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Abstract: The generation of pomaces from juice and olive oil industries is a major environmental
issue. This review aims to provide an overview of the strategies to increase the value of pomaces
by fermentation/biotransformation and explore the different aspects reported in scientific studies.
Fermentation is an interesting solution to improve the value of pomaces (especially from grape,
apple, and olive) and produce high-added value compounds. In terms of animal production,
a shift in the fermentation process during silage production seems to happen (favoring ethanol
production rather than lactic acid), but it can be controlled with starter cultures. The subsequent
use of silage with pomace in animal production slightly reduces growth performance but improves
animal health status. One of the potential applications in the industrial context is the production
of enzymes (current challenges involve purification and scaling up the process) and organic acids.
Other emerging applications are the production of odor-active compounds to improve the aroma
of foods as well as the release of bound polyphenols and the synthesis of bioactive compounds for
functional food production.

Keywords: pressing residue; grape; apple; silage; animal production; enzyme production; polyphenols

1. Introduction

Pomace is the main residue (a humid, solid material) generated from the pressing of
fruits and olives to obtain juices and olive oil, respectively. This residue is heterogeneous
and may contain seeds, pulp, stems, and peels, depending on the source [1,2]. In terms
of the global production of juices and olive oil, the amount of pomace produced every
year achieves several millions of tons [3,4]. Its high organic matter, nutrients, and moisture
content favor the growth of microorganisms to decompose this residue (the generation of
greenhouse gases, unpleasant odors, and contamination of groundwater) and can attract
pests, which ultimately leads to an important environmental impact [5]. Additionally, the
consumption of juices [6,7] and olive oil [8–10] is expected to increase in the upcoming
years. In this sense, the residues from these two sectors of the food industry are expected
to increase.

Another important aspect related to pomaces is the presence of bioactive compounds
that are lost when these residues are discarded. One of the most studied classes of phy-
tochemicals are polyphenols. This class of compounds is characterized by the antioxi-
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dant [11–13], antimicrobial [3,12], anti-inflammatory [13], and anti-diabetic [14] activities
tested in vitro and in vivo. This scenario can be seen as a relevant opportunity to explore
strategies to improve the management of pomace and reduce its environmental impact.

In this sense, the concept of a circular economy is favored to improve the sustainability
in this sector of the food industry, i.e., transforming residues into raw materials with high-
added value and connecting them with other chains of food processing [15]. Moreover, a
circular economy is one of the principles of the European Green Deal that aims to improve
the efficiency of resource use and to cut pollution, for instance [16,17]. Recent publications
support the potential utilization of this strategy [18–24]. It is also important to mention
that the reutilization of residues of the food industry and the consequent development of
food products are concepts supported and well-accepted by consumers [25,26].

Among the possible solutions to manage pomaces, fermentation has been suggested
to obtain high-added value products and compounds. Moreover, fermentation can be seen
as an important and more sustainable strategy to treat food industry residues [2,27,28].
Thus, this review aims to provide an overview of the utilization of fermentation (mainly
involving lactic acid bacteria and yeasts) and biotransformation (biotransformation) of
pomace in the production of silage and supplement feed for animal, enzymes, polyphenols,
bioactive compounds (release of bound polyphenols and the synthesis of fatty acids and
carotenoids), odor-active volatile compounds, and organic acid production.

2. Utilization in Silage or as a Feed Supplement for Animal Production

The feeding of animals reared for food production is one of the possible applications
of fermented pomaces (Figure 1), for which there are two main strategies: adding the
pomace in silage production or fermenting/biotransforming the pomace and using it as
feed supplement (Table 1). Regarding the first strategy, the production of silage consists
of preserving pasture grass for further use (especially during dry periods). The process
occurs mainly by fermenting pasture with bacteria that are naturally or strategically added
to acidify the material and delay microbial and biochemical spoilage [29]. Considering the
importance of silage and the fermentation process, many studies have explored the effect
of pomace in the characteristics of silage and its effect in animal health and performance.
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Table 1. Effect of fermentation in the characteristics of silage produced from apple, white mulberry, and grape pomace.

Source Experimental Conditions Effect in Silage Characteristics Ref.

Apple pomace Alfalfa hay, timothy hay, soybean meal, and
vitamin and mineral supplement, pomace (0,
5, 10, and 20%), 3.4–22.4 ◦C, and 60 days

Increased pH, ethanol, acetic acid, and
ammonia nitrogen levels; reduced lactic
acid content

[30]

Apple pomace Maize, wheat bran, soybean meal, timothy
hay, alfalfa hay and vitamin-mineral
supplement, pomace (20% in silage),
4.4–25.8 ◦C, and 60 days

Increased pH and ethanol content; reduced
lactic and acetic acid, and ammonia
nitrogen contents

[31]

Grape pomace Calotropis procera, pomace (0, 10, 20, 40% in
silage), and 90 days

Increased ethanol, acetic, propionic and
butyric acid contents, effluent loss and gas
loss; reduced soluble carbohydrate and
lactic acid content and digestibility; no
effect in pH

[32]

Grape pomace Sweet sorghum silage, pomace (0, 5, 10,
and 15% in silage), and 90 days

Increased acetic acid (only 10%) and total
polyphenol content; reduced water-soluble
carbohydrates, lactic acid (only 15%
treatment), and butyric acid contents; no
effect in dry matter and protein neutral and
detergent fiber contents, pH, and ammonia
nitrogen level

[33]

White mulberry pomace Meadow grass, pomace (0, 25, 50, 75,
and 100% in silage), and 60 days

Increased gas production, organic matter
digestibility, and metabolizable energy

[34]

Using pomace as a raw material for silage production may shift the characteristics of
silage and change its content and composition of organic acids, digestible matter, and pH.
These results were reported in studies with apple pomace that also indicated a reduction
in the production of lactic acid [30,31]. Along with the increase in ethanol content in
silage, the pH was increased, and the accumulation of lactic acid was reduced in relation
to silage without pomace. However, these studies also indicated an unclear effect in the
accumulation of ammonia nitrogen.

In the case of grape pomace, the depletion in lactic acid content and the increase in
the production of other organic acids, polyphenol content, effluent and gas loss were also
reported in two recent studies [32,33]. Both studies did not indicate significant differences
in the pH of silage. It is relevant to mention that the study carried out by Li et al. [33]
also evaluated the combination of grape pomace with the starter culture composed of
Lactobacillus plantarum and Lactobacillus buchneri. These microorganisms led to a better
control of fermentation and quality of silage by favoring the accumulation of lactic and
acetic acid, water soluble carbohydrates, and crude protein. Moreover, ammonia nitrogen
levels were reduced and no effect in the neutral detergent fiber content and the pH of
silage were reported. A related experiment evaluated the production of silage with white
mulberry pomace with meadow grass [34]. In this case, significant effects in organic matter
digestibility and metabolizable energy, as well as in gas production, were reported.

