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Abstract: Cheese whey (CW) constitutes a dairy industry by-product, with considerable polluting
impact, related mostly with lactose. Numerous bioprocessing approaches have been suggested for
lactose utilization, however, full exploitation is hindered by strain specificity for lactose consumption,
entailing a confined range of end-products. Thus, we developed a CW valorization process generating
high added-value products (crude enzymes, nutrient supplements, biopolymers). First, the ability
of Aspergillus awamori to secrete β-galactosidase was studied under several conditions during solid-
state fermentation (SSF). Maximum enzyme activity (148 U/g) was obtained at 70% initial moisture
content after three days. Crude enzymatic extracts were further implemented to hydrolyze CW
lactose, assessing the effect of hydrolysis time, temperature and initial enzymatic activity. Complete
lactose hydrolysis was obtained after 36 h, using 15 U/mL initial enzymatic activity. Subsequently,
submerged fermentations were performed with the produced hydrolysates as onset feedstocks to
produce bacterial cellulose (5.6–7 g/L). Our findings indicate a novel approach to valorize CW via
the production of crude enzymes and lactose hydrolysis, aiming to unfold the output potential of
intermediate product formation and end-product applications. Likewise, this study generated a
bio-based material to be further introduced in novel food formulations, elaborating and conforming
with the basic pillars of circular economy.

Keywords: cheese whey; Aspergillus awamori; β-galactosidase; lactose hydrolysis; Acetobacter xylinum;
bacterial cellulose

1. Introduction

Agro-industrial waste and by-products streams occur in each step of the food supply
chain, specifically during processing. These streams, however, still contain compounds of
importance to develop further exploitation schemes, considering also the transition from a
linear to circular bioeconomy. Likewise, cheese whey (CW) corresponds to an unavoidable
by-product stream of the dairy industry, receiving critical attention because of the high
environmental burden, but also owing to the several components with beneficial nutritional
and functional properties [1,2]. The compositional analysis of the onset material usually
outlines the deployment of subsequent valorization routes within a biorefinery concept to
generate high added-value products along with zero waste. For instance, up to date, the
vast majority of studies related to the utilization of CW through bioconversion processes
implement the application of microbial entities able to consume lactose [3–6]. As a result,
the range of end-applications, particularly sustainable food production, is restricted. Alter-
natively, whey lactose fraction could be hydrolyzed to the respective monosaccharides and
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further studied in fermentation processes. Apart from the conventional chemical methods
for lactose hydrolysis, previous studies have also undertaken enzymatic hydrolysis [7,8].

Lactose hydrolysis is accomplished via the action of galactosidases, which are ubiqui-
tous enzymes with complex structures. Galactosidases confer several advantages in food in-
dustry, including the manufacture of lactose-free dairy products or galacto-oligosaccharides
synthesis through transglycosylation reactions [8,9]. Bacterial, yeast and fungal strains
correspond to microbial sources of β-galactosidase (β-gal; EC 3.2.1.23 commonly known as
lactase), attracting significant interest owing to the ability to secrete the enzymes extracellu-
larly along with featuring properties such as high catalytic activity and reaction rate [10].
On top of that, environmentally benign enzyme production using crude renewable re-
sources as low-cost media has been demonstrated by several species [11]. Notably, several
Aspergillus species constitute key producers for sustainable and cost-effective enzymes
production, also classified as “generally recognized as safe” (GRAS) by the Food and Drug
Administration [12]. Currently, evidence for β-galactosidase production exists in the closely
related strains of Aspergillus lacticoferratus and Aspergillus awamori [13,14]. In particular, A.
awamori produces various hydrolytic enzymes such as glucoamylase, protease, phytase,
β-glucosidase, β-xylosidase and cellulases useful for agro-industrial by-product-stream
valorization [15–18].

