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Abstract: Mulberry leaves are rich in nutrients but contain anti-nutrient factors that hinder their
digestion and absorption. Feeding animals with mulberry leaves directly could harm their health.
The microbial fermentation of mulberry leaves could reduce their anti-nutritional factors’ content
and improve their nutritional value. Sequencing and analyzing mulberry leaves before and after fer-
mentation showed that fermentation increased the relative abundance of Pediococcus, Bradyrhizobium,
Hydrotalea, and Rhodanobacteria, and decreased that of Enterobacter. Fermentation improved the quality
of mulberry leaves by rebuilding the bacterial community. Finishing pigs were raised on fermented
mulberry leaves (FML), and their carcass performance, meat quality, economic benefits, and gut
microbiome were evaluated. FML had no negative impact on pig carcass performance, meat quality,
and antioxidant capacity, and could somewhat improve the economic benefits. FML decreased the
relative abundance of Proteobacteria in the colon and Streptococcus in the feces, and increased that of
Actinobacteria (cecum, colon, feces) and Prevotella (colon). The gut core microorganisms in the FML
group were mainly enriched with Actinobacteria, Bifidobacterium, Bifidobacteriaceae, Bifidobacteriales,
and other beneficial microorganisms. Dietary FML reduced ammonia, indole, and skatole contents in
the feces. In conclusion, FML reshaped the gut microbiota without negatively affecting pig product
performance, produced cleaner waste, and improved environmental protection and sustainability,
making it an attractive prospective feed for pigs.

Keywords: fermented mulberry leaves; pig; microbiome; odorous component

1. Introduction

Feed shortages and food competition between humans and livestock are expected
to expand with the increasing demand for animal protein. Incorporating alternative feed
ingredients into animal production could be a feasible strategy to ensure an effective feed
supply and reduce rearing costs. Alternative feed resources can partially replace traditional
ones, such as corn and soybean meal, to help alleviate feed shortages and reduce feeding
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costs and the food conflict between humans and livestock. High-value and diversified
utilization of unconventional feed resources is a clean production technology conducive to
realizing low-carbon livestock farming [1].

Mulberry leaves (ML) are abundant in resources and rich in crude protein, amino
acids, and trace elements, making them an important unconventional feed source [2,3]. The
rich active substances in ML (polyphenols, polysaccharides, alkaloids, etc.) have various
functions (antioxidants, immune regulation, anti-stress, and lipid-lowering) [3]. However,
ML tannin, which is unconducive to nutrient digestion and absorption, could damage
animal health and negatively impact breeding and production. Fermentation utilizes
microorganisms to convert plant components into microbial proteins, active peptides, and
other substances, degrading anti-nutritional factors and improving the nutritional value
of raw materials [4]. We previously used microbial fermentation to reduce the tannin
content in ML and improve their nutritional value [5]. However, the microbial community
structure of fermented mulberry leaves (FML) remained unclear. Understanding microbial
communities in fermented feed is key to identifying microorganisms suitable for fermented
feed production; therefore, additional attention has been paid to the bacterial communities
in FML.

ML are limited as a feed protein source for pigs. ML levels can reduce the carcass
performance and meat yield of finishing pigs because ML contain many anti-nutritional
factors (tannin, waxiness) [6–9]. Feed fermentation can effectively reduce anti-nutrient
factors, improve intestinal morphology, and maintain balanced intestinal flora [10,11].
As an unconventional feed, FML have rarely been used in finishing pigs. Our previous
studies have shown that feeding FML did not alter pig growth performance but improved
plasma and urine metabolite contents [5]. Feeding unconventional feed might change
animal product quality. However, it is unclear whether feeding FML will change pig
product performance. Therefore, we conducted carcass performance and meat quality
measurements. Gut flora is tightly bound to host health and is intensively affected by diet.
FML are rich in microorganisms and nutrients and could benefit the animal by helping
it digest nutrients. However, little is known about how FML affect the gut microbial
community structure. We hypothesized that FML could be used to feed finishing pigs
without negatively affecting carcass performance and meat quality, while improving gut
bacterial community structure and feces odor emissions. Carcass performance, meat quality,
and bacterial community were assessed to verify this assumption.

