streptomyces ambofaciens, is commonly prescribed
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for the treatment of toxoplasmosis. The presence of glucose and glycerol adversely impacts
the production of spiramycin [54]. Therefore, in order to exert better control over the
concentration and type of carbon source, numerous researchers opt for feeding carbon into
the fed-batch fermentation process. For example, the enhanced production of secondary
metabolites in Inonotus obliquus, a traditional medicinal fungus utilized for cancer and
other ailments, by 65% is conducted employing a glucose-fed batch dissolved oxygen (DO)
control strategy. This approach entails supplementation with 10 g/L glucose upon reaching
a residual sugar concentration of 10 g/L while maintaining the DO level at 50% [55]. The
production of alkaline amylase in B. subtilis 168 mut-16# strain was significantly enhanced
to 591.4 U/mL by optimizing the agitation speed and supplementing with hydrolyzed
starch during the 10th hour of fermentation [56]. The Streptomyces graminearus F3-4 strain
was employed in a fed-batch fermentation process, resulting in the production of epsilon-PL
reaching a maximum concentration of 13.5 g/L. This remarkable production was achieved
by increasing the initial glucose concentration from 50 to 85 g/L. To maintain optimal
conditions, the supplementary mixture was manually introduced into the broth when the
glucose concentration dropped to 0.5%, ensuring its final concentration reached 1.5% [57].

Additionally, employing a diverse range of carbon sources in the culture medium
is a judicious approach. This strategy entails harnessing both readily metabolized car-
bon sources (monosaccharides) and sustained-release carbon sources (polysaccharides).
By capitalizing on Streptomyces’ capacity to hydrolyze polysaccharides such as amylase,
the microorganisms can initially utilize easily accessible carbon sources for growth and
subsequently synthesize their own hydrolases to metabolize and utilize complex polysac-
charides. As presented in Table 6, the RSM model formulation incorporates a concentration
of 22 g/L of readily metabolized carbon sources (glycerol) and 4 g/L of sustained-release
carbon sources (cassava starch), whereas the ANN-GA model formulation comprises
12 g/L of readily metabolized carbon sources (glycerol) and 17 g/L of sustained-release
carbon sources (cassava starch). By optimizing the concentration and composition of car-
bon sources, the production of the ANN-GA model exhibited a significant increase from
0.1637 g/L (RSM model) to 0.1921 g/L (ANN-GA model). In the absence of feeding extra
carbons, the microorganisms autonomously regulate the concentration and composition of
sugars in the culture medium, thereby circumventing some of the potential impact on the
secondary metabolism induced by carbon sources [58–60]. For example, the production of
cold-adapted beta amylase from Streptomyces was enhanced by Cotârlet et al. through the
utilization of a medium formulation comprising glycerol and starch, with an optimized
ratio [61,62]. Smaoui [63], Al-Ansari [64], and Ni [65] et al. opted for a medium formulation
comprising glucose and starch and meticulously optimized the proportions of these con-
stituents to enhance the yields. However, different Streptomyces species may exhibit diverse
metabolic mechanisms for utilizing multiple carbon sources. For instance, Streptomyces
albulus M-Z18 demonstrates the ability to efficiently utilize both glucose and glycerol in a
manner unaffected by the presence of glucose. Zeng et al. successfully enhanced ε-poly-L-
lysine productivity from S.albulus M-Z18 by supplementing the growth medium with a
combination of glucose and glycerol [66]. Additionally, glycerol exerts a beneficial effect
on the biosynthesis of antibacterial compounds in certain strains of Streptomyces [67,68].
In conclusion, there exists a scientific foundation for S. parvus SCSIO Mla-L010/∆vicG
to achieve enhanced production through the utilization of a medium with an optimized
ratio of glycerol to starch. However, further investigations into the carbon metabolism and
polyketide synthase (PKS) mechanisms of S. parvus SCSIO Mla-L010/∆vicG are imperative
for production improvement.

The strategy used to enhance the yield by manipulating the seawater salt concentration
is predicated on the principle that microorganisms maintain equilibrium between internal
and external osmotic pressures through endogenous synthesis, environmental absorption,
and other mechanisms for counteracting external osmotic pressure [69,70]. In particular,
marine microorganisms, such as Streptomyces, isolated from the sea often exhibit significant
alterations in their secondary metabolism due to variations in seawater salt concentration.
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For instance, Sanjivkumar, Selvaraj, and Manivasagan et al., respectively, optimized the
sea salt proportion in the medium to enhance the production of chitinase in Streptomyces
olivaceus MSU3 [71], antibiotics in Streptomyces sp. CMSTAAHAL-3 [72], and α-amylase in
Streptomyces sp. MBRC-82 [73]. In this study, S. parvus SCSIO Mla-L010/∆vicG exhibited
a remarkable tolerance to high osmotic pressure (twice that of the NaCl concentration in
seawater) and demonstrated the production of 4′-N-demethyl-vicenistatin. However, the
synthesis pathway of 4′-N-demethyl-vicenistatin was found to be obstructed under high
osmotic pressure. Surprisingly, through harnessing the synergistic interaction between the
sea salt and the carbon source in the medium, augmenting the sea salt concentration by
4 g/L significantly amplified its production.

