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Abstract: Online monitoring of fermentation processes is a necessary task to determine concentrations
of key biochemical compounds, diagnose faults in process operations, and implement feedback
controllers. However, obtaining the signals of all-important variables in a real process is a task that
may be difficult and expensive due to the lack of adequate sensors, or simply because some variables
cannot be directly measured. From the above, a model-based approach such as state observers may
be a viable alternative to solve the estimation problem. This work shows a comparative analysis
of the real-time performance of a family of sliding-mode observers for reconstructing key variables
in a batch bioreactor for fermentative ethanol production. These observers were selected for their
robust performance under model uncertainties and finite-time estimation convergence. The selected
sliding-mode observers were the first-order sliding mode observer, the proportional sliding mode
observer, and the high-order sliding mode observer. For estimation purposes, a power law kinetic
model for ethanol production by Saccharomyces cerevisiae was performed. A hybrid methodology
allows the kinetic parameters to be adjusted, and an approach based on inference diagrams allows
the observability of the model to be determined. The experimental results reported here show that
the observers under analysis were robust to modeling errors and measurement noise. Moreover, the
proportional sliding-mode observer was the algorithm that exhibited the best performance.

Keywords: state observers; sliding modes; real-time implementation; batch bioreactor; ethanol
fermentation

1. Introduction

In recent years, fermentation processes have become an industry of great economic
importance, this has motivated scientists and engineers to seek new strategies to improve
performance and reduce operating costs. A key question when optimizing this type
of bioprocess is how to monitor all its critical variables online since this is a necessary
task to bring the process to the desired state of operation [1]. However, the available
instrumentation and sensors do not always cover all the necessary measurements or at
least the necessary ones. The low availability of sensors in the market and their high costs,
the presence of noise measurement, the operational politics of the bioreactors, and their
intrinsic nonlinear behavior, are strong obstacles to bioreactor instrumentation [1,2].

Due to a growing need to optimize production processes and increase the quality of
final products, engineers in the industry commonly see soft sensor (SSs) or virtual sensor
(VSs), which are also called state observers, as a viable alternative for monitoring key
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variables in the bioprocesses. Compared to expensive and relatively complex analytical
techniques, these can provide reliable estimates online, require no maintenance, and are
less expensive [3].

VSs are classified into two types: techniques based on historical data and model-based
techniques. In the first case, the VS uses the historical values of the available measurements
to build a model that allows the inference of the variables of interest. In this class of
techniques, artificial neural networks, vector-supported machines, and regressive models
stand out [4]. On the other hand, model-based techniques combine online measurements
using physical sensors and an estimation algorithm based on an auxiliary system built
using a model of the fermenter [1]. Figure 1 shows a general scheme of the implementation
of virtual sensors based on a model implemented in a biological system.
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Some of the advantages of state observers are the following: (a) they require fewer
computational resources and measurements compared to databased techniques, (b) the use
of phenomenological models facilitates the interpretation of the results, and (c) they do not
require a specific architecture for the processing or training stages [5].

There is literature in which the classic Luenberger and Kalman observers commonly
stand out. They guarantee asymptotic convergence of the estimated states to the real
states if the model is exactly known [6]; however, they may lack robustness in the face
of parametric uncertainty and unmodelled terms, i.e., when the model used to build the
observer does not exactly match the system under observation. Another problem is the
unknown disturbances affecting the observed system. The classic observers do not consider
these disturbances in their structure [7].

To address the above problems, there exist, in the literature, improved or extended
versions of the Luenberger and Kalman observers. Another alternative is the sliding-mode
observers, which have drawn attention due to their robust properties against external and
internal uncertainties, modeling errors, and measurement noise. These observers force the
trajectories of the states to an area called the sliding surface, where the estimation error
converges to zero or close to zero. Moreover, they achieve finite time convergence [2,8].

A major factor limiting the real-time implementation of on-line monitoring techniques
is the lack of suitable sensors. Table 1 shows the general panorama of the role that state
observers play in bioprocesses. In many cases, numerical simulations permit the assessing
of the performance of the observers, although there are also real-time implementations
where the bioprocesses are already equipped with the necessary hardware and software
for implementation [9–11]. For example, Petre et al. [12] developed an adaptive control-law
design based on nonlinear estimation algorithms for unknown inputs and kinetics.
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Table 1. Overview of the application of state observers in bioprocesses.