The development of effective and feasible consolidated biorefining should include raw
materials with consistent composition, yearlong supply and engage the holistic exploita-
tion of each valuable compound for further novel applications. Extensive studies have
been performed to utilize CW derived lactose for the fermentative production of several
microbial metabolites [19]. Equally, the protein fraction prevailed in studies targeting novel
food formulations [19]. However, the ideal concept would encompass the valorization
of both protein and lactose fractions within the same biorefinery approach. Likewise,
targeted intermediate products (e.g., biodegradable polymers) within a biorefinery process
could be used as onset materials to elaborate “de novo” diversified novel formulations.
Bacterial cellulose (BC) is a natural extracellular polysaccharide demonstrating prominent
food and biomedical applications, also characterized as GRAS dietary fiber by the FDA
in 1992 [20]. Numerous research studies have suggested the use of BC in food applica-
tions, including as a flavor additive, fat replacer, stabilizer, rheology modifier and meat
analog [20]. Few recent studies also indicated the use of BC as an edible carrier for cell
cultures, enzymes, antimicrobial compounds or even biocolorants [21–23]. Despite the
simple downstream processing steps, industrial BC production is hindered owing to the
high cost of conventional synthetic media. Therefore, agro-industrial by-products and food
waste streams have been previously assessed as fermentation supplements for cost-effective
BC production [24–27].

Our ultimate target is to develop a holistic approach to exploit cheese whey fractions
to generate value-added products, with potential food formulations. Likewise, this initial
study describes a two-stage bioprocess to produce crude β-galactosidase and proteases
using A. awamori, followed by enzymatic hydrolysis of whey lactose, to formulate a nutrient
rich feedstock. BC was selected as a case study of an intermediate value-added product.
The optimization of crude enzymes production and enzymatic hydrolysis was undertaken
via the assessment of several crucial parameters that affect enzyme secretion (e.g., pH
value, temperature, enzyme loading). The performance of enzymatic hydrolysis was also
assessed, and the obtained hydrolysate was subsequently evaluated as a crude nutrient
supplement to generate BC.

2. Materials and Methods
2.1. Microbial Strains and Media

A. awamori strain 2B.361U 2/1 was kindly provided by Dr Apostolis Koutinas (Agri-
cultural University of Athens, Athens, Greece) and was employed for the generation of
crude enzymes and cheese whey hydrolysis. Fungal strain origin and revival protocols
have been reported in a previous publication [16]. Microorganisms were sub-cultured and
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stored at 4 ◦C in agar slopes containing 5% (w/v) wheat bran (WB) and 2% agar (w/v).
For inoculum preparation, the fungus was grown for 5 days at 30 ◦C on identical solid
substrate to sporulate. A. xylinum strain 15,973 purchased from DSMZ culture collection
was used for bacterial cellulose (BC) production. Bacterial stock was preserved at −80 ◦C.
For BC production, inocula preparation was performed on Hestrin–Schramm’s medium
(HS) [27]. The microorganism sub-cultures were grown at 30 ◦C for 48 h under agitation
(180 rpm) [28]. Wheat bran that consisted of 26% (w/w) carbohydrates, 14% (w/w) proteins
and 0.01% (w/w) salt, was purchased from a local market. Deproteinized (after “myzithra”
cheese manufacturing) cheese whey (approximately 50 g/L lactose) was kindly provided
by “Galiatsatos” dairy company (Kefalonia, Greece).

2.2. Crude Enzyme Production and Cheese Whey Hydrolysis

Crude enzyme production was determined during solid state fermentations (SSF) on
wheat bran (WB) and further optimized under various parameters. More specifically, 5 g
WB (dry basis) were weighed and sterilized into 250 mL Erlenmeyer flasks. To enhance
secretion of fungal β-galactosidase, the medium was supplemented with 10 mg MgSO4 in
each SSF culture [13,29]. Suspensions of approximately 2 × 106 spores mL−1 were prepared
by collecting spores of 5 days old fungal pre-cultures as described above. Inoculated WB
flasks were incubated at 28 ◦C under static conditions and enzyme activity was determined
at regular time intervals until 120 h of incubation. In terms of enzyme production opti-
mization, different initial moisture content of the substrate of 60, 65, 70 and 75% (w/w on
a dry basis) was also examined. The varying moisture content was fixed by addition of
deproteinized whey (pH 4.5) in order to stimulate enzyme production.

At the end of the fermentation process, the WB solids were mixed thoroughly with
deproteinized whey (1:10 w/v) at 120 rpm for 1 h at room temperature [30]. Crude enzyme
extracts were filtered through sterile gauze and centrifuged further at 4000 rpm for 20 min.
The effect of temperature in the hydrolytic activity of the enzymes was evaluated at
40–70 ◦C for 60 h. Lactose hydrolysis assay was further optimized employing varying
initial enzyme activities of 7.5, 11 and 15 U/mL and hydrolysis experiments were carried
out at 500 mL final volume in a water bath for 60 h under agitation. Initial enzyme activities
used in hydrolysis experiments were achieved by selecting the appropriate amount of
crude enzymes (~150 U/g), which were produced under optimal SSF conditions. Samples
for sugars and free amino nitrogen (FAN) determination were collected at regular time
intervals and heated (100 ◦C) to inactivate enzymatic reaction. Subsequently, the pH
value of hydrolysates was adjusted to 6.0, and they were sterilized to be used as nutrient
supplements for BC production. All the experiments were performed in duplicates.

