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Abstract: Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the mam-
malian central nervous system that has a significant beneficial effect on human health. Traditional
microbial GABA synthesis requires continuous oxygen supplementation. Here, a new anaerobic
platform for GABA production was established with engineered C. tyrobutyricum ATCC 25755, which
is considered an ideal anaerobic microbial-cell factory for bioproduction. Glutamate decarboxylase
(GAD) and Class I heat-shock proteins were screened and overexpressed, generating an excellent Ct-
pMAG strain for monosodium-glutamate (MSG) tolerance and GABA production, with a GABA titer
of 14.26 g/L in serum bottles with the mixed substrate of glucose and MSG. Fed-batch fermentation
was carried out in a 5 L bioreactor, achieving 35.57 g/L and 122.34 g/L final titers of GABA by apply-
ing the pH-free strategy and the pH-control strategy, respectively using MSG. Finally, a two-stage
strategy (growth stage and bioconversion stage) was applied using glutamate acid (L-Glu) and glu-
cose as the substrate, obtaining a 400.32 g/L final titer of GABA with a productivity of 36.39 g/L/h.
Overall, this study provides an anaerobic-fermentation platform for high-level bio-GABA production.

Keywords: C. tyrobutyricum; GABA; heat-shock protein; biocatalyst

1. Introduction

Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mam-
malian central nervous system, has been reported to have hypotensive, diuretic, and
sedative effects [1]. GABA is extensively dispersed in animals, plants, and microorganisms,
and its benefits for human health are highly regarded [2]. In the field of food additives,
Gabaron tea (>150 mg GABA/100 g), a GABA-enriched tea beverage with the ability to
decrease blood pressure, was created by Japanese scientists in the 1980s and attracted
widespread attention in the market [3,4]. More recently, in 2009, the Chinese Ministry of
Health approved GABA for use in the production of beverages, cocoa, chocolate, candies,
baked goods, and puffed foods. [3]. Due to numerous health advantages and the commer-
cial value of GABA, there was a rapid rise in demand on the market. In the past, GABA
could be synthesized chemically; however, the toxic effects of byproducts and environmen-
tal concern severely restricted its use [5,6]. It was difficult to remove and purify the product
from the plant material, and the output of GABA enrichment from plants was insufficient
to fulfill the market [1]. Microbial synthesis of GABA has recently received great attention
due to its benefits of high specificity, environmental friendliness, cost-effectiveness, and
numerous generating strains [7–10].

Glutamate decarboxylase (GAD; EC 4.1.1.15) plays a key role in GABA synthesis [11],
consuming intracellular protons and converting glutamate to GABA and CO2 [12]. Recently,
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numerous microorganisms have been used to produce GABA. Among them, Escherichia coli,
lactic-acid bacteria (LAB), and Corynebacterium glutamicum could serve as the cell-factory
chassis [8,13–15]. Synthesizing GABA utilizing whole-cell bioconversion with E. coli as the
cell biocatalyst showed great potential because of its high efficiency and simple preparation.
A total of 308.26 g/L GABA with a molar yield of 99.6% from 3 mol/L L-Glu was achieved
with the engineered E. coli with a modified cascade system [16]. Using E. coli, 4.8 g/L
GABA was achieved from glucose with a yield of 49.2% (mol/mol glucose) by applying the
metabolic-state-switching method to rewire the metabolic regulatory network [9]. LAB was
a competitive GABA producer and mainly contains the genera Lactobacillus, Lactococcus,
Bifidobacterium, Enterococcus, and Streptococcus [17–21]. Lactobacillus brevis CRL 2013 was
isolated from quinoa and could produce 265 mM GABA with a molar yield of over 99% from
modified MRS broth with MSG [22]. A two-stage pH-control strategy was widely applied
to GABA fermentation, the parameters of which could be adjusted for bacterial growth or
GABA synthesis separately [2]. The glutamate-decarboxylase system was reconstructed
in Lactococcus lactis and 33.52 g/L GABA was achieved from MSG under a two-stage pH-
control strategy [14]. C. glutamicum is an important industrial producer of various amino
acids, including glutamic acid, which could be further developed for GABA production. A
remarkable GABA concentration of 70.6 g/L was achieved using engineered C. glutamicum
APLGGP from glucose through a two-stage pH-control strategy [8]. Recently, a dynamic
metabolic-control method was employed in engineered C. glutamicum G7-1, resulting in
45.6 g/L of GABA production from a low-value substrate—glycerol—which exhibited great
potential in biorefinery [15].