Observer Process Measured Variables Estimated Variables References

Sliding-mode observer Model of a stirred tank Substrate concentration Substrate consumption rate [8]

Neural networks Fermentation for yeast production
by Saccharomyces cerevisiae

Substrate concentration
volume of the medium

Biomass concentration
Trehalose concentration [9]

Asymptotic observer
Continuous fixed-bed anaerobic

reactor used for
wastewater treatment

Flow of O2 in and out,
volume, inlet fructose, and

nitrogen concentration
Biomass concentration [10]

Sliding-mode observer Alcoholic fermentation process Substrate and
ethanol concentration Influent substrate [12]

Extended Kalman filter Anaerobic digestion pilot plant Methane flow outlet Substrate concentration [13]

Recursive Bayesian filter Alcoholic fermentation by
Zymomonas mobilis M

Substrate and
product concentration Biomass concentration [14]

Super-twisting observer Beer fermentation Reducing sugars and ethanol
via HPLC Biomass concentration [15]

Geometric observer Yeast fermenter Substrate concentration Biomass concentration [16]
Extended Luenberger

observer Anaerobic digestion model Biomass concentration and
volatile fatty acids

Concentrations of methane and
carbon dioxide [17]

Hybrid observer (linear
and nonlinear

Luenberger observer)

Biohydrogen production
fermenter model

Concentrations of glucose
and biomass Production of hydrogen [18]

Another common practice is to carry out numerical simulations and validate the
numerical results using the experimental data. For instance, Avilés et al. [18], designed
an interval observer applied to a dark fermenter for the production of biohydrogen. The
observer estimates the concentrations of glucose and biomass and the flux of hydrogen
produced, and compares their results with offline experimental data.

This work studies the performance of three sliding mode observers for the real-time
monitoring of the concentrations of substrate, ethanol, and CO2 in a batch fermenter by the
strain Saccharomyces cerevisiae, from the measurement of biomass. These observers are the
sliding-mode observer, the proportional sliding-mode observer, and the high-order sliding-
modes observer. The experimental configuration, the characteristics of the bioprocess
and the implemented observation strategies are briefly exposed. A power-law kinetic
model is proposed for the description of ethanol production. Numerical simulations are
performed using a perturbed biomass concentration signal as the available measurement
and the efficiency of each observation strategy is evaluated using the absolute integral error
and squared integral error performance indices. Based on the results from the numerical
simulations, online observation strategies were implemented, and finally the proposed
approaches were validated with experimental data.

2. Materials and Methods

Figure 2 shows a general scheme of the methodology used in this research work.
Firstly, an experimental database of the fermentation process-time evolution was generated
with the main performance variables of substrate (s), biomass (x), ethanol (Et) and carbon
dioxide (CO2). The above information was employed to develop a kinetic model to
describe the dynamic behavior of the bioreactor. The adjustment of the kinetic parameters
of the model was carried out using a hybrid parametric identification methodology. The
prediction error of the model was minimized using the local optimization method to obtain
the initial values of the parameters so that later a global optimization algorithm used those
values to obtain the optimal values of the parameters [19]. Finally, the proposed kinetic
model was validated through statistical correlation coefficients.

Once the bioreactor model was established and validated, the observability of the
model was evaluated through a graphic methodology based on an inferential diagram.
To show the ideal performance of the selected observers’ structures, they are numerically
implemented via dynamic simulations, to evaluate their performance, with the integral
absolute error index (IAE) and the integral squared error index (ISE). The second phase
of this methodology was the implementation in real-time, of the proposed sliding-mode
observers. The performance of each observer was also evaluated using IAE and ISE where
the estimation errors were defined as the difference between experimental values and the
values of the state observers.
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2.1. Batch Fermenter

The scheme of the batch fermenter is shown in Figure 3. The reactor was an original
design inspired by a stirred tank reactor to ensure a homogeneous mixture in the tank. The
tank was instrumented with a low-cost turbidity probe.
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The following components comprise the experimental setup:

(a) NI CRIO-9030: high-performance real-time controller with a reconfigurable FPGA
chassis, using a 1.33 GHz dual-core Intel Atom chip;

(b) NI 9381: 24-bit analog input module for the cRIO real-time embedded system;
(c) Turbidity sensor (used to determine the biomass concentration);
(d) Tank with a capacity of 2 L;
(e) 12 V voltage source;
(f) LED monitor as a user interface.

The fermentation was carried out with an inoculum at 0.1 g L−1 of Saccharomyces
cerevisiae, with 1 L of sterile YM medium. The initial substrate concentration was adjusted
S0 = 54 g/L. The incubation temperature was 30 ± 3 ◦C and agitation was 150 rpm [20].
The fermentation time was 24 h.

The optical-density-determined cell-count spectrophotometric method (at a wave-
length of 230 nm), the dry weight method, and the GT-TSW-30 probe to perform online
measurements [21]. Total reducing sugars were estimated using the dinitrosalicylic acid
(DNS) colorimetric method adapted from [22]. Reducing sugars were calculated using the
regression equation (standard curve with glucose (1 mg mL−1)). Ethanol was determined
by chromatography. The standard curve was obtained with HPLC-grade ethanol (Sigma-
Aldrich). A Varian CP-9002 gas chromatograph with a flame ionization detector equipped
with a ZB-FFAP column was used. The concentration of CO2 was monitored with the
CO2-BTA Vernier probe; this probe monitored the amount of infrared radiation absorbed
by carbon dioxide molecules. A CO2 gas sensor monitored carbon dioxide production as
the yeast consumed different initial concentrations of glucose [23].