The second aspect pertains to the selection of research methods. In this study, the
ANN-GA model demonstrated a superior performance over the RSM model in optimizing
the production of 4′-N-demethyl-vicenistatin by S. parvus SCSIO Mla-L010/∆vicG, both
in terms of example verification and overall model performance. It has been widely ac-
knowledged that researchers in the field of microbial fermentation optimization commonly
employ conventional statistical methods, including the OFAT approach [74], orthogonal
experiments [75], PBD [76–78], and RSM [14,79,80], for optimization purposes. For instance,
the RSM, whether it is the Box–Behnken design (BBD) or CCD, is generally applicable when
there are no more than four experimental factors. Consequently, by designing a lesser num-
ber of experimental groups, one can effectively explore the influence of factor interactions
on the response value while employing multivariate quadratic polynomials to represent the
constructed model [81]. However, the limitations of simple binary equations for accurately
elucidating the intricate mechanisms involved in microbial fermentation necessitate the
utilization of ANN, which possess the capability to construct more sophisticated models
and generally outperform RSM when confronted with such challenges [39,82–85].

The ANN is a computational model composed of interconnected nodes, also known
as neurons, wherein each node represents an activation function that determines a specific
output. The interconnections between the nodes are represented by weighted values called
weights, which serve as the memory component of the ANN. Consequently, the network’s
output is contingent upon these connections, weight values, and activation functions [86].
The ANN model has the following advantages: Firstly, it possesses the capability of au-
tonomous learning. The autonomous learning function is particularly crucial for prediction.
It is anticipated that ANN will offer extensive economic forecasts, market predictions,
and benefit projections, thereby rendering its application prospects highly promising. Sec-
ondly, ANN exhibits an associative storage function, which can be achieved through its
own feedback networks. Thirdly, it demonstrates high-speed computational abilities to
rapidly identify optimal solutions. Solving complex problems often necessitates extensive
calculations; however, by employing a specific feedback artificial neural network, optimal
solutions can be swiftly obtained [87]. Thanks to the development of AI technologies, the
rise of ChatGPT, and the advent of Python, non-computer domain researchers now have
the opportunity to use ANN to solve problems more conveniently. Furthermore, artificial
neural networks (ANN) exhibit exceptional performance in some specific domains, such
as the modeling of drinking water quality [88], thermal analysis [89], the design of model
predictive control system [90], pattern recognition [91], and photovoltaic fault detection
and diagnosis [92], among others. This also encompasses applications in biology [93–95].

The application of ANN in biological fields, particularly when combined with RSM,
has demonstrated remarkable outcomes, even with a limited number of samples. However,
caution should be exercised due to the potential risk of inaccurate fitting arising from
the constrained sample size. Consequently, to enhance the generalization capability of
ANN models, some researchers opt for incorporating k-fold cross-validation during the
training process [96,97]. Additionally, the training process of an ANN model necessitates
the meticulous configuration of numerous parameters. Inadequate parameter settings can
lead to either overfitting or underfitting, thereby compromising the model’s predictive
capacity. Relevant experiments for determining these parameters are typically devised
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by researchers either employing OFAT designs or establishing parameter values based on
their own expertise [98,99]. In recent years, researchers have increasingly employed GA,
particle swarm optimization (PSO), artificial bee colony (ABC), and the backtracking search
algorithm (BSA), in conjunction with ANN models, to enhance the efficiency of optimizing
training parameters for ANN models, enabling them to address progressively intricate
problems more effectively [100].

In this study, after employing k-fold cross-validation and OFAT to optimize the training
parameters, an ANN model (3-6-1) was ultimately utilized to investigate the impact of
variations in cassava starch, glycerol, and seawater salt concentrations on 4′-N-demethyl-
vicenistatin production. Based on the knowledge obtained here, it can be understood that
this ANN computational model encompasses 21 functions with diverse weights, facilitating
the more precise prediction of outcomes compared to the ternary quadratic polynomial of
the RSM model. Therefore, as illustrated in Table 6, the ANN model exhibits a superior
performance compared to the RSM model, as evidenced by its lower error value (ANN-GA:
1.90% vs. RSM: 11.40%), reduced APD value (ANN-GA: 5.88 vs. RSM: 10.58), and decreased
RMSE value (ANN-GA: 0.0051 vs. RSM: 0.0056). Furthermore, as depicted in Figure 5,
the experimental results align more closely with those expected from the ANN-GA model
during validation.