Since silage is an important component for animal production in periods and regions
of reduced feed availability, some studies reported the effect of silage with pomace and
fermented pomace in animal nutrition, health and the composition and characteristics of
foods obtained from animals in these experimental diets (Table 2). For instance, recent
experiments reported the effect of silage added with apple pomace in the diet of Suffolk
wethers [30,31]. In both cases, significant reductions in digestibility and nitrogen retention,
in relation to the control diet, were reported. No effect in feed intake between control and
experimental diets were indicated in these studies.
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Table 2. Effect of fermented apple, grape, pomegranate, olive, and tomato pomaces in animal production and foods obtained from animals fed with these fermented pomaces.

Source Experimental Conditions Animals and Study Characteristics Effect in Animal Production and Related Food Ref.

Apple pomace Silage: alfalfa hay, timothy hay, soybean meal, and
vitamin and mineral supplement, pomace (0, 5, 10,
and 20%), 3.4–22.4 ◦C, and 60 days

Suffolk wethers (4 animals), initial weight
50.3 kg, and 21 days of experiment

Reduced digestibility, gross energy, and nitrogen
retention; no effect in feed intake and fiber content

[30]

Apple pomace Silage: maize, wheat bran, soyabean meal, timothy hay,
alfalfa hay and vitamin-mineral supplement, pomace
(20% in silage), 4.4–25.8 ◦C, and 60 days

Suffolk wethers (4 animals), initial weight
65.3 kg, and 21 days of experiment

Increased organic acid content (except propionic and
butyric); reduced digestibility and nitrogen retention;
no effect in feed intake

[31]

Apple pomace Silage: control feed, pomace (14.8% in
silage), 9.7–20.1 ◦C, and 21 days

Male Yorkshire × Duroc × Landrace pigs
(10 animals), initial weight 70 kg,
and 53 days of experiment

Animals: increased feed efficiency; reduced average
daily feed intake; no effect in finished body weight,
average, daily gain, carcass weight, back fat thickness
or dressing ratio
Back fat: increased moisture, linoleic acid (C18:2n6),
linolenic acid (C18:3) and arachidic acid; reduced
water holding capacity, palmitic acid (C16:0),
palmitoleic acid (C16:1) and heptadecenoic
acid (C17:1) proportion

[35]

Apple pomace Silage: minced sardine, pomace (15%),
Lactobacillus plantarum (starter culture), 35 ◦C
for 7 days

Juvenile European sea bass fish (240 animals),
initial weight 15 g, and 9 weeks of experiment

Increased feed conversion ratio, relative average daily
feed intake, leukocyte count, and carcass composition
(moisture, lipid and ash contents); reduced final body
weight, weight gain, specific growth rate, protein
efficiency, apparent net protein utilization, and
microvilli density

[36]

Grape pomace Silage: sorghum, pomace (0, 10, 20, and 30%),
and 7 months

Male mixed breed lambs (24 animals), initial
weight 21.5 kg, and 35 days of experiment

No effect in performance, carcass composition,
and meat quality

[37]

Grape pomace Silage: corn, water, starter culture, and pomace
(43.6 g/kg feed)

Landrace × Large White − Duroc − Pietrain
piglets (24 animals),
and 15 days of experiment

Animals: increased antioxidant defense system
response, average daily gain, growth of facultative
probiotic bacteria, and LAB; reduced oxidative stress
and pathogen
Meat: increased omega-3 fatty acids content;
reduced n-6/n-3 ratio

[38]

Grape pomace SSF: 1 kg substrate, Aspergillus niger, 30 ◦C, and 7 days;
pomace (15 g/kg feed)

Male Ross 308 broiler chicks (140 animals),
and 42 days of experiment

Animals: increased body weight and serum CAT level;
reduced Clostridium perfringens count in cecum; no
effect in feed intake, feed conversion ratio, serum GPx
and SOD, other microorganism in cecum, and
intestinal morphology
Liver: no effect in pH and color

[39]
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Table 2. Cont.

Source Experimental Conditions Animals and Study Characteristics Effect in Animal Production and Related Food Ref.

Olive pomace SSF: Two-step fermentation: Bacillus subtilis var. natto
N21, 37 ◦C, 2 days; Lactobacillus casei, 25–35 ◦C,
and 5 days; pomace (7.5, 15, and 30%)

Male Ross 308 broiler chicks (1400 animals),
initial weight 44–47 g,
and 42 days of experiment

Animals: increased feed conversion ratio, antioxidant
status and defense system response; reduced body
weight gain, protein efficiency ratio, nutrient
digestibility, serum triglycerides and total cholesterol;
no effect in feed intake, serum LDL cholesterol, ALT
and AST
Breast meat: increased GPx and SOD; reduced fat and
cholesterol content, and lipid oxidation status; no
effect in moisture and protein

[40]

Tomato pomace SSF: pomace (10% in silage), Lactobacillus plantarum
(starter culture), and 30 days

Pregnant Holstein dairy cows (50 animals),
initial weight 710–715 kg,
7 days of experiment

Animals: increased feed intake and digestibility, blood
cholesterol and HDL, IgA, IgG, IgM, and antioxidant
defense system response; no effect in feed intake,
digestibility, milk yield and composition
Milk: increased vitamin A, C, and E contents; no effect
milk yield and composition

[41]

Pomegranate
pomace

SSF: 100 g substrate, Aspergillus niger, 30 ◦C,
and 7 days; pomace (5 and 10 g/kg feed)

Male Ross 308 broiler chicks (175 animals),
initial weight 39 g, and 42 days of experiment

Animals: increased crypt depth; reduced lipid
oxidation, Clostridium perfringens in cecum, and villus
height; no effect in body weight, feed intake and
conversion ratio, carcass characteristics, antioxidant
defense system response, and muscularis
mucosa thickness
Meat and liver: no effect in color and pH

[42]

ADF: Acid detergent, ALT: alanine aminotransferase, AST: aspartate aminotransferase, CAT: catalase, GPx: glutathione peroxidase, HDL: high-density lipoprotein cholesterol, IgA: immunoglobulin A,
IgG: immunoglobulin G, IgM: immunoglobulin M, LAB: lactic acid bacteria, LDL: low-density lipoprotein cholesterol, NDF: neutral detergent fiber, SOD: superoxide dismutase, and SSF: solid-state fermentation.
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A related experiment with pigs fed with silage containing apple pomace indicated
minimal or non-significant effects in the growth performance, except for a reduction in daily
feed intake and an increase in feed efficiency in animals fed with apple pomace silage [35].
Additionally, this study also indicated a significant increase in the content of some indi-
vidual polyunsaturated fatty acids in back fat, whereas the content of few saturated and
monounsaturated fatty acids in back fat were reduced. This effect was attributed to the
dietary fiber found in apple pomace that favored the growth of probiotic microorganisms
in pig intestine and led to the potential changes in back fat fatty acid composition.

Another interesting strategy to use silage with apple pomace was reported for the
production of fish. Davies et al. [36] studied the effect of a silage produced with apple
pomace, minced sardine, and Lactobacillus plantarum as a starter culture in the production
of juvenile European sea bass. In these animals, the silage with apple pomace improved
the health status of fish, whereas growth performance indicators were reduced in relation
to the control diet (without apple pomace).

