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1. Yeast Biotechnology 6.0

This Special Issue continues the “Yeast Biotechnology” Special Issue series of the
MDPI journal Fermentation. This issue compiles the current state-of-the-art research
and technology around “yeast biotechnology”. This issue highlights prominent current
research directions in the fields of yeasts as a cell factory, yeast nanobiotechnology, wine
yeasts and wine fermentation, yeasts and food fermentation, and biocontainment for yeast
biotechnology. We very much hope that you enjoy reading the articles contained herein
and are looking forward to continuing this Special Issue series in the Topical Collection
“Yeast Biotechnology”.

2. Yeasts as Cell Factory

Park et al. [1] reviewed the role of CRISPR-Cas engineered nonconventional yeasts
(NCYs) as emerging microbial cell factories. Conventional widely used yeasts such as
Saccharomyces cerevisiae, which have been widely used as a microbial cell factory [2,3], have
some disadvantages. Product profiles are often restricted due to the Crabtree-positive
nature of S. cerevisiae, and ethanol production from lignocellulose is possibly enhanced
by developing alternative stress-resistant microbial platforms. Alternatively, NCYs may
be considered an alternative microbial platform for industrial fermentations since they
have desirable metabolic pathways and regulation, and they have a strong resistance to
diverse stress factors [4,5]. This review describes the current status of and recent advances
in promising NCYs in terms of industrial and biotechnological applications, highlighting
CRISPR-Cas9-system-based metabolic engineering strategies.

Noseda et al. [6] developed a cost-effective process for the heterologous production
of SARS-CoV-2 spike receptor binding domain using Pichia pastoris (Komagataella phaffii)
in a stirred-tank bioreactor. The spike protein of SARS-CoV-2 is one of the most exposed
proteins [7]. The receptor-binding domain (RBD), which is a fragment of the Spike protein,
interacts with the ACE2 receptors of human cells, allowing the entrance of viruses. The
RBD has been proposed to be an interesting protein for the development of diagnosis tools
and treatments for and the prevention of this disease [8]. A method for recombinant RBD
production using P. pastoris as a cell factory in a stirred-tank bioreactor was developed
by the cited authors. The proposed method represents a feasible, simple, scalable, and
inexpensive procedure for the production of RBD.

Carneiro et al. [9] reviewed advances in K. phaffii engineering for the production of
renewable chemicals and proteins. K. phaffii has been extensively used in the production
of heterologous proteins [10–12] and, recently, as a cell factory to produce various chem-
icals through new metabolic engineering and synthetic biology tools [13]. This review
summarizes Komagataella taxonomy, diversity, and recent approaches in cell engineering
to producing renewable chemicals and proteins. Finally, strategies for optimizing and
developing new fermentative processes using K. phaffii are discussed.
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3. Yeast Nanobiotechnology

Radonicic et al. [14] developed a rapid antifungal susceptibility testing (AFST) method
based on optical nanomotion detection (ONMD) and applied it to the opportunistic fun-
gal pathogen Candida albicans. In ONMD, an optical microscope is used to record the
nanometric-scale movements of living cells. These recorded cellular nanomotions cease
upon cell death, allowing the susceptibility of a cell or specific strain to be easily assessed.
Other cellular nanomotion methods have been developed, such as methods based on AFM-
cantilever sensors [15–17], plasmonic imaging of the z motion of attached bacteria [18],
sensing of the attached bacteria’s vibrations using the phase noise of a resonant crystal [19],
tracking the x-y motion of attached uropathogenic Escherichia coli [20], and subcellular
fluctuation imaging, which is based on total internal reflection microscopy (TIRM) [21], as
well as optically tracking bacterial responses on micropillar architectures using intrinsic
phase-shift spectroscopy [22]. The fast emergence of multi-resistant pathogenic Candida
species is caused by the extensive and sometimes unnecessary use of broad-spectrum
antifungals [23]. Hence, the development of rapid antifungal sensitivity tests would allow
for the identification and use of more-selective antifungals, thereby reducing the spread
of pathogenic fungi and their evolution toward a multi-resistant phenotype [24,25]. In
this study, a microfluidic chip containing an array of microwells that were designed to
trap yeast cells was developed. Yeast cell entrapment in a microwell allowed for a very
rapid exchange of growth medium with the antifungal, which enabled the performance of
single-cell ONMD measurements on the same cell before and after antifungal treatment.
The chip was used to quantify the real-time response of individual C. albicans cells to the
antifungal treatment in as fast as 10 min.