The utilization of RSM-ANN in optimizing the medium formulation may consequently
yield superior outcomes compared to those achieved solely through RSM.

4. Materials and Methods
4.1. Bacterial Materials, Culture Medium, and Fermentation Conditions

S. parvus SCSIO Mla-L010/∆vicG, a N-methyltransferase knock-out mutant of S. parvus
SCSIO Mla-L010, which can secrete 4′-N-demethyl-vicenistatin, was used in this study [11].
It was maintained on an agar plate (1% soybean meal, 1% crushed soybean, 2% mannitol,
2.5% agar) and stored at 4 ◦C.

S. parvus SCSIO Mla-L010/∆vicG was first grown on an agar plate at 30 ◦C for sporu-
lation and the spore was inoculated into 250 mL a shake flask containing 50 mL seed
medium (3% TSB medium, 0.5% yeast extract, 10% sucrose) at 200 rpm and 28 ◦C for
36 h. Subsequently, 5 mL of the seed medium was inoculated into a new 250 mL shake
flask containing 50 mL fermentation medium at 200 rpm and 28 ◦C for 7 days. The AM3
medium, which contained 1.5% glycerol, 1.5% soluble starch, 1.5% bacterial peptone, 0.5%
soybean meal, 3% seawater salt, and 0.2% calcium carbonate, was selected as the initial
medium [101].

4.2. Medium Optimization for Efficient 4′-N-Demethyl-Vicenistatin Production
4.2.1. Screening and Optimizing the Medium Compositions by
One-Factor-at-a-Time (OFAT)

OFAT was applied to screen the optimum medium compositions for 4′-N-demethyl-
vicenistatin production, with AM3 medium as the initial medium. Glucose, mannose, fruc-
tose, xylose, and glycerol (at 15 g/L) were investigated as the readily metabolized carbon
sources. Soluble starch, lactose, maltose, cassava starch, and oat flour (at 15 g/L) were used
as the sustained-release carbon sources. Bacterial peptone, soybean meal, yeast extract, beef
extract, and a mixture of bacterial peptone and soybean meal (at 20 g/L) were selected as the
organic nitrogen sources. NH4Cl, (NH4)2SO4, ammonium acetate, and ammonium citrate
(at 3 g/L) were chosen as the inorganic nitrogen sources. Na2MoO4·2H2O, MgSO4·7H2O,
FeSO4·7H2O, and CoSO4·7H2O (at 80 mg/L) were investigated as the inorganic salts. After
the compositions of the medium were determined, the optimum concentrations of glycerol
(4, 8, 15, 30, and 60 g/L), cassava starch (4, 8, 15, 30, and 60 g/L), ammonium citrate (1.5, 3,
6, 12, and 24 g/L), FeSO4·7H2O (20, 40, 80, 160, and 240 mg/L), and soybean meal (5, 10,
20, 40, and 60 g/L) were optimized. The 4′-N-demethyl-vicenistatin concentration at 7 d
was used as the response.
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4.2.2. Searching for the Significant Medium Components by Plackett–Burman
Design (PBD)

PBD was utilized for searching for the most significant medium components influenc-
ing 4′-N-demethyl-vicenistatin production by S. parvus SCSIO Mla-L010/∆vicG. A total of
six medium components, determined previously using OFAT, were investigated as factors
(X), and the average value of the 4′-N-demethyl-vicenistatin concentration was considered
as the response (Y). All of the factors were applied to design the PBD experiments with
characteristics of the 3-level factorial designs (−1, 0, and +1), as shown in Table 1.

To screen the suitable concentrations of the main influencing factors (cassava starch,
glycerol, and seawater salt), steepest ascent design (Table 2) was used based on the re-
gression equation (first-order model, Equation (3)) obtained from the results of the PBD.
More specifically, if the constant coefficient of the factor is positive, its concentration should
increase, and vice versa.

Y = β0 + ∑k
i=1 βiXi, (3)

where Y is the 4′-N-demethyl-vicenistatin concentration, β0 and βi are coefficients, and Xi
represents the factors.

4.2.3. Modeling and Optimization of the Medium Compositions by Response Surface
Methodology (RSM)

RSM was used to investigate the effects of and complicated relationship between the
significant medium components on 4′-N-demethyl-vicenistatin production. The central
composite design (CCD) with 20 experimental runs used in this study is shown in Table 3.
The second-order polynomial model (Equation (4)) was employed to fit the experimental
data using Minitab 2020.

Y = β0 + ∑k
i=1 βiXi + ∑k

i=1 βiiX2
i + ∑k

i=1 βijXiXj, (4)

where Y is the predicted 4′-N-demethyl-vicenistatin concentration, β0 is the intercept term,
βi is the linear coefficient, βii is the squared coefficient, βij is the interaction coefficient, and
Xi and Xj are factors.