2. Materials and Methods
2.1. Fermented Mulberry Leaves

FML were prepared as reported in our previous publication [12]. Briefly, fresh ML
were cut into 1–2 cm pieces and mixed evenly with bran at a mass ratio of 9:1. The mixture
was placed in breathing bags (23 cm × 30 cm, 200 g substrate per bag) for fermentation
or storage. In total, 20 such bags were prepared, of which 10 bags were stored at −20 ◦C
without fermentation or bacterial solution. A 2% bacterial solution of Pediococcus cellicola
and Bacillus licheniformis was added to the remaining 10 bags, which were fermented for
4 d at 25 ◦C. We randomly selected 6 bags per treatment for sequencing analysis. The
nutritional components (dry matter) of FML included 26.88% crude protein, 2.14% ether
extract, 14.65% crude fiber, 31.43% neutral detergent fiber, and 14.95% acidic detergent
fiber [12].

2.2. Experimental Design, Animals, and Diets

Animal procedures and experiments were approved by the Animal Care and Use
Committee of the Guangdong Academy of Agricultural Sciences (authorization number
GAASIAS-2021-0909).
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In total, 18 Duroc × Landrace × Large White barrow pigs (78.2 ± 2.05 kg) were
randomly assigned to 2 groups with 9 replicates per group and 1 pig per pen (4.70 m length
× 1.64 m width × 0.92 m height). Pigs in the control (CON) group received a basal diet,
while pigs in the FML group received the basal diet supplemented with 10% FML. The
composition and nutritional levels of the diets were previously reported [5] and are shown
in Table S1. Feed and water were provided ad libitum to all pigs throughout the 69-day
study. The growth performance was evaluated by recording their weights at the beginning
and end of experiment period. The daily feed intake was also recorded to calculate the
average daily intake.

2.3. Slaughter Procedure, Sample Collection, and Processing

On the 69th day, 6 pigs were randomly selected from each group, and 200 g of stool
was collected using the rectal method, by which the pig’s anus was stimulated with fingers
to induce defecation. The samples were collected quickly after defecation into sterile bags;
100 g of stools were stored at −80 ◦C pending microbiome assessment, and the remaining
stools were stored at room temperature for odorous compounds’ assessment.

The pigs were stunned and slaughtered following current slaughterhouse practice.
About 200 g of the longissimus thoracis muscle was quickly collected and stored at −80 ◦C
pending chemical composition and antioxidant index determination. We also collected
100 g of whole cecum and middle colon contents and stored them at −80 ◦C for micro-
biome analysis.

2.4. Determination of Product Performance

The measurement of carcass and meat quality was conducted according to Cui
et al. [13]. Within 20 min of slaughter, the carcass and abdominal fat weights and back
fat thickness were measured. The loin muscle area was measured by a KP-90N planime-
ter (Koizumi, Nagaoka-shi, Japan). Muscle pH was measured at 45 min and 24 h after
slaughter using a Testo 205 pH meter (Bad Camberg, Germany). Meat color was measured
using a CR-410 chromameter (Japan) after a 15 min blooming period. The drip loss was
calculated as the percentage weight difference between those measured 45 min and 24 h
after slaughter. The meat samples were cut into 2 cm × 3 cm × 5 cm strips, weighed,
hooked inside plastic bags, and kept at 4 ◦C for 24 h before measuring the final weight.
For shear force analysis, the meat cores were sheared perpendicular to the muscle fibers
and analyzed with a C-LM3B tester (TENOVO, Beijing, China). The marbling score was
measured using an NPPC 5 grading colorimeter (USA, 1999).

2.5. Chemical Composition Determination

Muscle contents of dry matter, crude protein, ether extract, inosinic acid, and fatty
acids were determined according to Cui et al.’s [12,14] and Chinese standards and general
protocols using an ALPHA 2-4 LSC freeze-dryer (Martin Christ GmbH, Osterode am Harz,
Germany), an 8400 nitrogen analyzer (FOSS, Hillerød, Denmark), an ether extract analyzer
(2055 SOXTEC, FOSS, Hillerød, Denmark), an LC-20AD high-performance liquid chromato-
graph (Shimazu, Kyoto, Japan), and a 6890 gas chromatograph (Agilent, Santa Clara, CA,
USA), respectively.

2.6. Antioxidant Index Determination

The supernatant was collected after homogenizing 0.1 g of muscle with 0.9 mL of
saline and centrifugation at 1800× g and 4 ◦C for 10 min. The total protein and malon-
dialdehyde contents, total superoxide dismutase and glutathione peroxidase activities,
and total antioxidant capacity in the supernatant were determined by Nanjing Jiengcheng
Bioengineering Institute kits (A045-2-2, A003-2-2, A001-1-2, A015-1-2, and A005-1-2).
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2.7. Economic Benefit Calculations

The economic benefits were calculated according to the price and proportion of feed-
stocks and the weight gain and feed intake of the pigs during the experiment period.