2.2. Proposed Kinetic Model

Mathematical models allow the essential characteristics of the phenomena that occur
within bioprocesses to be described. In addition, they play a key role for model-based
observation algorithms since the efficiency of the observer depends on the ability of the
model to emulate the bioprocess dynamics [1].

Kinetic models provide fundamental information for the design and optimization of
bioprocesses. To develop these models, a reaction scheme, which corresponds to a network
of chemical reactions, is postulated and is based on the evolution of observed chemical
species and finally, on some theoretical or heuristic considerations of possible reaction
pathways [24]. The named power law, is an approach which is frequently used to express
chemical reaction rates [25]. Once the structure of the model is established, the calculation
of the kinetic parameters of the model is carried out. These are generally determined in two
different ways; either one at a time, considering the different components and processes of
the model individually, or collectively calibrating the parameters to make the model fit the
experimental measurements [26]. In both cases, if a reasonable statistical fit is achieved,
the general kinetic model, comprising the initially postulated reaction scheme and the
estimated kinetic parameters, is accepted. If not, the kinetic models and/or in the reaction
scheme are modified [27]. Bioprocess modeling is classified into two groups: structured
and unstructured models.

As is well known, unstructured models describe fermentation processes, considering
that microorganisms and/or cells have a fixed and simple composition. However, by
idealizing the process conditions, they are not always able to describe the real dynamics.
On the other hand, the so-called structured models use a more detailed approach to cell
metabolism, aimed at better describing the dynamic behavior of the process [27,28]. Within
the structured models we can find the so-called compartmental models. These combine
a better description of the behavior of the fermentation that includes the substrate con-
sumption and the generation of the metabolites of interest, with reasonable mathematical
complexity and a smaller number of parameters [26,29].

The present work used a power-law kinetic model for the description of bioethanol
production in a batch bioreactor by the microorganism Saccharomyces cerevisiae as described



Fermentation 2022, 8, 446 6 of 19

in Equations (1)–(4). The model had a phenomenological approach, such that it was
based on the biochemical reaction network, so the proposed model was able to predict the
bioreactor dynamic behavior under different operation conditions [26].

Proposed reaction rates:

Substrate balance
(
s) :

.
s = −α1sx (1)

Biomass balance
(
x) :

.
x = α2sx−α5Et (2)

Ethanol balance (Et) :
.
Et = α3sEt − α6x (3)

CO2 balance (CO2) :
.

CO2 = α4sx (4)

here α1, α2, α3, α4, α5, and α6 are the kinetic constants for the concentrations of s, x, Et,
and CO2.

To present Equations (1)–(4) in standard state space form, consider the next expression
for the state vector:

ℵ = [s, x, Et, CO2]
T

which allows writing of Equations (1)–(4), in a general form, as:

.
ℵ = f (ℵ, u); ℵ(t0) = ℵ0; y = [0, 1, 0, 0]Tℵ (5)

where ℵ ∈ R4 is the state vector, u ∈ Rm is the input, f , y, and h are vector fields, and
y ∈ Rp is the output measurement.

The advantages of the model are as follows: (a) The overall strength of the proposed
kinetic modeling approach is that it quantitatively takes into account the factors that
determine the rate of reactions for the main fermentation metabolites. (b) This kinetic
can be applied independent of the microorganism, i.e., for different strains of yeast only
a specific parametric identification must be done. (c) The principles of kinetic modeling
are applicable to the extracellular environment from the fermentation in batch operation.
(d) Thus, the proposed kinetic model can not only describe the reaction rates of substrate
and products, but also show that it also has the ability to predict under different initial
experimental conditions.

2.2.1. Parametric Identification of the Kinetic Model

Within the optimization methods, we can find local, global and hybrid methods. Local
methods are robust and easy to implement, generally requiring some kind of parameter
initialization, a position in the parameter space from which to start optimization. The initial
parameter set is then improved by repeated application of the optimization algorithm; how-
ever, this causes the algorithm to converge slower in terms of the number of evaluations
of the objective function. Furthermore, it should be taken into account that the objective
function normally has several local optima and that the choice of initial values is crucial
to finding the global optimum using local methods [19]. On the other hand, global opti-
mization methods search the parameter space more comprehensively; however, a common
drawback with these algorithms is a slower convergence rate [29]. Hybrid optimization
methods benefit from both the ability of global methods to explore parameter space and
the faster rate of convergence of local methods once they approach a local optimum [19].

A hybrid optimization method proposed by Grisales et al. [19] estimates the value of
the parameters of Equations (1)–(4). This method has been reported as the best approach to
guarantee an optimal estimation of the parameters at a global level.