4.2.4. Modeling and Optimization of the Medium Compositions by
Artificial-Neural-Network-Genetic-Algorithm (ANN-GA)

Alternatively, ANN was also adopted to fit the CCD experimental data because of
its powerful features in modeling complex nonlinear relationships. To further explore
information from the CCD experimental data and enhance the effect of the ANN training
process, k-fold cross-validation was applied. The k is commonly set to 10 for the small
sample dataset. In this way, all experimental samples were split into two datasets, as
follows: training dataset and testing dataset, with a ratio of 9:1. As shown in Figure 3A,
k-fold cross-validation starts by randomly splitting the data into k sets. For each set, one of
the folds is selected for validation, and the remaining k-1 folds are used for training.

In this study, a three-layered feed-forward neural network was used (Figure 3B). The
epochs, lr (learn rate), and goal were set at 500, 0.1, and 1 × 10−6, respectively. The optimum
number of neurons in the hidden layer, training algorithm, and activation function were
determined by the minimum MSE (mean squared error) value (Table 5). MATLAB R2020a
software was utilized to establish and optimize the model. The genetic algorithm (GA)
parameters used in the optimization process were defined as follows: population size of
50, mutation probability of 0.1, crossover probability of 0.8, and iteration times of 500.
Furthermore, the trained ANN model was used as the fitness function for GA.

4.3. Analytical Method

To obtain the target product (4′-N-demethyl-vicenistatin), 200 µL harvested fermenta-
tion broth was extracted with 800 µL EtOAc (ethyl acetate) by mixing for 20 s. Then, the
samples were pretreated with an ultrasonic wave for 10 min and mixed for 20 s, followed
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by centrifugation at 12,000 rpm for 1 min and concentration with a vacuum centrifugal
concentrator. Finally, the concentration of 4′-N-demethyl-vicenistatin was determined by
HPLC (Shimadzu Prominence LC-20A, JP) using an C18 column (5 µm, 4.6 mm × 150 mm,
ZORBAX 300SB, Agilent) with a UV detector at 254 nm. The gradient elution procedure
was as follows: 0–20 min, 5–80% (v/v) B; 20–21.5 min, 80–100% B; 21.5–27.0 min, 100% B,
27.0–27.5 min, 100–5% B, 27.5–30 min, 5% B. The mobile phase consisted of 0.1% trifluo-
roacetic acid–water (A) and 0.1% trifluoroacetic acid–acetonitrile (B). All of the experiments
were performed three times.

The ANOVA method was utilized to examine the significance of each independent
variable. The performance of the RSM and ANN-GA models was compared based on
various metrics, including error (Equation (5)), determination coefficient (R2) (Equation (6)),
MSE (Equation (7)), root mean square error (RMSE) (Equation (8)), and average percentage
deviation (APD) (Equation (9)) [39].

error =

∣∣ye − yp
∣∣

yp
, (5)

R2 =

[
1 − ∑m

n=1
(
yen − ypn

)2

∑m
n=1

(
ypn − ye,ave

)2

]
, (6)

MSE =
∑m

n=1
(
yen − ypn

)2

m
, (7)

RMSE =

√
∑m

n=1
(
yen − ypn

)2

m
, (8)

APD =
100 × ∑m

n=1

(∣∣∣ yen−ypn
yen

∣∣∣)
m

, (9)

where yp and ypi represent the predicted 4′-N-demethyl-vicenistatin concentration; ye and
yei denote the experimental concentration of 4′-N-demethyl-vicenistatin; ye, ave represents
the average value of the experimental concentration of 4′-N-demethyl-vicenistatin; and
n = 1, 2, 3. . .. . .m, with m being the number of runs in the dataset.

5. Conclusions

In this study, six components in the fermentation medium of S. parvus SCSIO Mla-
L010/∆vicG were first screened by OFAT, and the significant medium components and
their concentrations (11 g/L cassava starch, 18 g/L glycerol, and 27.5 g/L seawater salt)
were determined using PBD and SAD. To achieve the maximal 4′-N-demethyl-vicenistatin
production, ANN-GA (12 g/L cassava starch, 17 g/L glycerol, and 34 g/L seawater salt)
and RSM (4 g/L cassava starch, 22 g/L glycerol, and 19 g/L seawater salt) were employed
and thoroughly compared. The results have demonstrated that the ANN-GA model is a
more reliable tool for the optimization and accurate prediction of the fermentation medium
components for efficient 4′-N-demethyl-vicenistatin. Consequently, 0.1921 g/L 4′-N-demethyl-
vicenistatin was obtained using the ANN-GA-optimized medium, which increased by 17%
and 283% compared to the RSM-optimized and initial mediums, respectively.
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