Feed cost (CNY/pig) = Feed intake (kg/pig) × Unit-price of diet (CNY/kg)

Weight gain income (CNY/pig) = Weight gain (kg/pig) × Pig selling price (CNY/kg)

Gross profit (CNY/pig) = Weight gain income (CNY/pig) − Feed cost (CNY/pig)

Weight gain feed cost (CNY/kg) = Unit-price of diet (CNY/kg) × Feed to gain ratio

2.8. Gene Sequencing

ML, FML, feces, cecum, and colon microbial DNA were isolated with a DNA Kit
(Omega, Bio-Tek, Norcross, GA, USA). PCR reactions were performed in triplicate 20 µL
mixtures containing 4 µL of 5× FastPfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of each
primer (5 µM), 0.4 µL of FastPfu Polymerase, and 10 ng of template DNA. Amplicons were
extracted from 2% agarose gels and purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s instructions.
The 16S rRNA (V3–V4 regions) was amplified using 341F (5′-CCTAYGGGRBGCASCAG-3′)
and 806R (5′-GGACTACNNGGGTATCTAAT-3′) primers. The library was sequenced on an
Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) by Biozeron Biotechnology
Co., Ltd. (Shanghai, China). An Uclust algorithm was used to obtain operational sequences,
and operational taxonomic units (OTUs) for species classification were clustered with 97%
similarity. Species annotation and statistical analysis of the species composition for each
sample at different levels were conducted. The raw reads were stored in the Sequence Read
Archive database (SRP443024).

2.9. Odorous Compound Determination

We placed fecal samples (100 g) in sterile bags and stored them at room temperature
for 24 h. Subsequently, portable hydrogen sulfide (H2S/C-200, GRI Instrument, Changsha,
China) and ammonia (NH3/CR-200) detectors (GRI Instrument, Changsha, China) were
used to determine their contents in the feces.

Fecal samples (0.1 g) were processed according to Yu et al. [15] and loaded into a high-
performance liquid chromatograph (Waters Alliance e2695, Milford, MA, USA) equipped
with a separation column (Zorbax Eclipse XDB-C18, Agilent Technologies, Santa Clara, CA,
USA) to determine phenolic and indolic compound contents.

The measurement of short-chain fatty acids (SCFAs) content was conducted according
to Yu et al.’s approach [16]. Samples (0.4 g) were processed and assessed using a gas
chromatograph (7890B, Agilent Technologies, Santa Clara, CA, USA). The conditions were
a nitrogen flow rate of 7.68 mL/min and oven, detector, and injector port temperatures
of 130, 250, and 220 ◦C, respectively. The SCFA content was calculated using an external
standard curve.

2.10. Data Analysis

The growth performance, carcass performance, meat quality, chemical composition
and antioxidant capacity of muscle, economic benefit, and odorous compounds were
analyzed using independent samples t-tests in SPSS Statistics (Version 25.0, IBM Corp.,
Armonk, NY, USA). Spearman’s correlation coefficient was used to analyze the association
between microorganisms and blood parameters, and between microorganisms and odorous
compounds. Figures were prepared using Graphpad Prism 8.0 (GraphPad Software, Inc.,
La Jolla, CA, USA). The results are expressed as means and standard errors (SE). Statistical
significance was set at p < 0.05 and 0.05 ≤ p < 0.10 was considered a trend.
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The diversity indices were calculated using rarefaction analysis in Mothur v.1.21.1 [17].
Beta diversity analysis, performed using the community ecology package in UniFrac [18],
compared the principal coordinate analysis (PCoA) results. We analyzed overlapping and
unique operational taxonomic units (OTUs) during treatment. The linear discriminant anal-
ysis effect size (LEfSe) compared microorganism abundances before and after FML feeding
and between the FML and CON groups. The phylogenetic investigation of communities by
reconstruction of unobserved states (PICRUSt) predicted microbiota functional differences
among samples.

3. Results
3.1. Fermented Mulberry Leaves
3.1.1. Overview of the Microbial Community in FML

As shown in Table S2, the richness, Shannon, Simpson, ACE, and evenness indexes
in FML were higher than in ML (p < 0.05). The before- and after-fermentation samples
shared 1242 OTUs, while the ML and FML had 381 and 1879 specific OTUs, respectively
(Figure 1A). The PCoA analysis found that the microbial communities in ML and FML
differed (Figure 1B). Figure 1C shows the dominant phyla in ML and FML. After fermenta-
tion, the Proteobacteria and Cyanobacteria relative abundances decreased (p < 0.01), while
Firmicutes, Bacteroidetes, and Actinobacteria increased (p < 0.01; Figure 1D). Fermentation
decreased dominant genera’s relative abundance (Enterobacter, Cyanobacterium, Cronobacter,
and Lactococcus; p < 0.01) and increased that of Pediococcus, Bradyrhizobium, Hydrotalea,
Rhodanobacter, and Mycobacterium (p < 0.01), making them the dominant genera in the
FML group (Figure 1E,F). The ML samples were differentially enriched in 17 microorgan-
isms, including Enterobacteriales, Enterobacteriaceae, Gammaproteobacteria, Enterobac-
teria, Cyanobacterium, and Proteobacteria, while the FML samples were differentially
enriched in 43 microorganisms, including Lactobacillaceae, Pediococcus, Firmicutes, Bacilli,
Lactobacillales, Rhizobiales, Alphaproteobacteria, Bacteroidetes, and Bradyrhizobiaceae
(Figure 1G,H).