Parameter estimation problems for nonlinear dynamical systems arise as the mini-
mization of an objective function. Mathematically, the formulation of the objective function
is a nonlinear programming problem that consists of finding a vector of parameters to
estimate P from the goodness-of-fit of the model with respect to a given set of experimental
data. Each designer can propose the objective function based on their needs. This can
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be as simple as some error norm between the experimental data and the model predic-
tions [19,29], or more specifically, where some weighting matrix and some restrictions are
added path and points of equality and inequality that express additional requirements for
the performance of the system [30,31].

The hybrid approach shown in Figure 4 minimizes the error between the values of
the experimental data and the simulated values of the model, which we will define as the
following objective function J, as is usually considered [19,29]:

J =
t f

∑
t=0

([
sexp − sm

]2
+
[
xexp − xm

]2
+
[

Etexp − Etm

]2
+
[
CO2exp − CO2m

]2
)0.5

(6)

here sexp, xexp, Etexp , and CO2exp are the experimental data measured in (g/L) and sm, xm, Etm ,
and CO2m are the model estimates.
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Figure 4. In the algorithm used for kinetic fitting, the subscript i refers to the value of the functions J
and P at the iteration i− 1.

In Figure 4, the first iteration (P1, J1) uses the nlinfint library (local method based on
the Levenberg–Marquardt algorithm) for the estimations of initial parameters. Later in the
iteration (P2, J2) uses the Fminsearch method (global method without derivatives) to estimate
the optimal values of the parameters. Additionally, if the difference in the minimum value
of the objective functions achieved by the two methods is below a threshold ε (in this
work ε = 1 was used), it is assumed that the resulting parameters in (P2, J2) are the global
optimum, if it is not true that (J1 − J2 < ε) then the first iteration is repeated and P2 = P is
used as the new initial values.

2.2.2. Parametric Sensitivity Analysis

A parametric sensitivity analysis determines the degree of change the model undergoes
in response to variations of its parameters [30]. This type of analysis is extremely important
to determine the region of confidence of the model based on the maximum and minimum
values that the kinetic parameters can take. In addition, it allows us to determine the
parameters that most influence the dynamics of the model [26].

The Monte Carlo method is a global sensitivity analysis, running parameter sweeps
by substituting a range of values (a probability distribution), exploring the design space,
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and testing various scenarios. Simulink Design Optimization™ is an interactive Matlab
tool that allows you to perform this sensitivity analysis. It has many advantages over local
“single point estimation” sensitivity analyses [30]. Among these advantages, the following
stand out: (a) graphic results; (b) sensitivity analysis (shows which parameters have the
greatest influence on the final results); and (c) scenario analysis. With this method, analysts
can see exactly what values each variable has when certain outcomes occur.

2.3. Observability

It is important to remember that the implementation of a state observer will only work
if, and only if, the system is observable [1]. The concept of observability is useful when
solving the problem of estimating non-measurable state variables from measured variables
in the shortest possible time. Formally, a system is observable if, for any initial state ℵ(0),
(unknown), there exists a finite time t1 such that knowledge of the input u and the output y
over the interval [0, t1] is sufficient to uniquely determine the initial state ℵ(0) [6].

Observability via an Inferential Diagram

This technique studies the observability of nonlinear systems, by exploring the con-
nections between their states, inputs, and outputs [32,33]. The technique is based on the
construction of an inference diagram based on the structure of the system model. The
inference diagram is built considering the following points [32]:

(a) Draw a bond, ℵi → ℵj, i f ℵj appears in the differential equation for ℵi. This implies
that by monitoring ℵi it is possible to obtain information about ℵj.

(b) Decompose the inference diagram into a unique set of maximal strongly connected
components (SCC). SCCs are subgraphs selected such that there is a direct path from
every node to every other node in the subgraph. Dotted lines enclose the SCCs. It is
worth noting that each node in an SCC contains information about the other nodes.
The so-called root SCCs do not have output links.

(c) We chose at least one node of each root SCC, which would be the sensor node, to
guarantee the observability of the whole system.

This technique explicitly takes advantage of the network structure of the dynamic
system [32]. Equation (5) can be structurally represented as a corresponding inference
graph ϑ whose nodes are the internal state variables ℵ = {ℵ1, . . . , ℵn}.

• The links in ϑ capture the pattern of interaction between the state variables: there is a
link from ℵj to ℵi in the graph ϑ if ϑij is nonzero.

• A node ℵi in the graph ϑ is a sensor node if yij 6= 0 for some i.
• A node ℵk is an objective node if Fk 6= 0 for some k.

ϑ =


? ? 0 0
? ? ? 0
? ? ? 0
? ? 0 0


y =

[
0 ? 0 0

]
F =

[
? 0 ? ?