2.3. Submerged Fermentation and Bacterial Cellulose (BC) Production

Cheese whey was pretreated with crude β-galactosidase extracts to break down
lactose, and the produced hydrolysates were further evaluated for the production of BC
by A. xylinum. In addition to that, experiments with unhydrolyzed CW, including initial
CW of 50 g/L (A), CW diluted to 25 g/L (B) and CW diluted and supplemented with yeast
extract (C), were also performed for comparative reasons. Experiments were conducted
in 250 mL Erlenmeyer flasks containing 50 mL of hydrolysate (pH 6.0). The substrate
was inoculated with 10% (v/v) of 48 h bacterial sub-cultures and incubated at 30 ◦C on a
10 days static cultivation. Sugars along with FAN consumption were determined during
fermentation. The obtained BC was pretreated as described by Żywicka et al. [31] with
slight modifications. Briefly, samples were purified with 0.1% NaOH at 80 ◦C for 30 min
to inactivate the bacterial cells and remove medium components. BC membranes were
washed in distilled water until the pH stabilized. Further on, the membranes were air-dried
at 40 ◦C until constant weight and stored at room temperature for future use [32]. All the
experiments were performed in duplicates.
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2.4. Analytical Methods

Sugar concentration during CW hydrolysis and fermentation process were quanti-
fied by high performance liquid chromatography (HPLC) analysis (1200 series Agilent,
Santa Clara, CA, USA) equipped with a differential refraction detector and an Aminex
HPX-87H column (300 mm length × 7.8 mm internal diameter). The mobile phase was
10 mM H2SO4. The analysis was performed under isocratic conditions at a flow rate of
0.6 mL/min and 65 ◦C column temperature [33]. Injection volume was 10 µL and run time
for samples was 25 min. Before injection, samples were diluted to appropriate concentration
and filtered through a 0.22 µm Whatman® (Maidstone, UK) membrane filter.

Protease activity was evaluated by the production of free amino nitrogen (FAN) after
hydrolysis of 7.5 g L−1 of casein in 0.2 M phosphate buffer (pH 6.0) at 55 ◦C for 30 min.
One unit (U) of proteolytic activity was defined as the amount of enzyme required for the
release of 1 µg FAN in one minute under the above conditions [34]. FAN concentration
was determined in both hydrolysis and fermentation using the ninhydrin colorimetric
method [35].

Production ofβ-galactosidase was measured by the o-nitrophenol-β-d-galactopyranoside
(ONPG) assay according to Raol et al. [29] with slight modifications. Briefly, 0.1 mL of crude
extract was added to 0.4 mL of ONPG (3.0 mM) dissolved in sodium citrate buffer (50 mM,
pH 5.0) and incubated at 50 ◦C for 10 min. The reaction was terminated by the addition
Na2CO3 (0.1 M) and the release of o-nitrophenol was estimated spectrophotometrically at
420 nm at a final volume of 3.0 mL. A calibration curve was prepared with o-nitrophenol
under the same conditions. One unit (U) of β-galactosidase was defined as the amount
of enzyme catalyzing the release of 1 µmol of o-nitrophenol per min according to the
absorbance measurement.

2.5. Statistical Analysis

Results are presented as mean values ± standard deviation. Statistical analysis was
performed by applying analysis of variance (ANOVA) to evaluate the variations between
group means (between treatment effect). Tukey HSD post-hoc test with 95% confidence
intervals was used to indicate significant differences between hydrolysis levels and bacterial
cellulose production.