The effect of feeding animals with silage containing grape pomace was also reported
in recent studies but contrasting results have been reported. In the experiment carried out
by Massaro Junior et al. [37], increasing levels of silage with grape pomace (up to 30% in
feed) did not cause significant changes in indicators of growth performance (initial and
final body weight, average daily gain and feed conversion ratio), carcass characteristics
(hot and cold carcass yield, for instance), and meat quality (such as pH, shear force, lipid
oxidation, and color) in lambs. Conversely, the use of silage produced with grape pomace
in piglets induced the antioxidant defense system, reduced the indicators of oxidative
stress, and the counts of pathogenic microorganisms (Campylobacter jejuni, for instance) in
fecal samples [38]. Additionally, the meat produced from animals fed with the experimental
diet had more omega-3 fatty acids in comparison to the meat from animals fed with the
control diet.

Fermentation in a solid state has also been explored to obtain potential feed addi-
tives for animal production. In the case of broiler chicks, the incorporation of fermented
grape pomace in animal diets produced heavier animals with increased serum levels of
catalase (a component of the antioxidant defense system) [39]. Additionally, no significant
reductions in other components of the antioxidant defense system, intestinal morphology,
and the pH or color of liver in the animals fed with silage containing grape pomace were
reported in this study.

Olive pomace has been indicated as an interesting component to improve the diet
of chicks [40]. Adding fermented olive pomace in animal feed enhanced the antioxidant
status and the antioxidant defense system as well as reduced serum triglycerides and
total cholesterol. Conversely, body weight gain was affected and no major effects in liver
enzymes were indicated by the authors. The effects on animal health were also observed
in meat in terms of reduced fat, cholesterol contents and lipid oxidation levels in breast
meat. Another study indicated a favorable effect of solid-state fermented pomace in animal
health [41]. In this case, the consumption of fermented tomato pomace improved health
indicators (serum lipids and immune and antioxidant defense systems) in Holstein cows.
However, the authors indicated no effects in terms of feed intake and milk production and
composition (except for vitamins A, C, and E).

The effect of silage produced with pomegranate pomace in broiler chicks was eval-
uated by Gungor et al. [42]. The oxidative status was improved and some effects in the
internal morphology were reported in animals consuming the experimental silage. No
significant effects were reported for carcass characteristics, the antioxidant defense system,
and meat and liver characteristics (pH and color).

From these experiments, it seems reasonable to consider that mixing pomace with
other components for silage production modifies the microbial activity as well as the
characteristics of silage. These effects can be attributed to the composition and content
of nutrients (such as water-soluble carbohydrates). It is important to mention that the
effect is dependent on the extract composition (apple vs. grape pomace, for instance).
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Additionally, the shift in the fermentation process by using pomace as a raw material in
silage production (especially for the production of lactic acid to ethanol) may be reduced
from the addition of starter cultures. In terms of animal production, the main benefit seems
to be related to animal health and the quality of foods obtained from these animals (chicks,
cows, fish, lambs, and pigs), regardless of pomace source. In terms of animal production,
the use of either pomace as silage raw material or fermented feed supplement seems to
have a negative impact, such as in growth performance. It is worth mentioning that the
modification of foods obtained from animals fed with fermented pomace fits in the strategy
to naturally enrich foods with nutrients and functional compounds [43]. This strategy
is supported by studies with apple [35], grape [38,39], olive and tomato pomaces [40,41].
However, additional studies are still necessary to identify relevant sources due to the
controversial results such as those reported for pomegranate pomace in chicken meat [42].

3. Enzyme Production and Potential Applications

The use of pomace for the production of enzymes obtained from the agro-industrial
processing of foods is an interesting strategy for producing high-added value products
(Table 3). One of the main pomaces explored in the production of enzymes is obtained from
apple processing. Recent studies point out that apple pomace can be used to obtain different
enzymes without an additional carbohydrate source [44–48]. For instance, the production of
lignin peroxidase and manganese peroxidase were reported from the fermentation of apple
pomace with Phanerochaete chrysosporium BKM-F-1767 [48]. In this study, apple pomace
was indicated as the most versatile residue to produce these enzymes in comparison to
brewery residue, pulp and paper residue, and fishery waste.

The production of amylase, cellulose, pectinase, and xylanase was reported for fermen-
tation with Rhizopus delemar F2 [44]. Similarly, the production of pectinase was reported in
another study carried out with Aspergillus parvisclerotigenus KX928754 where the fermen-
tation was optimized in terms of pH, temperature, and the period of fermentation [45].
Similarly, the combination of two Bacillus strains, Bacillus subtilis and Bacillus pumilus, was
indicated as a relevant strategy to produce pectinase from apple pomace [46]. In this study,
the authors optimized the fermentation by exploring the effect of solid content and the
ratio between B. subtilis and B. pumilus in the production of this enzyme.
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Table 3. Production of enzymes from the fermentation of apple, grape, olive, tomato, orange, pea, and carrot pomaces.

Source Microorganism Fermentation Conditions Enzyme and Enzymatic Activity Ref.

Apple pomace Phanerochaete chrysosporium BKM-F-1767 40 g substrate, 60% moisture, pH 4.5, 37 ◦C,
and 14 days

Lignin peroxidase: 141.4 U/gds
Manganese peroxidase: 631.2 U/gds
Laccase: 719.9 U/gds

[48]

Apple pomace Rhizopus delemar F2 5 g apple pomace, 10 mL moistening agent
(6.0 g Na2HPO4, 3.0 g KH2PO4, 0.5 g NaCl,
1.0 g NH2Cl, 2 mL of 1 M MgSO4 and 0.1 mL
of 1 M CaCl2)

Amylase: 21.0 U/g
Cellulase: 18.2 U/g
Pectinase: 61.5 U/g
Xylanase: 158.3 U/g

[44]

Apple pomace Aspergillus parvisclerotigenus KX928754 5 g substrate, pH 7.0, 168 h, 30 ◦C, 2% sucrose
and 3% peptone, 30 ◦C, and 168 h

Pectinase: 1366.3 U/mL [45]

Apple pomace Bacillus subtilis and Bacillus pumilus (20 and
80% in inoculum, respectively)

15 g substrate/L, 0.2 g/L pectin, 0.2 g/L
MgSO4 7H2O, and 0.2 g/L K2HPO4, pH 9.0,
130 rpm, 30 ◦C, and 24 h

Pectinase: 11.25 U/mL [46]

Apple pomace and dahlia tubers Mucor circinelloides 10 g substrate, apple pomace: dahlia tubers
(9:1), 83.5% moisture, 0.3% NH4H2PO4, 0.2%
KH2PO4 and 0.1% KCl, pH 6.4, 30 ◦C, 5.8 days

Inulinase: 411.3 U/gds [49]