The traditional bio-based GABA synthesis process usually requires continuous oxy-
gen supplementation for the growth of the microbes. Anaerobic-fermentation technology
has advantages over aerobic fermentation, including a simple operation method, cheap
operating costs, and better stability [23]. Cell number is a key factor responsible for GABA
production [9]; however, anaerobic conditions interfere with the bacterial growth of these
traditional aerobic GABA producers, creating obstacles to obtaining a large cell count.
Currently, several attempts have been made to carry out the synthesis of GABA under
anaerobic conditions, such as using Levilactobacillus brevis, Lactobacillus brevis, Bifidobac-
terium adolescentis, and Bifidobacterium dentium, but their GABA production (4.94–43.99 g/L)
was unsatisfactory [19,24,25]. Clostridium tyrobutyricum is an anaerobic, Gram-positive,
spore-forming, and non-pathogenic bacterium mainly used for short-chain fatty-acid pro-
duction [26]. It is regarded as an ideal anaerobic-chassis cell and has been engineered to
generate multiple chemical compounds, such as n-butanol and butyl butyrate [27,28]. This
non-pathogenic strain is favored for industrial use due to environmental health and safety
considerations [26,29]. Thus, in this work, a new anaerobic platform for GABA production
was established with engineered C. tyrobutyricum ATCC 25755 by introducing glutamate
decarboxylase since it does not have native glutamate decarboxylase. Considering the
stress from the high concentration of substrate, heat-shock proteins were employed to im-
prove strain tolerance and GABA production. Finally, pH-free, pH-control, and two-stage
strategies for GABA synthesis were developed in a 5 L bioreactor.

2. Materials and Methods
2.1. Organism, Plasmids, and Culture Conditions

The sources of bacteria and plasmids used in this study are listed in Table S1. C. ty-
robutyricum ATCC 25755 was preserved in our lab and anaerobically cultured in Reinforced
Clostridial Medium (RCM) or Clostridial Growth Medium (CGM) at 37 ◦C unless oth-
erwise mentioned [30]. RCM consists of 5 g/L glucose, 5 g/L NaCl, 10 g/L peptone,
10 g/L beef extract, 3 g/L yeast extract, 3 g/L sodium acetate, 1 g/L soluble starch,
and 0.5 g/L Cysteine-HCl. CGM consists of 2 g/L yeast extract, 4 g/L peptone, 1 g/L
K2HPO4·3H2O, 0.5 g/L KH2PO4, 2 g/L (NH4)2SO4, 0.1 g/L MgSO4·7H2O, 0.015 g/L
FeSO4·7H2O, 0.015 g/L CaCl2·2H2O, 0.01 g/L MnSO4·H2O, 0.02 g/L CoCl2·6H2O, and
0.02 g/L ZnSO4·7H2O. E. coli CA434 was cultured in Luria–Bertani (LB) medium and
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employed to construct and maintain the recombinant plasmids [31]. The medium was
sterilized by autoclaving for 20 min at 121 ◦C. OD600 was measured by a 96-well reader
(Molecular Devices, San Jose, CA, USA, SpectraMax® M5).

2.2. Construction of the Engineered C. tyrobutyricum

GAD genes from E. coli, Lactococcus lactis JN001, and Lactobacillus plantarum JN002 were
cloned into plasmid pMTL82151 under the control of the promoter Pcat1 to generate strains
names such as pMA01, pMA02, and pMB01, respectively. The Class I HSGs genes groES and
groEL were first amplified from the genomic DNA of C. tyrobutyricum ATCC 25755 and then
ligated with Pcat1. Then, the fragment was inserted into pMA02 to create plasmid pMAG.
Recombinant plasmids were transformed into C. tyrobutyricum to generate Ct-pMA01, Ct-
pMA02, Ct-pMB01, and Ct-pMAG by conjugation as previously described (Figure S1) [29].
To be brief, cell pellets of E. coli CA434 with recombinant plasmids were collected and then
mixed with C. tyrobutyricum. Then, the mixture was spread on the RCM agar plate for
subculture (37 ◦C for 24 h), followed by screening recombinant C. tyrobutyricum on a CGM
select agar plate (37 ◦C for 48–60 h) containing 25 µg/mL thiamphenicol and 250 µg/mL
D-cycloserine.

2.3. Quantitative Real-Time PCR and Relative-Gene-Expression Analysis

As previously reported, the GTP-binding-protein gene was chosen to be the house-
keeping gene [29]. Ct-pMA02 was cultured in RCM medium and MSG was added to
the treatment group. At the mid-exponential-growth phase of Ct-pMA02, quantitative
real-time PCRs were applied to analyze the expression of Class I HSP genes under MSG
stress. Strains were treated with two concentrations of MSG (10 g/L or 40 g/L) and samples
were collected after MSG treatment for RNA isolation. Samples without MSG treatment
were also collected at the same time as the control. RNA extraction, cDNA preparation,
and PCR were carried out as previously described [29]. Primers for quantitative real-time
PCR are listed in Table S2.