3. Results and Discussion
3.1. Solid State Fermentation (SSF) and Crude β-Galactosidase Production

The leading target of this study was to evaluate the hydrolytic activity of A. awamori
on CW to obtain a nutrient-rich supplement deriving from lactose hydrolysis, that will sub-
stitute synthetic media in a following bioconversion process. Therefore, SSF optimization
to enhance β-galactosidase production using WB as a single substrate was initially under-
taken, based also on previous studies that have outlined that WB reinforced β-galactosidase
production [36]. This has been attributed to the appropriate ratio of hemicellulose to sugars,
that is defined as a stimulus factor for galactosidase production [37]. Figures 1 and 2
demonstrate the effect of initial moisture content, ranging from 60 to 75%, along with
incubation time (1–5 days). Maximum production of β-galactosidase reached 148 U/g
(db) at 70% of initial moisture after 70 h of fermentation. Earlier reports highlighted that
increased moisture levels enhanced β-galactosidase yield in A. tubingensis [29]. The latter
usually associates with the fact that moisture crucially affects nutrient solubility within
the substrate [38]. As it can be easily observed, the production rate exhibits an increas-
ing trend (Figure 1), during the first three days of fermentation followed by a decrease
after approximately 70 h (three days) of incubation. Similar results were also obtained
in studies using A. tubigensis and A. awamori, respectively [14,29], whereby prolonged
fermentation times entailed higher β-galactosidase activities. For instance, Nizamuddin
et al. [30] demonstrated optimum β-galactosidase production by A. oryzae after seven days
of incubation, Raol et al. [29] found maximum enzyme activity by A. tubingensis at seven
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days, whereas Cardoso et al. [13] performed SSF for six days to produce β-galactosidase
production by A. lacticoffeatus.
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Figure 1. Effect of solid state fermentation (SSF) time in crude β-galactosidase production by A.
awamori, at different initial moisture contents.

Fermentation 2021, 7, x FOR PEER REVIEW 5 of 13 
 

 

rate exhibits an increasing trend (Figure 1), during the first three days of fermentation 
followed by a decrease after approximately 70 h (three days) of incubation. Similar re-
sults were also obtained in studies using A. tubigensis and A. awamori, respectively [14,29], 
whereby prolonged fermentation times entailed higher β-galactosidase activities. For in-
stance, Nizamuddin et al. [30] demonstrated optimum β-galactosidase production by A. 
oryzae after seven days of incubation, Raol et al. [29] found maximum enzyme activity by 
A. tubingensis at seven days, whereas Cardoso et al. [13] performed SSF for six days to 
produce β-galactosidase production by A. lacticoffeatus. 

 
Figure 1. Effect of solid state fermentation (SSF) time in crude β-galactosidase production by A. 
awamori, at different initial moisture contents. 

 
Figure 2. Effect of solid state fermentation (SSF) time in crude protease production by A. awamori, at 
different initial moisture contents. 

Recently, Vidya et al. [14] studied α- and β-galactosidase production from A. 
awamori (MTCC 548), whereby the purified enzyme exhibited 25.5–176.5 U/mg of activity, 
respectively. On top of that, the authors reported β-xylosidase and β-glucosidase activi-
ties, suggesting the ample substrate specificity. Several preceding studies had also sug-
gested multi-enzyme production by A. awamori including glucoamylase and protease 
[16,39]. Therefore, proteolytic activity was also undertaken (Figure 2), reaching the 
highest value after 70 h of fermentation (30.9 U/g). Similarly, Wang et al. [40] reported 
protease activities up to 40 U/g, (db) after 120 h employing similar SSF conditions. Evi-
dently, it could be speculated that the addition of CW in SSF cultures, induced the secre-
tion of β-galactosidases considering that fungal strains tend to adapt in the environ-
mental niches and develop mechanisms for the production of specific enzymes. Moreo-
ver, this could be attributed to the low pH during fermentation, that could potentially 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

β-
ga

la
ct

os
id

as
e 

ac
tiv

ity
 (U

/g
)

Fermentation time (h)

60%
65%
70%
75%

0

10

20

30

40

0 20 40 60 80 100 120

Pr
ot

ea
se

 a
ct

iv
ity

 (U
/g

)

Fermentation time (h)

60%
65%
70%
75%

Figure 2. Effect of solid state fermentation (SSF) time in crude protease production by A. awamori, at
different initial moisture contents.