]
(7)

Figure 5 shows the inference diagram of Equation (5), where ϑ is the matrix of the
system, the set of state variables ℵ = {ℵ1, . . ., ℵ4} is represented by nodes on the graph,
where the sensor nodes δ = {ℵ2} (defined by y) are marked in red and the set of target
nodes O = {ℵ1 , ℵ3, ℵ4} is marked in green.
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Postulate 1: Equation (5) is observable for the output vector y = [0, 1, 0, 0]Tℵ.

2.4. Statistical Correlation Criteria

Before using any model, its statistical quality must be established. This is done by ana-
lyzing the deviation between the experimental data and the model results [26]. For a model
to be statistically representative, these residuals must be small enough and uncorrelated.

Coefficient of determination R2: Describes the proportion of the total variance in the
experimental data that can be explained by the model. R2 ∈ (0, 1]. The model has a good
degree of fit to the experimental data when R2 ≈ 1.

Coefficient of efficiency: Let E be the efficiency coefficient. The proposed model is
said to have a good degree of fit with respect to the sample values when E ∈ (0, 1], while
E > 0.9 represents a good match between the model and the experimental data [26].

Relative standard deviation (RSD): Describes the dispersion of the data with respect
to the mean and the result. It is expressed as a percentage, and is particularly useful for
comparing the uncertainty between different measurements.

2.5. State Observers for Batch Bioreactor Fermentations

A batch fermentation is a closed system for mass transfer. At the beginning of its
operation a sterilized nutrient solution is added and inoculated with the microorganism,
allowing incubation to take place under optimal fermentation conditions. Fermentation
stops at the end of the log phase for primary metabolites, or before the death phase begins
for secondary metabolites. The online monitoring of the main variables, i.e., concentrations,
and reaction rates, is a problem. On the one hand, we have the high cost of the equipment
and the absence of appropriate methods for obtaining the readings, and on the other hand,
the risk of contamination of the fermentation at the time of sampling. In this sense, state
observers are a viable alternative for determining the variables of the fermentation to face
some on-line monitoring problems.

2.5.1. Sliding-Mode Observers (SMOs)

Batch bioreactors are highly nonlinear finite-time converging systems, generally said to
converge to an equilibrium point. Bioreactors show parametric and modeling uncertainties,
related mainly to the kinetic terms mainly. Parametric uncertainties are due to identification
issues, environmental effects, and inoculum preparation. On the other hand, modeling
uncertainties are generated when the designer ignores part of the system dynamics and
makes assumptions such as homogeneity or some other simplifications. In addition, it is
important to consider the noise in the measurements [34].

A feature of sliding-mode observers is their low computational effort [35], finite-time
convergence, and robustness to modeling uncertainty, perturbations, and measurement
noise [8]. Furthermore, SMOs are characterized by their ability to generate a sliding motion
on the error between the measured plant output and the observer output, ensuring that the
observer produces a set of state estimates that are precisely proportional to the actual output
of the plant. When measurement perturbations are present, the sliding-mode observer can
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force the estimation errors of the state variables which belong to the observable subspace
to converge to zero in finite time. In addition, the disturbances within the system can also
be reconstructed [35]. All of these advantages make sliding-mode observers interesting
candidates for on-line implementation in a batch bioreactor.

For all of the considered observers, the biomass concentration, which is a feasible
concentration measurement is selected as the bioreactor measured output, in order to infer
the substrate, ethanol, and carbon dioxide concentrations.

The selected sliding-mode observers are:

Classic Sliding-Mode Observer

For the design of this type of observer, a sliding variable is selected, which represents
the difference between the measured variable (y) and the estimated one (ŷ), so that it has a
relative degree 1 with respect to the designed injection signal. The discontinuous control
signal acts on the first derivative with respect to the time of the sliding surface σ to maintain
the trajectories of the system in the sliding set y− ŷ = 0 [35]. The discontinuous term is the
one that allows the system to reject disturbances and parametric uncertainties [35], but it is
also the one that produces chattering.

In most cases, sliding-mode observers are obtained by injecting a nonlinear discontinu-
ous term that depends on the output error within the observing system. The discontinuous
injection must be designed so that the system trajectories are constrained to lie on some
sliding surface in the error space. The resulting movement is called sliding mode [35].

A sliding-mode observer for Equation (5), has the following form:

.
ℵ̂ = f

(
ℵ̂, u

)
+ Lsign(y− ŷ) (8)

where the next expression defines the sign function:

sign(y− ŷ) =


1 si y− ŷ > 0
0 si y− ŷ = 0
−1 si y− ŷ < 0

(9)

Defining the estimation error as e = y − ŷ, then, the next equations describe its
corresponding dynamics:

.
e = ∆f + δf + Lsign(e) (10)

where ∆ f = f (ℵ, u)− f
(
ℵ̂, u

)
and δ f is the modeling error. The value of the gain L is

assigned based on the next bound [36]:

L ≥ η + F (11)

being η a positive constant, and |∆ f + δ f | ≤ F.
According to Filippov, the remaining gains can be obtained by applying the concept

of equivalent dynamics to the error equations in Equation (10) and linearizing with respect
ℵ̂, [36].