Villalba et al. [26] developed a new method for measuring the adhesion of the opportunis-
tic pathogenic yeast C. albicans since classical methods have some drawbacks; for example, the
corresponding measurement is relatively complex, requires sophisticated equipment, and, in
most cases, cannot be carried out without breaking the links between the studied cell and its
target [27–30]. The applied force in the new method is generated by the cell itself, whereas
cellular movements are detected via optical microscopy and developed dedicated software.
The authors demonstrated that the measurement was non-destructive and single-cell-sensitive
and permitted observation of the evolution of adhesion as a function of time. The new cel-
lular nanomotion-based technique was applied for different C. albicans strains adhering to a
fibronectin-coated surface. This novel approach could significantly simplify, accelerate, and
make more affordable living cell–substrate adhesion measurements.

Dekhtyar et al. [31] studied the possible influences of differently electrically charged
diamond nanoparticles [32,33] on the physiological characteristics of the yeast S. cerevisiae.
They revealed that the adverse impact of these nanoparticles can manifest not only against
prokaryotes but also against eukaryotic yeast cells. The results also indicated that it is
possible to reduce and, most likely, eliminate the dangerous effects of nanoparticles on
cells by using special physical approaches. A comparison of non-arylated and arylated
nanoparticles showed that in terms of changes in the physiological activity of cells, the
selection of certain nanoparticles (non-arylated or arylated) may be necessary in each
specific case, depending on the purpose of their use.

4. Wine Yeasts and Wine Fermentation

Akan et al. [34] explored the potential of NCYs in wine fermentation [35,36] with a
focus on Saccharomycopsis fermentans. Mutant strains resistant to the toxic compound triflu-
oroleucine (TFL) were selected, mutations in the SfLEU4 gene were verified, and the ability
of the resulting strains to contribute to fermentation bouquets was characterized. Resistance
to TFL relieved feedback inhibition in the leucine biosynthesis pathway and resulted in
increased leucine biosynthesis. The S. fermentans TFL-resistant mutants generated increased
amounts of isoamyl alcohol and isovalerate during wine fermentation. The selection of
TFL-resistant strains provided a generally applicable strategy for the improvement of NCYs
and their utilization in co-fermentation processes for different grape must varieties.
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Fernández-Fernández et al. [37] used immobilized yeasts to improve the production
of sparkling wines. Verdejo sparkling wines were elaborated according to the “cham-
penoise” method, and the second fermentation was developed with the same free or
alginate-immobilized [38–41] Saccharomyces cerevisiae bayanus yeast strain. These sparkling
wines showed no significant differences among the two typologies in terms of enological
parameters (pH, total acidity, volatile acidity, reducing sugars, and alcoholic strength),
effervescence, or spectrophotometric measurements. The free amino nitrogen content was
significantly higher in the sparkling wines obtained from immobilized yeasts; the levels
of neutral polysaccharides and total proteins were lower. No significant differences in the
volatile composition were found, except for only two volatile compounds (isobutyric acid
and benzyl alcohol) that were present at levels below their respective olfactory thresholds.
The sensory analysis conducted by consumers showed identical preferences for both types
of sparkling wines, except in terms of color acceptability. The descriptive analysis carried
out by a tasting panel revealed that sensorial differences between both sparkling wines
were only found regarding the smell of dough. The authors showed that using immobi-
lized yeasts for the second fermentation of sparkling wines can reduce and simplify some
enological practices such as riddling and disgorging, with no impact on quality parameters.

5. Yeasts and Food Fermentation

Bencresciuto et al. [42] evaluated starter cultures of lactic acid bacteria (Lactobacillus
plantarum strains) and killer yeasts (Wickerhamomyces anomalus and S. cerevisiae) for the
fermentation of table olives to debitter olives [43] and improve their organoleptic quality
and safety [44,45]. This study aimed to assess their potential to avoid pretreatments and
the use of excessive salt in the brines and preservatives. The final oleuropein levels in the
olives were unaffected by the treatments, but the use of these starters did not improve the
LABs’ growth nor prevent the growth of Enterobacteriaceae and molds. The nutraceutical
value of the olives could be improved due to the higher production of hydroxytyrosol.

6. Biocontainment for Yeast Biotechnology

Pavão et al. [46] reviewed biocontainment techniques and applications for yeast
biotechnology. Biocontainment techniques for genetically modified yeasts (GMYs) [47]
are pivotal due to the importance of these organisms in biotechnological processes and
due to the design of new yeast strains using synthetic biology tools and technologies. The
different biocontainment technologies currently available for genetically modified yeasts
(GMYs) were evaluated. Uniplex-type biocontainment approaches (UTBAs), which rely on
nutrient auxotrophies induced by gene mutation or deletion or the expression of the simple
kill switches apparatus, are still the major biocontainment approaches in use for GMY.
While bacteria such as E. coli account for advanced biocontainment technologies based
on synthetic biology and multiplex-type biocontainment approaches (MTBAs), GMYs are
distant from this scenario for many reasons. Therefore, a comparison of different UTBAs
and MTBAs applied for GMYs and genetically engineered microorganisms (GEMs) was
made, indicating the major advances in biocontainment techniques for GMYs.
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