3.1.2. Spearman’s Correlation Analysis

Figure 2 shows the correlation analysis outcomes between microorganisms and nutri-
tional components in ML and FML. Pediococcus, Bradyrhizobium, Hydrotalea, Rhodanobater,
Mycobacterium, Methylovirgula, and Mesorhozobium were negatively associated with the pH,
neutral detergent fiber, and tannins, and positively correlated with crude protein, ether
extract, and ash content. Enterobacter, Cyanobacteria_norank, Cronobacter, Lactococcus, Weis-
sella, Mitochondria_norank, Enterobacteriaceae_Unclassifie, and Enterococcus were negatively
correlated with crude protein, ether extract, and ash content, and positively correlated with
the pH, neutral detergent fiber, and tannins.

3.1.3. Prediction of the Microbial Community Functions in FML

The main microbial community function in ML and FML was metabolism (Figure 3A).
Fermentation significantly altered the microbial community functions to include metabolism,
environmental information processing, cellular processes, and human diseases (p < 0.05;
Figure 3B). Figure 3C,D show that at level 2, fermentation improved microbial community
functions such as carbohydrates, amino acids, lipids, terenoids, polyketides, xenobiotics,
xenobiotic biodegradation metabolism, cell growth and death, and the biosynthesis of
other secondary metabolites (p < 0.05). ML fermentation reduced functions such as energy
metabolism, membrane transport, cofactors and vitamins metabolism, signal translation,
translation folding, sorting, and degradation (p < 0.05).
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Figure 1. Overview of the microbial community in mulberry leaves (CON) and fermented mulberry
leaves (FML). Venn diagram (A), PCoA analysis (B), phylum-level bacterial composition (C) and
differential abundance (D), genus-level bacterial composition (E) and differential abundance (F),
differential abundance (G,H). * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.
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mulberry leaves. * indicates p < 0.05, ** indicates p < 0.01. CP, crude protein; EE, ether extract; NDF,
acid detergent fiber.

3.2. Carcass Performance and Meat Quality

FML tended to reduce abdominal fat weight in finishing pigs (p = 0.088) but did not
alter other carcass or meat quality indexes (p > 0.05; Table 1).

Table 1. Effects of fermented mulberry leaves on carcass performance and meat quality of finish-
ing pigs.

Items CON FML p-Value

Carcass performance
Slaughter weight (kg) 132.73 ± 1.63 128.23 ± 13.35 0.431
Carcass weight (kg) 96.84 ± 3.14 90.82 ± 9.01 0.153

Carcass yield (%) 72.97 ± 2.63 70.86 ± 1.79 0.136
Abdominal fat weight (kg) 2.63 ± 1.05 1.71 ± 0.55 0.088

Back fat thickness (mm) 29.91 ± 6.31 27.56 ± 6.22 0.531
Loin muscle area (cm2) 60.93 ± 2.03 63.03 ± 1.70 0.646

Meat quality
L* 45 min 48.06 ± 1.84 48.28 ± 1.07 0.805

L* 24 h 58.56 ± 3.99 59.79 ± 1.38 0.503
a* 45 min 17.28 ± 0.85 17.30 ± 0.85 0.956

a* 24 h 17.01 ± 1.27 17.18 ± 1.53 0.833
b* 45 min 5.87 ± 0.41 6.22 ± 0.45 0.191

b* 24 h 7.48 ± 0.76 8.13 ± 1.00 0.232
pH 45 min 6.22 ± 0.17 6.16 ± 0.11 0.502

pH 24 h 5.56 ± 0.18 5.52 ± 0.11 0.677
Drip loss 24 h (%) 2.29 ± 0.12 2.21 ± 0.20 0.434

Shear force (N) 64.76 ± 14.23 60.23 ± 6.02 0.489
Marbling score 2.70 ± 0.32 2.54 ± 0.73 0.639

CON, basal diet; FML, basal diet +10% fermented mulberry leaves.
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3.3. Muscle Chemical Composition and Antioxidant Capacity

FML supplementation did not change the chemical composition and antioxidant
capacity in pig muscle (p > 0.05; Table S3). Compared to the CON group, the FML group
had higher levels of C17:0 and C18:3 (all-cis-9,12,15) (p < 0.05; Table S4).