Recently, Vidya et al. [14] studied α- and β-galactosidase production from A. awamori
(MTCC 548), whereby the purified enzyme exhibited 25.5–176.5 U/mg of activity, respec-
tively. On top of that, the authors reported β-xylosidase and β-glucosidase activities,
suggesting the ample substrate specificity. Several preceding studies had also suggested
multi-enzyme production by A. awamori including glucoamylase and protease [16,39].
Therefore, proteolytic activity was also undertaken (Figure 2), reaching the highest value
after 70 h of fermentation (30.9 U/g). Similarly, Wang et al. [40] reported protease ac-
tivities up to 40 U/g, (db) after 120 h employing similar SSF conditions. Evidently, it
could be speculated that the addition of CW in SSF cultures, induced the secretion of
β-galactosidases considering that fungal strains tend to adapt in the environmental niches
and develop mechanisms for the production of specific enzymes. Moreover, this could be
attributed to the low pH during fermentation, that could potentially enhance Aspergillus
β-galactosidase production [11,13,41] Ultimately, SSF time for crude β-galactosidase and
protease was standardized at 70 h to obtain maximal activities, that would be implemented
in subsequent hydrolytic reactions of CW.

3.2. Cheese Whey Hydrolysis Study

CW hydrolysis was performed using the crude enzymatic extracts obtained from SSF
cultures. Figure 3a illustrates the results obtained from different hydrolysis temperatures,
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whereby it can be observed that 60–65 ◦C was the optimum hydrolysis temperature of A.
awamori. Ultimately, at the end of the bioprocess, crude enzymes hydrolyzed >90% of the
initial whey lactose (Figure 3a). On the other hand, the optimum proteolytic activity was
observed at 55 ◦C, as it has been earlier indicated by Tsakona et al. [16]. More particularly,
as displayed in Figure 3b, FAN production increased along with the increase in temper-
ature up to 55 ◦C, followed by a gradual reduction with further temperature increments
(Figure 3b). Based on our results, significant differences (p < 0.05) were observed on the
performed hydrolyses, at almost all evaluated temperatures. Likewise, no significant
differences (p > 0.05) were observed on hydrolysis experiments carried out at 60 and 65 ◦C.
Previous studies have also demonstrated processing of cheese whey via the implemen-
tation of microbial β-galactosidase to generate value-added products [42,43]. Generally,
temperatures ranging between 50 and 60 ◦C and acidic pH values (3.5–4.5) have been
reported as the optimal conditions for fungal β-galactosidase activity [13]. Additionally,
Silvério et al. [44] recently studied β-galactosidase production in several Aspergillus species,
aiming to synthesize potential prebiotics, whereby an increased enzyme activity in the
range of 50–60 ◦C was noted. The current observation highlights the significant potential of
the enzymes, since thermal stability is of imperative practical use for diverse bioprocesses,
preventing various contaminations [45,46]. Furthermore, the results obtained postulate
that the enzyme is more accessible during the first hours of hydrolysis. More specifically,
a higher hydrolysis rate during the first 12 h entailed 30–50% of lactose hydrolysis, fol-
lowed by a decreased rate at prolonged incubation time. Several studies also coincide
with such findings where hydrolysis products decreased or even restricted lactose hydrol-
ysis reaction [41,47,48]. Indeed, it has been previously established that at high galactose
concentrations, β-galactosidase activity is impaired since the conformational modifica-
tion of the enzyme’s active site reduces the affinity for its substrate [49,50]. Moreover,
galactose could also act as a competitive inhibitor of β-galactosidase via the formation of
galactosyl–enzyme intermediate products [51].
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In an effort to further optimize whey hydrolysis, trials were also performed to evaluate
the effect of different initial enzymatic activities on lactose breakdown and FAN production.
Initial enzymatic activities of 7.5, 11, 15 U/mL were employed, and the results are illustrated
in Figure 4. Figure 4a presents the kinetic profile of lactose hydrolysis, whereas Figure 4b
presents FAN production in specific timepoints. Evidently, the use of 15 U/mL resulted in
accelerated rates and complete lactose hydrolysis at 36 h and the production of 583.13 mg/L
FAN. On the other hand, initial enzymatic activities of 7.5 and 11 U/mL yielded 87 and
93% of hydrolysis, respectively, at the same time point, providing lower productivities.
Even though the degree of hydrolysis seems to follow a dose-dependent trend, apparently
much higher concentrations do not significantly alter the hydrolysis efficiency, although
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complete hydrolysis is performed significantly earlier at higher initial enzymatic activities.
Worth noting, FAN production increased almost two-fold at higher initial enzymatic
activities. Rosolen et al. [52] also presented similar efficiency levels on whey lactose
hydrolysis by A. oryzae, regardless of the enzyme concentrations used (3, 6 and 9 U/mL).
This observation probably also indicates the saturation of lactose at high β-galactosidase
concentrations [53]. Thus, as in previous studies, our results imply that CW lactose
hydrolysis is not strictly proportional with enzyme concentration [7,54]. However, complete
hydrolysis was performed in almost half the time, using 15 U/mL, compared with the
case of 7.5 U/mL. Nonetheless, in the event that scale up should be considered, lactose
hydrolysis efficiency and FAN production should coincide with the feasibility of the process
to highlight the most favorable operating conditions, which will be designated by the end
target products.
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Figure 4. Effect of different initial enzymatic activity of crude β-galactosidase on cheese whey (CW)
hydrolysis. Kinetics of (a) lactose hydrolysis and (b) free amino nitrogen (FAN) production.