Apple pomace Cellulosimicrobium sp. CKMX1 (wild) and
its mutant E5

10 g substrate, 20 mL basal salt medium, pH
8.0, 35 ◦C, and 72 h

Xylanase: 418 (wild)
and 568 (mutant E5) U/g

[47]

Grape pomace Aspergillus niger NRRL3 100 mL modified Czapex minimal medium
with grape pomace, 4% tannic acid, pH 5.50,
120 rpm, 30 ◦C

Tannase: 3.0–4.5 U/mL [50]

Grape pomace Bacillus subtilis natto DSM 17766 15 g/100 mL, 3% H2SO4, pH 6.0, and 7 days Cellulase: 0.2 U/mL [51]
Grape pomace Pleurotus ostreatus and Pleurotus pulmonarius 4 g, 26 ◦C, 140 rpm, and 15 days Laccase: 26.2 and 15,273.0 U/g for

Pleurotus ostreatus and
Pleurotus pulmonarius, respectively

[52]

Grape pomace and wheat bran Aspergillus niger 3T5B8 Grape pomace: wheat bran (50 and 50%),
60% moisture, 0.91% ammonium sulfate
solution, 37 ◦C, and 96 h

Tannase: 0.30 U/g [53]

White grape pomace, olive mill
wastewater, red grape pomace
and wheat bran

Aspergillus niger B60 50 g substrate, white grape pomace and olive
mill wastewater, red grape pomace, and wheat
bran (15, 15 and 70% of total substrate,
respectively), 30 ◦C, and 120 h

CMCase: 668 U/g
Polygalacturonase: 3151 U/g
Amylase: 1099 U/g
Xylanase: 579 U/g
Protease: 204 U/g

[54]

Olive pomace Kluyveromyces marxianus 5 g substrate, 45 ◦C, and 48 h Tannase: 42.4 U/mg [55]
Exhausted olive pomace Aspergillus niger CECT 2915 10 g substrate, 30 ◦C, and 6 days Xylanase: 28 U/g

Cellulase: 38 U/g
[56]
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Table 3. Cont.

Source Microorganism Fermentation Conditions Enzyme and Enzymatic Activity Ref.

Olive pomace and wheat bran Aspergillus ibericus MUM 03.49, Aspergillus
niger MUM 03.58, and Aspergillus
tubingensis MUM 06.152

30 g olive pomace: wheat bran (50 and 50%),
75% moisture, 30 ◦C, and 7 days

Lipase: 223, 53.6 and 7.6 U/g for A.
ibericus, A. niger
and A. tubingensis, respectively

[57]

Exhausted olive pomace Crypthecodinium cohnii ATCC 30772 5 and 8 g substrate/L, 27 ◦C, 160 rpm, and 7 days Pectinase: 37 and 33 U/mL for 8 and
5 g/L olive pomace, respectively

[58]

Tomato pomace Aspergillus oryzae NRRL 2220 in SSF or SmF 10 g substrate, 19.8 g/L casein, 0.92 g/L NaCl, 30 ◦C,
and 72 h

Protease: 21,309 and 2343.5 U/g for
SSF and SmF, respectively

[59]

Tomato pomace Aspergillus oryzae 2220 20 g, 50% initial moisture content, pH 6 and 1 mL of
5-day-old inoculum, 30 ◦C, and 72 h

Protease: 12 U/gds after 42 h [60]

Tomato pomace Aspergillus oryzae 2220 (static bioreactor) 5 kg, 10 cm bed, 30 ◦C, and 44 h Protease: 13.6 U/gds [60]
Tomato pomace and sorghum stalks Pleurotus ostreatus and Trametes versicolor 500 g tomato pomace, 100 g sorghum stalks,

and 28 ◦C
Laccase: 15 and 35 U/g for P.
ostreatus (4 days) and T. versicolor
(18 days), respectively
Protease: 13,000 and 34,000 U/g for
P. ostreatus (4 days) and T. versicolor
(13 days), respectively
Xylanase: 9 and 50 U/g for P.
ostreatus (4 days) and T. versicolor
(13 days), respectively

[61]

Tomato pomace, wheat bran,
and canola meal

Bacillus subtilis T4b Wheat bran 30 g/L, canola meal 40 g/L, and tomato
pomace 15 g/L, 180 rpm, 28 ◦C, and 48 h

Xylanase: 315 U/mL [62]

Orange pomace Aspergillus niger 5 g substrate, 30 ◦C, and 96 h Pectinase: around 17 U/g
(endo+exo enzyme activities)

[63]

Orange pomace Aspergillus niger (tray bioreactor) 285 g substrate/tray, 30 ◦C, and 96 h Pectinase: around 60 U/g
(endo+exo enzyme activities)

[64]

Orange pomace
with sugarcane bagasse

Aspergillus niger (tray bioreactor) 285 g substrate/tray, 30 ◦C, and 96 h Pectinase: around 75 U/g
(endo+exo enzyme activities)

[64]

Orange pomace Aspergillus niger (rotating-drum bioreactor) 285 g substrate/batch, 30 ◦C, and 96 h Pectinase: around 40 U/g
(endo+exo enzyme activities)

[64]

Carrot pomace Penicillium oxalicum BGPUP-4 10 g substrate, 90% moisture, 0.5% inulin,
0.2% NaNO3, 0.2 g/mL KH2PO4, 0.1% KCl,
0.05% MgSO4·7H2O, 0.001% FeSO4 7H2O
and 0.2% NH4H2PO4, pH 7.0, 30 ◦C, and 4 days

Inulinase: 322.10 U/g [65]

CMCase: carboxymethyl cellulase, SmF: submerged fermentation, and SSF: solid-state fermentation.
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Combining apple pomace with other sources of nutrients can improve enzyme pro-
duction yields. This factor was considered in the experiment carried out by Singh et al. [49],
who used dahlia tuber powder (source of inulin) to produce inulinase with apple pomace.
These authors optimized the fermentation in terms of moisture, fermentation period, and
pH. Another interesting strategy to obtain extracts rich in enzymes from apple pomace
consist in generating mutant strains such as those indicated by Guleria et al. [47]. In this
case, the new mutant of Cellulosimicrobium sp. CKMX1 E5 increased the production of
xylanase in relation to its parent strain.

Grape is another relevant substrate for the production of enzymes. In this case,
the production of tannase was obtained from the fermentation with Aspergillus niger
NRRL3 [50]. Similarly, the production of cellulose using Bacillus subtilis was also obtained
from the fermentation of grape pomace [51]. Another recent experiment indicated that
the production of laccase from grape pomace was dependent on the starter culture [52].
In this case, Pleurotus pulmonarius was more efficient for producing this enzyme than
Pleurotus ostreatus. Moreover, the authors also indicated that solid-state fermentation was
more appropriate than semiliquid and submerged fermentations.