3.4. Growth Performance and Economic Benefits

The growth performance had been previously published [5]. Table 2 shows that the
feed cost (p = 0.155) and weight gain feed cost (p = 0.078) in the FML group were lower
than in the CON group.
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Table 2. Effects of fermented mulberry leaves on growth performance and economic benefits of
finishing pigs.

Items CON FML p-Value

Weight gain (kg) 49.20 ± 2.71 49.36 ± 3.14 0.970
Feed intake (kg) 173.97 ± 5.72 178.88 ± 5.54 0.556

Feed cost (CNY/pig) 644.69 ± 23.59 597.44 ± 18.50 0.155
Income from weight gain (CNY/pig) 1176.86 ± 64.94 1180.62 ± 75.00 0.970

Gross profit (CNY/pig) 532.17 ± 43.39 583.18 ± 58.51 0.485
Feed cost of weight gain (CNY/kg) 13.22 ± 0.30 12.26 ± 0.42 0.078

3.5. Overview of the Gut Microbial Community

Table S5 shows that the cecal ACE index (p = 0.043) and fecal Chao and ACE indices
(p < 0.05) in the FML group were lower than in the CON group. The two groups had similar
diversities and richness in the colon (p > 0.05). Figure 4A shows common and unique OTUs
in the cecum, colon, and feces of the two groups. The PCoA analysis showed that pigs
fed with basal and FML diets differed in their cecal, colon, and fecal microbial community
structures (Figure 4B).

Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla in the cecum,
with Lactobacillus, Clostridium_sensu_stricto_1, and Prevotella being the dominant genera.
The FML group had lower Prevotelaceae_uncultured and S24−7_ norank (p < 0.05) and
higher Actinobacteria (p < 0.05; Figure 4C,D) abundances than the CON group.

In the colon, Firmicutes, Bacteroidetes, and Spirochaetae were dominant phyla, with
Ruminococcaceae_uncultured, Streptococcus, S24−7_norank, Prevotellaceae_uncultured,
and Lactobacillus being the dominant genera. Dietary FML decreased the relative abundance
of Proteobacteria and Lachnospiraceae_uncultured (p < 0.05) and increased the relative
abundance of Actinobacteria and Prevotella (p < 0.05; Figure 4E,F).

Firmicutes, Bacteroidetes, and Spirochaetae were the dominant phyla in the feces,
with Ruminococcaceae_uncultured, S24−7_norank, and Treponema the dominant genera.
FML supplementation increased the relative abundance of Actinobacteria (p < 0.05) and
decreased that of Streptococcus and Lachnospiraceae_uncultured (p < 0.05; Figure 4G,H).

3.6. LEfSe Analysis

Figure S1 shows that the FML diet enriched microorganisms such as Actinobacteria,
Bifidobacteriaceae, Bifidobacterium, and Bifidobacteriales in the cecum, colon, and feces,
while the CON diet enriched microorganisms such as Spirochaetaceae and Spirochaetae
in the cecum, Enterobacteriales and Enterobacteriaceae in the colon, and Streptococcaceae
and Streptococcus in the feces.

3.7. Spearman’s Correlations between Microorganisms and Blood Parameters

The blood parameter results were reported in our previous publication [5]. The
spearman’s correlation analysis results are shown in Figure 5. Some gut microorganisms
correlated with nitrogen metabolism indicators, while other were negatively correlated with
cytokines. Plasma creatinine and uric acid were negatively correlated with Faecalibacterium
in the cecum and Prevotella and Dialister in the colon (p < 0.05), and positively correlated with
Lachnospiraceae_uncultured in the colon and Streptococcus in the feces (p < 0.05). Serum
cytokines were negatively correlated with S24-7_norank, Streptococcus, Treponema, and
RC9_gut_group in the cecum, Lachnospiraceae_uncultured in the colon, and Streptococcus
and Lachnospiraceae_uncultured in the feces (p < 0.05).
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composition at the level of phylum (C,E,G) and genus (D,F,H). The top part of the figure shows the
bacterial composition at each level, and the bottom part shows the differential bacterial abundances
at each level. * indicates p < 0.05, ** indicates p < 0.01.
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3.8. Prediction of Microbial Community Function in the Gut

As shown in Figure S2, the gut microbiota’s main function in pigs was related to
metabolism. Feeding FML did not alter this primary function (p > 0.05).