Proportional Sliding-Mode Observer (PSMO)

Aguilar et al. [8] designed the following observation strategy: To provide robust
properties to the observer against disturbances, they considered proportional and sliding
mode contributions of the measured error.

This observer structure is related to identification and observation problems by in-
cluding an uncertainty estimator and a state observer. The observer proportional part has
stabilizing effects on the observer performance; high proportional gains ensure that the
estimation error will decrease. To guarantee the stabilizing properties, the proportional
gains must be in function of a positive solution of the Riccati algebraic equation. The slid-
ing part of the observer serves to compensate for uncertain nonlinear terms and provides
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asymptotic convergence. When sufficiently large sliding gains are chosen, the instability
effect of the bounded nonlinear element can be decreased. This behavior occurs because,
once on the sliding surface, the trajectories of the system remain on that surface, so the
sliding condition is taken and the surface and the invariant are configured. This implies
that some disturbances or dynamic uncertainties can be compensated for by keeping the
surface as an invariant set. For more information check the stability properties and the
convergence test in [8].

The following dynamical system is an asymptotic observer of Equation (5):

.
ℵ̂ = f

(
ℵ̂, u

)
+ K(y− ŷ) + Lsign(y− ŷ) (12)

Here L = [L1, L2, L3, L4]
T is the observer gain vector sliding mode and K = [K1, K2, K3, K4]

T

is the gains of the proportional part.

High-Order Sliding-Mode Observer (HOSMO)

The so-called high-order sliding-mode techniques claim to be robust in coping with
uncertainties, perturbations, chatter reduction, and finite-time convergence [37]; these
techniques have been applied to the design of controllers and design of observers for
triangular systems [38,39]. Finite-time observers and controllers have been applied to robot
manipulations, and secure data transmission [40].

These algorithms solve the exact stabilization problem in finite time for an output with
an arbitrary relative degree. They have proved to be optimal for the estimation of states in
systems with the presence of unknown external disturbances. They do not need detailed
mathematical models of the plant, and furthermore, they can achieve noise reduction
generated by uncertainties in an arbitrary way by artificially increasing the relative degree
of the system [35].

The dynamic system described by Equation (13) is a finite-time observer for Equation (5) [41].

.
ℵ = f

(
ℵ̂, u

)
− Lsign(y− ŷ) |y− ŷ|1/p (13)

Here L is the observer gain vector and p ∈ Z+, where p > 1, p is an odd number.

Remark 1. The HOSMO observer is designed to converge in finite time and to improve the
rate of convergence, however, it is important to note that high-gain observers tend to amplify
measurement noise.

2.6. Performance Indexes

The performance of the observers was evaluated by the following indexes, the IAE
(integral absolute error), and the ISE (integral squared error) [42], which are defined below:

IAE =
∫ ∞

0
|e(t)|dt (14)

ISE =
∫ ∞

0
e(t)2dt (15)

The ISE index penalizes the response that has large errors, which usually occurs at the
beginning of a response. On the other hand, the IAE is less severe in penalizing a response
with large errors and will take into account large and small errors.

3. Results and Discussion
3.1. Bioreactor Performance

Figure 6 shows the dynamic evolution in the ethanol production process with different
initial substrate concentrations of 44 and 54 g/L. The maximum production of CO2 at
the end of fermentation was 8.1 g/L and 11.8 g/L, respectively. The maximum ethanol
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concentration was 17 g/L for 24 h of operation with an initial substrate concentration
of 54 g/L and a biomass concentration of 4.2 g/L at the end of the fermentation. The
minimum ethanol concentration was 14.86 g/L for 24 h of operation with an initial substrate
concentration of 44 g/L and biomass growth of 3.8 g/L.
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The results presented in Figure 6 reveal that the proposed kinetic model was able
to predict the concentrations of ethanol, substrate, biomass, and CO2 (lines), obtained
from experimental data (symbols). The observed trend indicates that the fermenting
microorganism metabolizes the substrate to produce ethanol. This observation confirms
the corresponding progressive increase in ethanol and biomass concentrations as cells
metabolize the substrate to induce growth and subsequently produce ethanol [26].

The parameters of Equations (1)–(4) were estimated by the hybrid methodology of
Section 2.2.1, in Table 2 we show the optimal values of the kinetic parameters. To generate
the results reported in this paper, the ODEs were integrated using the ode15s function in
MATLAB 2016a®. The MATLAB® functions fminsearch (derivative-free method) and flinfit
(gradient method) were used to minimize the objective function.

Table 2. Kinetic parameters under different operating conditions (s0 = 54, s0 = 44).