The effect of adding wheat bran in grape pomace for the production of different
enzymes was studied in a recent experiment [53]. The fermentation with Aspergillus niger
successfully produced more tannase by combining wheat bran with grape pomace than
using only wheat bran. However, the presence of grape pomace limited the production of
xylanase and β-glucosidase and slowed the production of polygalacturonase. Additionally,
the authors also reported a dependency on time for the production of polygalacturonase
and carboxymethyl cellulase (higher enzymatic yields were obtained after 96 h of fermenta-
tion). Additionally, Papadaki et al. [54] reported the production of amylase, carboxymethyl
cellulase, polygalacturonase, protease, and xylanase from a substrate composed of white
grape pomace, olive mill wastewater, red grape pomace and wheat bran. Aspergillus niger
was used to obtain these enzymes.

Olive processing for oil extraction also generates a valuable substrate for microbial
enzyme production. For instance, a recent experiment with olive pomace indicated that
tannase could be obtained from the fermentation with Kluyveromyces marxianus [55]. An-
other relevant example that supports the use of this pomace in the production of enzymes
is the study carried out by Leite et al. [56]. In this case, the authors fermented the exhausted
olive pomace with Aspergillus niger and reported the production of xylanase and cellu-
lose. In the case of lipase production from grape pomace, the effect of Aspergillus species
was evaluated in a recent study [57]. Aspergillus ibericus was a more efficient species in
relation to Aspergillus niger and Aspergillus tubingensis. Interestingly, a related experiment
with exhausted olive pomace reported the production of pectinase from the growth of the
microalgae Crypthecodinium cohnii [58]. Additionally, no significant differences in terms of
substrate concentration (5 vs. 8 g/L) in the production of this enzyme were reported.

Tomato is another relevant source of pomace that can be utilized in the production
of enzymes. Proteases could be obtained from tomato pomace using Aspergillus oryzae
according to recent studies [59,60]. Moreover, the study carried out by Belmessikh et al. [59]
indicated that the production of protease from tomato pomace was more efficient in solid-
state rather than submerged fermentation. The optimization also indicated that casein and
NaCl levels are significant factors in improving the production of protease.

The combination of tomato pomace with other sources of nutrients for enzymatic
production has also been explored [61]. Particularly, for the combination with sorghum
stalks, the production in a laccase, protease, and xylanase were dependent on the starter
culture [61]. In this case, Pleurotus ostreatus was associated with a faster but less intense
production of these enzymes. Conversely, Trametes versicolor had higher production yields
but after longer fermentation periods. Another more recent experiment with tomato
pomace, wheat bran, and canola meal indicated that the fermentation with Bacillus subtilis
was associated with high xylanase content [62].
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Another relevant pomace for the production of enzymes is obtained from orange
processing. In this case, recent experiments explored the generation of pectinase from the
fermentation with Aspergillus niger [63,64]. It is also relevant to comment that a recent
experiment indicated that the use of sugarcane bagasse is a relevant strategy to reduce
moisture loss during fermentation and improve the production yield of pectinase from
orange pomace [64]. In a similar way, carrot pomace was indicated as an interesting
substrate for fermentation, which can be utilized in the production of inulinase [65]. The
production of inulinase was affected by moisture content, fermentation period, and pH.

The production of enzymes from pomaces can also be improved by the use of emerging
technologies such as microwave heating and ultrasound. This aspect was reported in the
production of carbohydrases from apple pomace by Pathania et al. [44]. According to
these authors, the intensity of microwaves (as a pre-treatment) had a significant effect on
the production yield. The maximum values for amylase, pectinase, and xylanase were
reported for the 450 W treatment. Additional power (up to 600 W) caused a reduction in
the production of enzymes. In the same line of thought, the use of ultrasound can improve
the production of enzymes. Leite et al. [56] indicated that using 750 W and 20 kHz and
optimizing the time and liquid/solid ratio (12.4 min and 7.3) maximized the production
yields of xylanase (75 U/g) and cellulase (35 U/g).

It is also important to highlight that some experiments to scale up the production of
enzymes from pomaces have been carried out in the last decade. One relevant example that
explored this aspect was performed by Boukhalfa-lezzar et al. [60] with tomato pomace
fermented with Aspergillus oryzae. In this study, similar production yields were reported
between lab scale and a bioreactor for protease production (12 U/gds after 42 h with 20 g of
substrate vs. 13.6 U/gds after 44 h with 5 kg of substrate). Another relevant experiment
supporting the increase in the production scale of enzymes was carried out with orange
pomace in a tray reactor and a rotating-drum reactor [64]. In this case, differences in
production yield were reported between these two reactors wherein the bioreactor with
trays had the highest yield. Moreover, both reactors increased the production of pectinase
in relation to a previous experiment from the same research group [63].

The purification of enzymes obtained from fermentation is another relevant aspect
considered in recent studies. In order to explore potential solutions to improve the sep-
aration of enzymes, an experiment with lignin peroxidase and manganese peroxidase
explored the use of centrifugation and filtration after the fermentation of apple pomace [48].
The results revealed that centrifugation was more efficient for separating both enzymes
than filtration. A recent study compared the use of fractionation with ammonium sul-
fate and chromatography filtration in the purification of tannase from fermented olive
pomace [55]. Both methods led to extracts with increased enzymatic activity wherein the
chromatography filtration was more efficient than fractionation with ammonium sulfate
(1026.1 vs. 664 U/mg, respectively). A similar outcome was obtained in another study
with pectinase from apple pomace (1081.7 vs. 860.6 U/mg for chromatography filtration
and ammonium sulfate fractionation, respectively) [45].

Potential applications can also be considered in the context of enzyme production.
Since pomace is a by-product from food processing, the use of these enzymes in food
production can be suggested. A relevant example is the experiment carried out by
Mahmoodi et al. [63]. In this study, cubic pieces of fresh apple were treated with pecti-
nase to produce apple juice. The main effects were the reduction in juice viscosity and
increased juice yield, soluble sugar content, and pectate content. A similar experiment with
polygalacturonase obtained from apple pomace was efficient for clarifying apple juice [66].

An interesting application for enzymes obtained from pomace fermentation is the
detoxification of food. This approach was evaluated by Cuprys et al. [67] who applied
laccase from apple fermentation with Trametes versicolor to decompose ciprofloxacin (an
antibiotic). However, the presence of a reducing agent (syringaldehyde in this study) was
necessary to favor the enzymatic degradation of this antibiotic in water. Although the sci-
entific information about the application of microbial enzymes from pomace fermentation
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in food processing is limited, the use of these enzymes could be considered to improve the
processing of beer, bread, cheese, syrup, and wine [68] in further experiments. Moreover,
potential applications in other research areas are in pharmaceutical, chemical, fuel, and
paper production [69].

The use of pomace from different sources can be seen as a relevant strategy to favor
the production of enzymes. Current scientific evidence indicates that the production of
enzymes can be improved by adding complementary sources of nutrients (such as ingre-
dients rich in carbohydrates for pomaces with reduced levels of this nutrient), applying
emerging technologies to favor the exposure of substrates, and increasing the scale of
production (minimal effect in production yield, to some extent). The purification with
different techniques can also be applied and support the progression towards application
in other industrial processes.