3.9. Odorous Compounds

Figure 6 shows the fecal odorous compound content. Compared to the CON group,
the FML group showed a 26% reduction in fecal ammonia emission (p = 0.011) and de-
creased skatole and indole concentrations (p < 0.05). However, both groups had similar
SCFA contents (p > 0.05; Table S6). The correlations between odor compounds and fecal
microorganisms were generally weak (Figure S3).
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4. Discussion
4.1. Fermented Mulberry Leaves

After the microbial fermentation of the ML, alpha diversity increased, and the com-
munity had a wide variety of species. This was related to adding microbial agents, which
altered the ML colony structure. Firmicutes and Proteobacteria were dominant in ML and
FML, as in previous studies [19,20]. ML fermentation increased the relative abundance of
Firmicutes, Bacteroidetes and Actinobacteria. It was reported that the relative abundance
of Firmicutes increased, and that of Proteus decreased in silage [21,22]. The higher relative
abundance of Firmicutes in FML might be due to the low pH and anaerobic conditions at
the end of fermentation [19] and the addition of P. cellicola and B. licheniformis (both Firmi-
cutes members). The presence of Cyanobacteria before fermentation could be attributed
to soil inclusions during ML collection. These were replaced by Firmicutes, Bacteroidetes,
and Actinobacteria during fermentation.

Fermentation is a process of a succession of microbial colonies. P. cellicola was added
before fermentation, so the increase in Pediococcus in FML could be expected. Lactic
acid bacteria help control fast fermentation. Consequently, the abundance of Enterobacter,
Cyanobacteria_norank, Cronobacter, and Lactococcus decreases significantly through fermen-
tation. LEfSe analysis showed that fermentation enriched beneficial microorganisms,
including Lactobacillaceae, Pediococcus, Firmicutes, Bacilli, and Lactobacillales, instead of
microorganisms such as Enterobacteriales, Enterobacteriaceae, and Enterobacter, which
are abundant in ML. Furthermore, the P. cellicola and B. licheniformis added to ML can
compete with Enterobacter for fermentation substrate, inhibiting its growth and reducing
the Enterobacteriaceae’s abundance. Bacillus can promote feed fermentation and prevent
the growth of undesired bacteria [23].

Fermentation significantly improved the microbial communities’ functions, including
the metabolism of carbohydrate, amino acids, and lipids, consistent with the changes in
nutritional components observed in FML. Fermentation significantly changed the contents
of neutral detergent fiber, carbohydrates, arginine, serine, glutamic acid, total amino acid,
and ether extract in ML. In this experiment, Pediococcus and Lactobacillus were negatively
correlated with pH, which is consistent with previous reports [23]. Firmicutes and Pro-
teobacteria are important for fiber degradation in anaerobic environments [24]. Changes
in neutral detergent fiber content in FML might be related to these phyla, as indicated
by the analysis, which found a significant correlation between most Firmicutes and Pro-
teobacteria species and neutral detergent fiber content. The abundance of Pediococcus,
Bradyrhizobium, Hydrotalea, Rhodanobacter, and Mycobacterium in FML significantly increased
with the decrease in pH (decomposing in the acidic environment produced by lactic acid
bacteria), which is beneficial for the degradation of fiber components. Previous studies
reported the degradation of tannins [25,26] and neutral detergent fiber [4] by Pediococcus.
Bradyrhizobium can utilize (degrade) tannins and synthesize proteins (nitrogen fixation)
and lipids [27]. These bacteria played a prominent role in the ML fermentation process,
especially in degrading tannins and neutral detergent fibers, and reducing the pH.

4.2. Carcass Performance and Meat Quality

Anti-nutritional factors in ML hinder animal growth and carcass performance. Pigs’
slaughter and carcass weights, as well as their dressing percentage, decreased linearly with
the increase in ML supplementation [28]. A diet with 15% ML reduced the carcass weight
and dressing percentage of finishing pigs [29]. In this experiment, FML did not affect pig
carcass and growth performance, as in previous reports [30]. This might be because the
FML dietary supplement contains fewer anti-nutritional factors and is rich in free amino
acids, small peptides, and beneficial bacteria, making nutrients easier to digest and absorb
and eliminating the negative effects of ML on carcass performance [30]. Meat quality is an
important livestock economic trait. The effect of FML on meat quality in this study was
minimal, resulting in meat color, shear force, drip loss, and marbling scores similar to those
of the CON group, as previously reported [9,28,31,32]. This might be due to nitrogen and
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energy balance adjustments in the feed. Overall, FML had no negative impact on pig meat
quality. Feeding pigs with FML could reduce corn and soybean meal use and increase
feed resources.