3.3. Bacterial Cellulose Production

CW constitutes a renewable, zero-cost substrate suitable for microbial fermentation,
mostly requiring minimal pretreatment. However, often lactose does not undergo fer-
mentation by several microorganisms including acetic acid bacteria. Previous reports
demonstrated low BC-production from unhydrolyzed CW, thus hindering further imple-
mentation. Thus, pretreatment is often essential to overcome such limitations. Besides
this, only limited studies have evaluated CW for BC production [55,56]. Based on similar
literature reports, BC production is species and strain dependent. Evidently, the results of
the current work confirmed the ability of A. xylinum to use CW hydrolysate under three
different fermentation schemes. Hydrolysates derived from 11.25 (Hydrolysate A) and
7.5 U/mL (Hydrolysate B) crude β-galactosidase, respectively, were used to evaluate BC
production, and the results are presented in Table 1. Different nitrogen concentrations were
used, based on previous observations where elevated levels of nitrogen content induced
cell proliferation at the expense of BC production [32]. As it can be seen in Figure 5a, the
consumption of 13.91 g/L of glucose and 224.79 mg/L of FAN resulted in the production
of 7.05 g/L BC (Hydrolysate A). Hydrolysate B followed a similar trend with respect to
glucose consumption rate. The consumption of 13.41 g/L of glucose and 132.64 mg/L
FAN, resulted in 5.78 g/L of BC production (Figure 5b). However, it is worth noting
that in both experiments a considerable amount of sugars remained unfermented by A.
xylinum. Therefore, a third treatment was deployed using diluted hydrolysate (hydrolysate
C) (1:1 CW:H2O) in order to evaluate the BC production yield on approximately 25 g/L
total sugar content and 260 mg/L FAN concentration (Figure 5c). In fact, in these exper-
imental conditions, almost complete glucose consumption was attained along with the
consumption of 114.94 mg/L FAN, achieving a final BC concentration of 5.59 g/L.
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Table 1. Experimental schemes of cheese whey and cheese whey hydrolysates fermentation by A. xylinum.

Fermentation
Media

Initial Total
Sugars
(g/L)

Initial
Glucose

(g/L)

Residual
Glucose

(g/L)

Initial FAN
(mg/L)

FAN
Consumption

(mg/L)

BC Production *
(g/L)

BC
Productivity

(g/L/d)

Hydrolysate A 45.04 ± 2.60 23.31 ± 0.77 9.40 ± 0.24 520.05 ± 0.34 224.79 ± 8.39 7.05 ± 0.14 A 0.71
Hydrolysate B 45.80 ± 0.77 22.35 ± 0.46 8.93 ± 0.19 331.36 ± 12.96 132.64 ± 5.21 5.78 ± 0.35 A,B 0.58
Hydrolysate C 24.68 ± 0.69 11.48 ± 0.48 1.00 + 0.08 259.25 ± 5.70 114.94 ± 4.73 5.59 ± 0.22 B 0.56
Cheese whey A 50.00 ± 1.22 2.51 ± 0.23 - 56.00 ± 3.35 19.49 ± 2.78 0.58 ± 0.01 a 0.06
Cheese whey B 24.45 ± 1.03 1.28 ± 0.10 - 22.98 ± 5.70 22.98 ± 0.00 0.71 ± 0.05 a,b 0.07
Cheese whey C 24.29 ± 1.18 1.39 ± 0.14 - 250.00 ± 10.06 81.33 ± 4.65 1.07 ± 0.09 b 0.11

* Different letters (A, B, a, b) within each group (hydrolysates and cheese whey) indicate significant differences (p < 0.05). FAN: free amino
nitrogen; BC: bacterial cellulose.