4. Release and Production of Bioactive Compounds

Improving the biological activity of pomace from food processing is one of the poten-
tial and emerging applications of fermentation. This strategy has been applied to obtain
carotenoids, fatty acids, γ-linolenic acid, and polyphenols (Table 4). Polyphenols are an im-
portant class of bioactive compounds that are found in pomaces. From a broad perspective,
polyphenols can be found either in free or bound forms. Polyphenols in free form are those
present in the cytosol of vegetable cells, whereas the bound polyphenols are those bound to
cell wall constituents [70]. For bound polyphenols in particular, their extraction is complex
and conventional extraction methods have low efficiency to separate these compounds
from structural components of food. In this context, the use of fermentation (by means of
the action of microbial enzymes) has been indicated as a relevant strategy to recovery this
compound [70,71].

Table 4. Bioactive compounds obtained from pomace fermentation.

Source Fermentation Conditions Bioactive Compounds Outcome Ref.

Grape pomace 2 g substrate, Rhizomucor miehei NRRL 5282,
37 ◦C, and 18 days

Polyphenols Oven dried: reduction in TPC and FRAP, no
effect in DPPH
Lyophilized: maximum TPC and FRAP
values at day 7, no effect in DPPH

[72]

Grape pomace 10 g substrate (grape pomace:wheat bran;
1:1), Aspergillus niger 3T5B8, 37 ◦C, and 96 h

Polyphenols Increased TPC, ABTS, and ORAC [53]

Grape pomace 50 g substrate, Trametes versicolor TV-6,
5 mycelial plugs, 27 ◦C, and 15 days

Polyphenols Reduced 5-lipoxygenase and hyaluronidase
activities (up to 4 days of fermentation),
and polyphenol content throughout
fermentation period

[74]

Grape pomace 60 g substrate, Actinomucor elegans ATCC-
22963 or Umbelopsis isabellina ATCC-36671,
30 ◦C, and 12 days

γ-Linolenic acid
and carotenoids

γ-Linolenic acid: maximum at 4 days for
Umbelopsis isabellina and 6 days for
Actinomucor elegans
Carotenoids: carotene increased throughout
fermentation and maximum at 8 days
for lutein

[73]

Apple pomace 2 g substrate, Rhizomucor miehei NRRL 5282,
37 ◦C, and 18 days

Polyphenols Oven dried: reduced TPC, maximum FRAP
value at day 3, no effect in DPPH
Lyophilized: slight increase in TPC and
DPPH up to day 10, maximum FRAP value
at day 10

[72]

Apple pomace 12.5 g, natural fermentation, 30 ◦C, and 72 h Polyphenols Reduced throughout
the fermentation period

[75]

Apple pomace 250 g substrate, Saccharomyces cerevisiae ref:
32, Saccharomycodes bayanus ref: C6, and
Hanseniaspora uvarum ref: 62, 25 ◦C,
and 7 days

Fatty acids
and polyphenols

Increased fatty acids
Slight reduction in polyphenols

[76]

Apple pomace 40, 60 and 80 g substrate/L,
Yarrowia lipolytica, 28 ◦C, and 6 days

Fatty acids Maximum production after day 3 [77]

Elderberry and dwarf
elderberry pomace

50 g substrate, Aspergillus niger ATCC-6275,
30 ◦C, and 6 days

Polyphenols and
fatty acids

TPC: maximum release
up to 3–4 days of fermentation
DPPH: maximum after 3–4 days of
fermentation
Lipids: slight increase in linoleic and oleic
acids up to 4 days of fermentation

[78]

Olive pomace 5 g substrate, Kluyveromyces marxianus
NRRL Y-8281, 45 ◦C, and 48 h

Tannic and gallic acids Reduced tannic acid and increased gallic
acid content

[79]

Exhausted olive pomace 5 and 8 g substrate/L, Crypthecodinium
cohnii ATCC 30772, 27 ◦C,
160 rpm, and 7 days

Fatty acids Increased total lipid and DHA content in
dry cells

[58]
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Table 4. Cont.

Source Fermentation Conditions Bioactive Compounds Outcome Ref.

Exhausted olive pomace 25 g substrate/L, Crypthecodinium cohnii
ATCC 30772, 27 ◦C, 160 rpm, and 5 days

Fatty acids High production yield; negative effect of
detoxification prior to fermentation

[80]

Chokeberry pomace 40 g substrate, Aspergillus niger ATCC-6275
or Rhizopus oligosporus ATCC-22959, 30 ◦C,
and 12 days

Polyphenols TPC: maximum at 6 days for
or Rhizopus oligosporus and 9 days for
Aspergillus niger; DPPH and TEAC:
maximum at 6 days for Aspergillus niger
and 9 days for Rhizopus oligosporus

[81]

Plum pomace 15 g substrate, Aspergillus niger ATCC-6275
or Rhizopus oligosporus ATCC-22959, 30 ◦C,
and 14 days

Polyphenols TPC: maximum after 9 days of fermentation;
DPPH: maximum at 6 days of fermentation

[82]

Apricot pomace 15 g substrate, Aspergillus niger ATCC-6275
or Rhizopus oligosporus ATCC-22959, 30 ◦C,
and 14 days

Polyphenols TPC: maximum at 9 days for Rhizopus
oligosporus; reduced after 6 days for
Aspergillus niger; DPPH: maximum at 2 days
for both

[83]

Pitahaya pomace 2 g substrate, Rhizomucor miehei NRRL 5282,
37 ◦C, and 18 days

Polyphenols Oven dried: slight decrease in TPC,
decreased FRAP, and no effect in DPPH
Lyophilized: slight increase in TPC,
maximum FRAP value at day 10 and DPPH
value at day 15

[72]

Red bayberry pomace 0.02% live yeast, 25 ◦C, 16 h followed
by 0.1% probiotic mix, 28 ◦C, 24 h, and let
for up to 7 days

Polyphenols Increased TPC and TFC values; reduced
DPPH value

[84]

DHA: Docosahexanoic acid, DPPH: (2,2-diphenyl-1-picrylhydrazyl) free radical, FRAP: ferric reducing antioxidant power, ORAC: oxygen
radical absorbance capacity, TEAC: trolox equivalent antioxidant capacity, TFC: total flavonoid content, and TPC: total polyphenol content.

For instance, studies carried out with grape pomace indicate that polyphenols [53,72],
γ-linolenic acid and carotenoids [73] can be obtained from fermentation. In addition to the
characterization of the content of these bioactive compounds, these studies also revealed
aspects related to the preparation of samples, fermentation period, and the effect of the
starter culture.

Regarding the effects of sample preparation and fermentation period in the release of
polyphenols, a recent experiment indicated that lyophilization is a better pre-treatment than
oven-drying to improve the extraction of polyphenols from grape pomace [72]. Moreover,
this study also indicated that long fermentation periods do not favor the accumulation
of polyphenols. Additionally, this effect could be explained by the instability of free
polyphenols during fermentation. The gradual decomposition of free polyphenols can
occur, which may be compensated by the release of bound polyphenols from microbial
activity. Another related study with pomace supports this consideration and the necessity
to define the optimum fermentation period. The high polyphenol and bioactivity in the
beginning of the fermentation period were followed by the reduction in both indicators
(polyphenol content and biological activity) as fermentation progressed up to 15 days [74].
Additionally, Teles et al. [53] reported increasing polyphenol content and antioxidant
activity during the fermentation of grape pomace with Aspergillus niger during a shorter
period (96 h) in relation to these aforementioned studies. This study also indicated that
polyphenol content was positively correlated with antioxidant potential.