4.3. Muscle Chemical Composition and Antioxidant Capacity

Muscle chemical composition is an important indicator of meat quality. In this study,
dietary FML had little effect on muscle chemical composition. It was reported that adding
mulberry flavonoids or ML did not affect dry matter, crude protein, intramuscular fat, or
inosinic acid contents in pig muscle [31,32]. One study [9] reported that ML increased
eicosadienoic acid content in the dorsal muscle without altering the concentration of other
fatty acids. Liu et al. [33] reported a negative association between dietary ML content and
the concentrations of palmitic, palmitoleic, and myristic acids in the dorsal muscles, and a
positive association with the concentrations of linoleic, α-linolenic, and arachidonic acids.
The differences among these studies might be due to the sources, processing methods, and
feeding times of ML. γ-linoleic acid plays an important biological role in the human body.
As a substrate for arachidic acid synthesis, it is involved in the transport and oxidation of
cholesterol [34]. The increase in muscle γ-linolenic acid content after feeding FML could
benefit human health. Fermentation leads to changes in the structure or content of some
active components (flavonoids and polyphenols) in ML, which affect the muscle fatty acid
profile; the reason for this remains unknown.

The reactions between lipid oxidation products and other substances can affect the
meat flavor. FML did not alter the antioxidant enzyme activity in the longissimus thoracis
muscle, as reported by Fan et al. [9], who found no difference in muscle antioxidant capacity
between the ML and FML groups. This result is also consistent with the effects of ML and
FML on blood antioxidant enzyme activity [5]. We saw no improvement in antioxidant
capacity in this experiment, possibly because the high dietary vitamin E level (150 mg/kg)
masked the effect of FML. Vitamin E is a strong antioxidant that can protect pigs from
oxidative stress [35].

4.4. Economic Benefits

Due to its abundance and low utilization rate, ML are cheaper than conventional
feed and can act as a good unconventional feed resource. The low-cost mature FML used
in this study had no negative impact on the product performance of pigs, but tended to
reduce the weight gain feed cost, thereby moderately increasing the weight gain income
and gross profit. This outcome indicates that feeding FML to finishing pigs might reduce
feed costs and increase breeding benefits. Effective ML utilization could save costs and
achieve high-value resource utilization.

4.5. Gut Microbial Community

ML (silage, sun-dried) did not alter fecal bacterial community richness and diversity
in cattle and sheep [36,37], and FML did not change the ileal flora alpha diversity index in
pigs [38]. However, compared to the CON group, the microbial richness in the FML group
in our study was lower in the cecum and feces but similar in the colon. The gut microbiome
is influenced by fiber source and type, which affect the microbial abundance and diversity
in the pig gut [39,40]. Furthermore, fructooligosaccharides could reduce these indices [41].
The FML fiber content may have decreased the alpha diversity index in the cecum and
feces in our study.

Firmicutes and Bacteroidetes, the dominant bacteria in the cecum, colon, and feces,
are involved in carbohydrate and protein degradation [37], play a significant role in di-
gestion, and provide essential substances for host and gut microorganisms [42,43]. Our
results are similar to those of previous research that found differences in fecal microflora
composition between sows fed basal or FML diets, and the main bacterial categories were
Firmicutes, Bacteroides, Spirochaetes, and Proteobacteria (both groups) [43,44]. A decrease
in Proteobacteria abundance in the colons of pigs fed FML could benefit them. It has
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been reported that animals with inflammatory bowel disease have a higher level of Pro-
teobacteria than healthy animals [45–47]. Similarly, dietary quercetin (mulberry) can reduce
fecal Proteobacteria [48]. Finishing pigs with low Proteobacteria abundance have healthier
intestinal tracts and are at a lower risk of developing pathogenic bacterial.

Prevotella is the main dietary fiber-digesting bacterium. It is associated with the
metabolism of amino acids, carbohydrates, and lipids, and is important for maintaining
energy balance [44]. The crude fiber level in the FML group was higher than in the CON
group, possibly resulting in higher fiber content in the hindgut of the FML group. FML
supplementation increased Prevotella abundance and promoted dietary fiber digestion in
the colon. Our study was similar to that of Xu et al. [48], who reported that dietary quercetin
enhanced Prevotella copri abundance in piglet feces. FML contain abundant flavonoids
such as quercetin, which might also help increase the relative abundance of Prevotella.
This suggests that supplementing the diet with FML could improve fiber digestibility and
utilization in finishing pigs. Prevotella was negatively correlated with plasma creatinine and
uric acid. Their association with dietary fiber digestion can reduce serum uric acid and urea
nitrogen levels by weakening dietary adenine absorption [49]. The abundance of potential
pathogens including Streptococcus and Enterococcus was higher in the feces of pigs lacking
dietary fibers than in control [50]. After feeding pigs with FML, the fecal abundance of
Streptococcus decreased, reflecting the beneficial effects of FML in reducing the proportion
of harmful bacteria in the gut and helping maintain a healthy intestinal environment and
stable microbial community. Streptococcus could cause diarrhea, intestinal inflammation,
and other diseases in pigs [51]. Furthermore, Streptococcus was negatively correlated with
blood cytokines (IL2, IL8, IL22, and TNF-α) and positively correlated with creatinine and
uric acid, so its reduction indirectly reflects improved health in these pigs.