Symbol Value Units Definition

α1 0.048± 0.05 L/gh Substrate kinetic constant
α2 0.0058± 0.001 L/gh Biomass kinetic constant
α3 0.0056± 0.01 L/gh Ethanol kinetic constant
α4 0.0105± 0.001 L/gh CO2 kinetic constant
α5 0.0075± 0.001 h−1 Kinetic constant
α6 0.0025± 0.001 h−1 Kinetic constant

Figure 7 shows the results of the parametric sensitivity analysis of the model using the
Monte Carlo method. According to these results, α2, α3, and α5 were the parameters with
the greatest influence on the dynamics of the substrate. The biomass dynamics were more
affected by the set of parameters α2, α3, and α1. On the other hand, ethanol production was
affected by the parameters α3, α2, and, α1. For the dynamics of CO2 production, the most
influential parameters were α2, α4, and, α1.
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Figure 7. Parametric sensitivity analysis of the proposed model.

A common way to assess the fit of the model is to use statistical indicators such as the
coefficient of determination (R2, E, RSD). From this criterion, it was concluded that the model
accurately portrayed the experimental data, evaluated by applying R2 (average) = 0.8852 and
E (average) = 0.8617 for the two initial conditions. Moreover, in all cases, R2 and E were
close to unity, indicating that the model produced a good fit. The relative standard deviation,
RSD, is used to illustrate the degree of variability of the experimental data set relative to
the data set generated by the model. In other words, for small values of RSD, the smaller
the spread of the data will be [26], as is shown in Table 3.

Table 3. Statistical correlation coefficients for quantifying the effectiveness of the model in describing
the experimental observations related to discontinuous fermentation.

Variable R2 E RSD

Initial condition (s0 = 54 g/L, x0 = 0.1 g/L, Et0 = 0.29 g/L, CO2 = 0.01 g/L)

Substrate 0.8932 0.8866 0.0780
Biomass 0.8951 0.8527 0.7233
Ethanol 0.8811 0.8460 0.7740

CO2 0.8715 0.8618 0.7498

Initial condition (s0 = 44 g/L, x0 = 0.1 g/L, Et0 = 0.29 g/L, CO2 = 0.01 g/L)

Substrate 0.8854 0.8778 0.9428
Biomass 0.8625 0.8573 0.7628
Ethanol 0.8651 0.8554 0.8205

CO2 0.8245 0.8088 0.7972

3.2. Simulation of Selected Sliding-Mode Observers

The simulation of the selected state observer structures (Table 4) was performed in
MATLAB. To generate the results reported in this paper, the ODEs were integrated using
the function ode45s, and the observer gains were heuristically tuned.

Table 4. Structures of state observers.

Observer Structure Reference

SMO
.
ℵ̂ = f

(
ℵ̂, u

)
+ Lsign(ysensor − ŷ) [33]

PSMO
.
ℵ̂ = f

(
ℵ̂, u

)
+ K(ysensor − ŷ) + Lsign(ysensor − ŷ) [8]

HOSMO
.
ℵ̂ = f

(
ℵ̂, u

)
+ Lsign(ysensor − ŷ)|ysensor − ŷ|1/p [41]
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For the proposed simulations, a copy of Equation (5) was used and white noise was
added to emulate the noisy signal of the biomass sensor, where δ(t) = rand(1).

.
ℵ = f(ℵ, u); ℵ(t0) = ℵ0

y = [0, 1, 0, 0]Tℵ+ δ(t)
(16)

Remark 2. All observation strategies have the same gain vector L and the structure of each one is
expected to influence its performance.

Figure 8 shows the performance of each of the structures of the observers. Note that
they have a good performance and are capable of tracking the trajectories generated by
the model.
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The performance of each observer was evaluated through the performance indexes.
According to Table 5, the OPSM had a better performance. With the smaller values of IAE
and ISE, the proportional gains (K), helped the observer to improve its performance.

Table 5. Estimation error index.

Observer IAE ISE

s x Et CO2 s x Et CO2

OSM 3.889 2.556 0.988 14.39 10.83 6.44 0.187 11.61
OPSM 2.864 2.521 0.874 12.45 5.384 6.495 0.175 9.566

OHOSM 30.27 2.614 26.32 40.99 23.23 30.4 1.026 14.99

Remark 3. The OPSM exhibits the best performance and allows adequate management of the
measurement noises. Furthermore, it is observed that the gain vector K has stabilizing effects on the
observer performance and the sliding part of the observer helps to counteract model uncertainties.

3.3. Implementation of the State Observers in Real-Time

The results of the real-time implementation of the state observers are shown in Table 4,
however, when programming the observers the biomass sensor signal was used. In this
work, a TS-300B turbidity sensor was used to measure biomass density. The sensor is
composed of an infrared light emitting diode on one side and a phototransistor to detect
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the intensity of the light passing through the open channel to the opposite side [21]. The
light intensity on the detection side decreases as the turbidity increases. The output signal
(Vout) is read directly by the NI cRIO 9030.