The above results are in accordance with other studies describing the utilization of
several monosaccharides and disaccharides as carbon sources to generate BC by various
Acetobacter spp. strains. Semjonovs et al. [55] reported a high BC yield with CW hydrolysate
(20 g/L reducing sugars) as the sole carbon source using the strain Komagataeibacter rhaeticus
P 1463. Additionally, Salari et al. [57] recently referred to a BC production of 3.5 g/L within
14 days of fermentation by Gluconacetobacter xylinum PTCC 1734 in static cultures, using an
equimolar glucose/galactose mixture from hydrolyzed CW. In all the conducted experi-
ments, a considerable increase in BC production was observed when compared with the
results obtained by media with lower amount of FAN concentration. On the other hand, BC
production levels by unhydrolyzed whey were quite close to those previously reported [58].
More specifically, as it is presented in Table 1, A. xylinum consumed 19.49 mg/L of FAN,
producing 0.58 g/L of BC in unhydrolyzed CW (cheese whey A) (Table 1). Likewise, signif-
icant differences (p < 0.05) on BC production were observed, when different fermentation
media were applied, whereas significantly higher concentrations were produced using all
types of CW hydrolysates, compared to sole CW (Table 1).

Recently, Kumar et al. [59] demonstrated the production of 1.4 g/L of BC under static
culture conditions in whey medium by Acetobacter pasteurianus. The formation of BC in
these cases is mostly due to the presence of several other compounds such as the residual
carbon present in the initial inocula. In addition to this, higher BC production was observed
using diluted CW, which is consistent which similar studies [60]. In specific, A. xylinum
produced 0.71 g/L and 1.07 g/L BC, when diluted CW (cheese whey B) and diluted CW
supplemented with yeast medium (cheese whey C) were, respectively, applied (Table 1). In
general, lactose as a sole carbon source is reported as a weak substrate for BC production
leading to 0.04–0.07 g/L [39,61], while BC production by unhydrolyzed CW is recorded
slightly higher ranging from 0.15 to 0.78 g/L [58,60]. Our results (using unhydrolyzed CW)
are in agreement with those previously reported, whereas BC production was significant
higher using CW hydrolysates. Overall, in this study, high production of BC was achieved
using CW hydrolysates compared even to BC production using conventional synthetic
HS medium. These findings are exceptionally promising pointing out potential for a
cost-effective bioprocess.

3.4. Technological Consideration of the Study

The principal target of this study was the development of a holistic exploitation ap-
proach for cheese whey, that will engage with sustainability and generate value-added
products via the aligned food waste reduction and by-product streams treatment, as cor-
nerstones of the circular economy concept. Likewise, an efficient fungal-based, two-stage
bioprocess was employed to produce a nutrient rich feedstock for subsequent upstream
bacterial bioconversions. Cost effective production of crude enzymes, without further
purification steps was undertaken using food industry by-products, specifically cheese
whey. The significant hydrolytic activity of this novel biocatalyst was demonstrated, lead-
ing to the formulation of a suitable feedstock for bacterial cellulose (BC) production. The
results of our study confer an insight for the fermentative production of BC using whey
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lactose hydrolysates, which effectively sustained the nutrient requirements of A. xylinum,
displaying high production yields. Evidently, enhanced feasibility could be established
through the development of suitable bioprocesses to mediate BC production costs via the
replacement of conventional fermentation media. The consolidated bioprocess presented
hereof is currently further extended within the concept of holistic refining of cheese whey
streams (lactose and protein). In particular, in our forthcoming research, novel probiotic
starter cultures will be developed, and BC generated in this study will be implemented as a
carrier for lactic acid bacteria starter to be reintroduced into dairy products, thereby closing
the loop. Ultimately, the combined proposed approach conforms to the pillars of circular
bioeconomy, encompassing environmentally benign processes, zero waste generation in
parallel with novel food product development and potential health benefits.

4. Conclusions

The results of the present study indicate the successful development of a novel cheese
whey valorization approach within the concept of circular bioeconomy. More specifically, a
two-stage operation was established to generate crude enzymatic consortia via fungal solid
state fermentations with A. awamori. Fermentation conditions were optimized and a novel
biocatalyst was effectively secreted, and subsequently implemented to hydrolyze whey lac-
tose formulating a nutrient substrate for fermentative bioconversions. BC production was
conceptualized as a transitional compound for subsequent functional food formulations,
along with the protein fraction to complement sustainability and circularity of the process.
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