The production of γ-linolenic acid and carotenoids by solid-state fermentation also
displayed the same dependency on fermentation time, wherein maximum yields were
obtained after 6 days of fermentation [73]. In the case of carotenoids, the synthesis of
lutein had a maximum yield after 8 days, whereas the production of carotene increased
throughout the fermentation period (18 days).

Apple pomace has also been explored as a relevant source of polyphenols and fatty
acids. For instance, the effect of pre-treatment and fermentation on polyphenol accumula-
tion during fermentation was studied by Zambrano et al. [72]. The maximum polyphenol
content was not affected by the pretreatment (lyophilization vs. over-drying), but signifi-
cant changes were reported during the fermentation period. The maximum polyphenol
yield and antioxidant potential were obtained at day 10. Conversely, Lohani and Muthuku-
marappan [75] reported a gradual reduction in the polyphenol content of naturally fer-
mented apple pomace. Madrera et al. [76] reported a slight reduction in the polyphenol
content of fermented apple pomace with different yeasts. Additionally, this study also
indicated that the production of fatty acids can be obtained from the fermentation of apple
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pomace with yeasts. An interesting experiment with apple pomace explored the production
of fatty acids in a 5 L bioreactor [77]. In this case, different concentrations of apple pomace
were used as a carbon source for lipid biosynthesis. A concentration-dependent effect
(40, 60 and 80 g substrate/L) in the production of fatty acids was reported. Moreover, the
maximum yield for each tested apple pomace concentration was achieved in a short period
(3 days).

In the case of olive pomace, the fermentation with Kluyveromyces marxianus led to a
reduction in tannic acid content and an increase in the concentration of its depolymerized
form, gallic acid [79]. Another interesting application of exhausted olive pomace (residue
obtained after the removal of residual oil from olive pomace) is the production of microbial
fatty acids, especially docosahexaenoic acid (DHA). A recent experiment indicated that
the concentration of exhausted olive pomace had a concentration-dependent effect in the
production of DHA by the microalgae Crypthecodinium cohnii [58]. Interestingly, another
study with the same microalga revealed that detoxification with activated carbon reduced
the production of fatty acids [80].

The simultaneous production of polyphenols and fatty acids from fruit pomace was
also explored in a recent study with two Sambucus species [78]. In these fruits, optimum
polyphenol production yield and antioxidant activity were obtained at day 3 and 4 (regard-
less of species), respectively. A similar effect was observed for the accumulation of linoleic
and oleic fatty acids, which had maximum values at day 4. Similarly, the accumulation of
polyphenols and antioxidant activity during the fermentation of chokeberry pomace were
dependent on the time and starter culture [81]. Maximum values for total phenolic content
were obtained between day 6 and 9 of fermentation for Rhizopus oligosporus and 9 days for
Aspergillus niger.

Studies carried out with plum [82] and apricot [83] pomaces indicated that opti-
mum fermentation periods for polyphenol accumulation and antioxidant activity from
Aspergillus niger fermentation were 9 and 6 days, respectively. Another recent experiment
indicated that the accumulation of polyphenols in pitahaya pomace from the activity of
Rhizomucor miehei was improved by lyophilizing samples before fermentation [72]. A related
experiment evaluated the accumulation of polyphenols and antioxidant activity in red bay-
berry pomace during 7 days during the sequential fermentation with Saccharomyces cerevisiae
and a mix of lactic acid bacteria (Lactobacillus bulgaricus, Bifidobacterium lactis, and other lactic
acid bacteria) [84]. A gradual increase in the polyphenol content was reported throughout
the 7 days of fermentation. Moreover, the antioxidant activity of fermented pomace after
this period was improved in relation to non-fermented pomace.

Since the fermentation of pomaces can lead to high polyphenol content and antioxidant
activity (Table 4), the biological response to the consumption of fermented pomace was also
explored in recent studies. Improvements in the antioxidant defense system and a reduction
in the oxidative status of liver and ilium in mice fed with fermented blueberry pomace
were reported [85]. The intestine inflammatory response (tumor necrosis factor-alpha and
interleukin-10) was also improved in animals that consumed the diet supplemented with
fermented blueberry pomace. Concentration-dependent effects were observed in the antioxidant
and anti-inflammatory activities. Moreover, these effects ameliorated the modifications induced
by a high-fat diet in terms of antioxidant and anti-inflammatory responses.

A further experiment carried out by the same research group explored the functional
effect of fermented blueberry pomace in indicators of gut health of mice [86]. The con-
sumption of supplemented diets improved the gut immunological response (secretory
immunoglobulin A), affected the gut microbiota and also favored the production of bu-
tyric acid (a short fatty acid associated with health benefits). Again, the supplemented
diet ameliorated the modifications induced by a high-fat diet in the gut immunological
response and gut health. Another experiment in vivo that supports the health benefits
associated with the fermentation of pomaces was carried out by Yan et al. [87]. In this
case, the consumption of fermented blueberry pomace (rich in polyphenols) improved the
resistance to fatigue in relation to control animals that ingested sterile water.
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Along with the production of fermented pomaces with increased biological activity,
it is also important to develop strategies to isolate active components from the bulk of
fermented pomace. This aspect was recently explored by Espinosa-Pardo et al. [88] who
optimized the extraction of polyphenols with super-critical CO2 and co-solvents. The
authors indicated that the extraction with CO2 (25 MPa at 60 ◦C) and 90% ethanol as
co-solvent was the most efficient extraction condition to obtain the highest polyphenol
content and antioxidant activity. Another important aspect to consider is the effect of
digestion in the stability of active compounds. Yan et al. [87] evaluated the impact of
simulated digestion and indicated significant reduction in the polyphenol content and
antioxidant activity of blueberry pomace fermented by Lactobacillus rhamnosus GG and
Lactobacillus plantarum-1 (1:1).

The fermentation of pomaces can be seen as a relevant strategy to produce func-
tional supplements with interesting biological effects, especially from berries. However,
additional advances, especially in the application of extraction technologies and the charac-
terization of biological effects in vivo, are still necessary.

5. Production of Organic Acids

Organic acids are multipurpose compounds that have been applied in animal pro-
duction [89], food processing [90], cosmetic preservation [91] and battery recycling [92],
for instance. Due to their importance and the current trends to improve sustainability
within the organic acid production sector, several studies have been carried out to explore
the use of pomaces in the production of high-added value compounds (Table 5). One
relevant example of this strategy is the study performed by Vashisht et al. [93] who eval-
uated the production of acetic acid using Acetobacter pasteurianus SKYAA25 from apple
pomace. These authors indicated that the production of acetic acid was affected by the
temperature (37 ◦C), concentration of bioethanol (8%, produced from the same strain), and
apple pomace (2%) in fermentation media. Similarly, the production of acetic acid from the
fermentation of apple pomace was reported in another study using Acetobacter aceti [94].