Figure 9 shows the experimental prototype where the estimation algorithms were run
in real-time. The observers were programmed on the NI cRIO 9030 with a 30 ms sample
time though the LabVIEW Real-Time [43].
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Fermentation 2022, 8, x FOR PEER REVIEW 15 of 19 
 

 

Remark 3. The OPSM exhibits the best performance and allows adequate management of the 
measurement noises. Furthermore, it is observed that the gain vector 𝐾 has stabilizing effects on 
the observer performance and the sliding part of the observer helps to counteract model uncertain-
ties. 

3.3. Implementation of the State Observers in Real-Time 
The results of the real-time implementation of the state observers are shown in Table 

4), however, when programming the observers the biomass sensor signal was used. In this 
work, a TS-300B turbidity sensor was used to measure biomass density. The sensor is 
composed of an infrared light emitting diode on one side and a phototransistor to detect 
the intensity of the light passing through the open channel to the opposite side [21]. The 
light intensity on the detection side decreases as the turbidity increases. The output signal 
(Vout) is read directly by the NI cRIO 9030. 

Figure 9 shows the experimental prototype where the estimation algorithms were 
run in real-time. The observers were programmed on the NI cRIO 9030 with a 30 ms sam-
ple time though the LabVIEW Real-Time [43]. 

 
Figure 9. Implementation of observation strategies in the prototype plant. 

The trajectories of each state observer (solid lines) were extracted from the NI cRIO 
9030 and imported into MATLAB. In addition, a comparison with the experimental data 
was performed. Figure 10 shows the performance of each state observer. 

 
Figure 10. Real-time implementation of the observation structures and their comparison with the
off-line experimental data.

The corresponding values of the performance indexes IAE and ISE are depicted in
Table 6. The OPSM was the observer with the best performance.
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Table 6. Real-time estimation error.

Observer IAE ISE

s x Et CO2 s x Et CO2

OSM 2.364 0.268 0.476 1.006 6.076 0.018 0.074 0.433
OPSM 1.495 0.266 0.392 0.689 2.791 0.017 0.058 0.248

OHOSM 27.54 0.294 1.56 2.845 13.29 0.021 0.854 3.151

Signal Conditioning of the Turbidity Biomass Sensor to Improve the Performance of the
PSMO in Real-Time

In most electronic applications, it is natural to try to obtain signals free of uncertainties
that could affect the performance of a system. This problem has motivated scientists and
engineers to develop algorithms capable of separating components that are mixed and that
are capable of rejecting undesirable components. A digital filter is a mathematical operation
that takes a sequence of numbers (the input signal) and modifies it by producing another
sequence of numbers (the output signal) to enhance or attenuate certain characteristics [44].

In this research work, we used an analog sensor to measure biomass density, which
presents high-frequency white noise. Figure 11 shows the behavior of the sensor signal
(yellow line). To filter the signal we used a first-order low-pass filter. In this type of filter,
the desired cutoff frequency (CF) is established; the filter allows the passage of signals with
a lower CF and attenuates signals with frequencies higher than the CF.
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According to the results obtained in Sections 3.2 and 3.3, the PSMO exhibited the
best performance.

This section presents the implementation of the PSMO with the filtered signal of the
turbidity sensor.

The following differential equation describes the filter [44]:

.
ϕ(t) + aϕ(t) = bu(t) (17)

where u(t) and ϕ(t) represent the input and output signals of the filter, a is the cutoff
frequency, and b is a constant parameter.

Figure 11 shows the estimates produced by the PSMO without and with the filter
(Equation (17)). Note that the filter reduces the effects of measurement noise and that the
observer gains have been adjusted for measurement noise. However, the observer had
robust properties against disturbances in measurements. Figure 10 graphically confirms
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how the PSMO had a good performance, adjusting to the experimental data, although the
measurement signal was subjected to a treatment to reduce noise.

4. Conclusions

The state observers studied in this work have shown satisfactory performance. Nu-
merical simulations show that the observers are robust to measurement noise. This study
also proposes a new power-law kinetic model for the description of fermentative ethanol
production in a batch bioreactor by the microorganism Saccharomyces cerevisiae. Moreover,
a hybrid strategy was implemented for the estimation of the kinetic parameters. An ob-
servability analysis based on inference diagrams was performed to determine that the
system is fully observable by considering the biomass concentration as measured system
output. The state observers studied have shown satisfactory performance. Firstly, numer-
ical simulations show that the observers are robust to measurement noise in accordance
with the performance indexes. In addition, the real-time implementation of all the obser-
vation strategies was carried out and the performance of each one was evaluated. The
sliding-mode proportional observer showed a better performance since its proportional
structure helped to attenuate measurement noise, and the sliding part helped to counteract
the effects of un-modeled uncertainties. It was also observed that processing the turbidity
sensor signal with a low-pass filter improves the rejection of measurement noise and then
the performance of the sliding mode proportional observer.
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