In the current study, FML supplementation changed the gut bacterial microbiome
composition. The gut core microorganisms in the FML group were mainly enriched in
Actinobacteria, Bifidobacterium, Bifidobacteriaceae, Bifidobacteriales, and others, resulting
in an increased Actinobacteria relative abundance in the pigs’ cecum, colon, and feces.
Actinobacteria and Bifidobacteriales have been associated with increased animal feed uti-
lization through extracellular enzyme production [52,53]. Bifidobacteriales enrichment is
beneficial to animal health. As a dominant microbial community in normal intestines [54],
Bifidobacteriales can enhance the intestinal mucosa immune barrier function by increasing
goblet cells number and mucin-2 secretion [55]. FML can increase the abundance of benefi-
cial bacteria (Actinobacteria and Bifidobacteriaceae), maintaining microbial structure without
affecting the pig’s weight [5]. One possible reason FML affect the gut microbiota composi-
tion is the decomposition of large molecules in ML into small ones during fermentation,
which enhances feed palatability and digestibility. Alternatively, dietary P. cellicola and
B. licheniformis may have acted as probiotics that affected the abundance and composition
of the fecal microorganism community.

4.6. Odorous Compounds

Ammonia and hydrogen sulfide are the main pig manure odor components, with
skatole being one of the most unpleasant odor compounds [56]. Odor compound emissions
into the environment negatively impact human health and environmental safety. Adding
fermented carbohydrates to the feed helps reduce foul-smelling chemical production and
improve intestinal health [57]. FML have a high dietary fiber content, leading to increased
fecal fiber content in pigs (unpublished data) that could help reduce odorous substance
production (fecal ammonia content in the FML group was approximately 26% lower than
in the CON group). Feeding high-fiber diets could increase fecal fiber content and reduce
the emission of ammonia and volatile sulfur compounds [58,59]. FML altered the gut
microbiota structure and reduced odorous substance synthesis. Escherichia coli, Proteus,
and paracoliform bacteria can synthesize indole [60]. The pig feces in the FML group was
enriched in beneficial bacteria such as Bifidobacterium, while the CON group was enriched
in Enterobacteriales. The decreased number of microorganisms synthesizing indole and
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skatole resulted in a decrease in fecal odor compound concentrations [56,58]. Feeding high
levels of chicory roots reduced the skatole concentration [61,62].

SCFA is the main product of carbohydrate fermentation by gut bacteria. The phy-
lum Firmicutes includes many carbohydrate-fermenting bacteria, including Ruminococcus,
Lactobacillus, and Clostridium [63]. These bacteria’s relative abundances in the two treat-
ments were similar, explaining their similar intestinal SCFA concentrations. Similarly, fecal
SCFA level was unaffected by dietary chicory root [63]. Functional FML substances such
as flavonoids and small-molecule substances increased the body’s protease activity and
improved protein digestibility (unpublished data). These resulted in a reduced protein fer-
mentation substrate availability for the large intestinal microorganisms, and, subsequently,
fecal odor substance emission. The odor emitted after feeding FML was clean, improving
the pig housing environment and animal welfare.

5. Conclusions

This study evaluated the impacts of microbial fermentation on the ML bacterial com-
munity. Adding P. cellicola and B. licheniformis to ML increased the relative abundance of
Pediococcus, Bradyrhizobium, Hydrotalea, and Rhodanobacteria and decreased that of Enterobac-
ter. This restructured bacterial community improved FML quality.

The fermentation of industrial excess/surplus ML could produce clean fermented
products to feed pigs without reducing their carcass performance and meat quality. FML
supplementation could reshape the pig gut microbiota and produce cleaner waste by re-
ducing ammonia emission and fecal odor compound concentrations, resulting in improved
environmental protection and sustainability. Feeding FML to animals is a feasible ecological
breeding and clean production strategy. FML have prospects of being used as a pig feed.
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