Table 5. Organic acids produced from pomace fermentation.

Source Fermentation Conditions Organic Acid and Yield Ref.

Apple pomace 120 g substrate/L, Acetobacter
pasteurianus, 37 ◦C, 180 rpm,
and 24 h

Acetic acid: 52.4 g/100 g DM [93]

Apple pomace 1.5 L of substrate, Acetobacter aceti,
pH 7.0, 28 ◦C, and 7 days

Acetic acid: 61.4 g/100 g DM [94]

Apple pomace 14 g substrate/100 g,
Propionibacterium freudenreichii, 37 ◦C,
and 120 h

Propionic acid: 38 g/100 g DM [95]

Apple pomace 250 mL substrate, Propionibacterium
freudenreichii, 37 ◦C, and 120 h

Acetic acid: 5.01 g/L
Propionic acid: 14.54 g/L

[96]

Apple pomace 25 g substrate, Aspergillus ornatus
and Alternaria alternate, pH 5.0,
30 ◦C, and 48 h

Citric acid: 0.5 g/L [97]

Apple pomace 25 g substrate, Rhizopus oryzae, 30 ◦C,
and 14 days

Fumaric acid: 52 g/kg [98]

Apple pomace 3–4 L working volume, 50%
moisture, Rhizopus oryzae, 1.97 atm,
and 14 days

Fumaric acid: 138 g/kg [99]

Piwowarek et al. [95] studied the optimization of the production of propionic acid
from apple pomace fermentation with Propionibacterium freudenreichii T82. According to
these authors, the accumulation of propionic acid was increased due to a better control of
the fermentation process, i.e., adding biotin to fermentation media, carrying out the pH
control at 24 and 48 h of fermentation, and increasing the nitrogen level (supplementing
the apple pomace with peptone). However, no significant effects were obtained for the
variations in temperatures from 30 to 37 ◦C. In another study from the same research
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group with apple pomace, the effect of supplementation (potato wastewater, yeast extract,
and peptone) to increase the production yield of propionic acid was evaluated [96]. The
use of yeast extract and peptone in apple pomace in the fermentation medium improved
the propionic acid yield to a maximum of 14.54 g/L after 120 h of fermentation with
Propionibacterium freudenreichii. Additionally, the production of acetic acid was also eval-
uated in this study. A continuous increase in the accumulation of this acid was reported
until the end of the fermentation period (120 h) and the most efficient supplement for apple
pomace was potato wastewater (maximum yield of 5.01 g/L).

Apple pomace can also be fermented to produce citric acid [97]. In this case, a
recent experiment explored the effect of temperature, pH, and substrate amount in the
fermentation batch with the combination of Aspergillus ornatus and Alternaria alternate.
The pH and temperature had optimum values of 5 and 30 ◦C, respectively. Increasing
the substrate caused a significant increase in the production of citric acid, which led
to choosing the maximum substrate amount tested in this study (25 g). Additionally,
supplementing the apple pomace with arginine favored the production of citric acid
(maximum yield of 2.7 g/L).

Another relevant acid produced from pomaces is the fumaric acid. The production of
this acid with Rhizopus oryzae was dependent on the fermentation time [98]. The maximum
yield was reported after 14 days (52 g/kg) and no additional increase was observed at up
to 21 days of fermentation. The production of fumaric acid using the same microorganism
and pomace was also explored in a bench scale fermenter [99]. The system comprised
by a rotary drum increased the production of fumaric acid to 138 g/kg within the same
fermentation period (14 days).

6. Production of Bioflavors

The production of high-added value compounds from pomaces has also been shown
to produce bioflavors. The production of aromas from apple pomace fermentation was ex-
plored in a recent experiment with yeasts (Hanseniaspora uvarum, Hanseniaspora valbyensis,
and Saccharomyces cerevisiae) [100]. This study indicated a strain-dependent effect in the
formation of volatile compounds wherein the use of Saccharomyces cerevisiae led to a big-
ger accumulation of volatile fatty acids and their respective ethyl esters, whereas the
fermentation with Hanseniaspora strains favored the generation of volatile acetic acid
esters. A related study evaluated the effect of fermented pomace in a volatile compo-
sition of beer [101]. In this case, apple pomace was fermented with lactic acid bacteria
(Lactobacillus rhamnosus 1473 and 1019, and Lactobacillus casei 2246) and significant dif-
ferences were reported among volatile compositions of apple pomace. However, the
fermented pomace (Lactobacillus rhamnosus 1473) led to slight modifications in the volatile
composition (particularly for ketones and alcohols) of beer. The production of biofla-
vors was also explored using Lacticaseibacillus rhamnosus to ferment orange pomace [102].
This study revealed that fermented pomace had floral (citronellyl formate, 1-nonanol,
and β-linalool), citrus (citral and limonene), fruity (β-cyclocitral and benzaldehyde), herba-
ceous (1-hexanol), bready and caramelly (furfural), and spice (eugenol and carveol) notes.

Finally, another aspect to be considered in the context of the utilization of high-added
value compounds obtained from the fermentation/biotransformation of pomaces is their
safety. Mycotoxins and pesticides are relevant contaminants in the peels of fruits that
may persist in pomaces [103–105]. The effect of fermentation to decontaminate fruits and
pomaces is still poorly studied.

7. Conclusions

The use of fermentation/biotransformation to obtain high-added value compounds is
a valuable solution to improve the reutilization of pomaces from the food industry. The
advances in incorporating and optimizing the use of pomaces in animal feed by generating
silages and feeds that improve animal health is a relevant alternative to using fermented
pomaces. Growth performance can be affected, whereas animal health status can be
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improved. The absence of negative effects and the improvement in the nutritional quality
of the foods obtained from animals fed with fermented pomaces is another favorable
characteristic to support this strategy.

In terms of industrial processes, the production of high-added value products (espe-
cially from grape, apple, and olive) such as enzymes and organic acids for application in
food processing as well as in other areas is a relevant application. The release of bound phe-
nolics for the development of functional foods (supported by studies in vitro and in vivo),
the synthesis of carotenes and fatty acids, and the production of volatile compounds to
improve the aroma of food products are potential applications.

One of the main limitations in terms of industrial application consists of its current
poor incorporation into other processing chains. Extraction and purification technolo-
gies can be seen as current bottlenecks to strengthening the connections between the
pomace generation in food industries and their incorporation into other productions
chains. In this sense, further studies could aim to explore strategies to improve the iso-
lation of high-added value compounds. Additional studies are still necessary to define
strategies to apply the high-added value compounds obtained from pomaces from fer-
mentation/biotransformation in the development of food products. Studies about the
detoxification and reduction of potential health risks associated with mycotoxins and
pesticides are necessary.
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