2.4. GAD-Enzyme-Activity and Cell-Bound-Activity Analysis

C. tyrobutyricum were harvested by centrifugation at 12,000 rpm for 1 min. One mL of
10 OD cell pellets were collected, washed once, and resuspended in 1 mL PBS. Samples were
sonicated using an ultrasonic cell crusher (SCIENTZ, Ningbo, China, SCIENTZ-IID) under
sonic power of 100 W for 3 s, followed by an interval of 3 s, lasting 10 min. After sonication,
the cell extracts were centrifuged at 12,000 rpm for 5 min and the supernatant was collected
for the cytoplasmic-GAD-activity determination. As per the previously described method
with a few modifications, the activity of the GAD enzyme was determined by measuring the
amount of GABA formed at 37 ◦C in a 500 µL reaction mixture for 10 min, which consisted of
50 µL of cell-extract supernatant, 0.2 mol/L Na2HPO4-citrate buffer, 20 mmol/L MSG, and
0.5 mmol/L pyridoxal-5-phosphate (PLP) [32]. One unit (U) of cytoplasmic GAD activity
was defined as 1 µmol GABA produced in 1 min under the above conditions. Similarly, in
order to determine the cell-bound GAD activity, 0.5 mL of 10 OD cell pellets were collected,
washed once by PBS, and resuspended in 500 µL reaction mixture. Cell-bound activity was
determined in the same reaction system (without cell-extract supernatant) as cytoplasmic
GAD activity. One unit (U/OD600) of cell-bound GAD activity was defined as 1 µmol of
GABA produced in 1 min per OD cell pellets under the above conditions. The reaction
mixture was centrifuged at 12,000 rpm for 5 min to collect the supernatant and GABA
content was determined by Berthelot reaction [32].

2.5. MSG-Tolerance Test

To evaluate the inhibitory effect of MSG on bacterial growth, C. tyrobutyricum wild-
type and engineered strains were cultured in CGM medium at 37 ◦C in serum bottles with
different concentrations of MSG (10, 20, 30, and 40 g/L). All samples were carried out in
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triplicate. Samples were collected every 2 h for 36 h and OD600 was measured. The specific
growth rate was calculated by analyzing the data as previously described [29].

2.6. Fermentation Experiments

The fermentation kinetics of C. tyrobutyricum were determined in serum bottles with
50 mL of CGM containing 10 g/L MSG. A total of 24 g/L glucose was added to the medium
when the fermentation started. Similarly, the fermentation kinetics of C. tyrobutyricum in a
5 L bioreactor were investigated. When pH-free and pH-control strategies were applied,
1 L CGM medium was involved in the bioreactor with initial 30 g/L MSG and 60 g/L
glucose. MSG was dissolved in H2O to prepare 50 mL MSG aliquot (600 g/L) and 200 mL
MSG aliquot (700 g/L) as previously described [33]. When the two-stage strategies were
applied, 60 g/L, 90 g/L, and 120 g/L glucose were added initially, respectively. Then,
4 mol/L L-Glu was added to generate the bioconversion. N2 was sparged into the medium
to generate anaerobic conditions before inoculation. The fermentation was operated at
37 ◦C with a stirring speed of 150 rpm, and pH was controlled by NH3·H2O or H2SO4
solution when necessary.

The concentrations of GABA and MSG in the fermentation broth were determined
by HPLC (Shimadzu, Kyoto, Japan, LC-20A) with an Agilent zorbax SB C18 column
(4.6 mm × 150 mm, 5 µm). Samples were pretreated by precolumn derivatization using
1% 2,4-dinitrofluorobenzene. A binary gradient was elution-program applied with mobile
phase A (0.05 mol/L sodium acetate, 1% N, N-dimethylformamide, pH 6.8) and mobile
phase B (acetonitrile: H2O 1:1 by volume). The gradient-elution program was as follows:
The flow rate was set to 1 mL/min; equilibration (6 min, 15% B), gradient (16 min 15–30% B,
8 min 30–100% B), cleaning (1 min, 100% B), and equilibration (3 min, 15% B). The column
temperature was maintained at 40 ◦C. Samples were detected at UV 360 nm.

3. Results
3.1. Amino-Acid-Sequence Analysis and Enzymatic-Property Comparison of Putative GADs

GAD is responsible for acid tolerance and GABA production in many bacteria [34].
The putative gadB gene encoding GAD was amplified from the genomic DNA of L. lactis
JN001 and L. plantarum JN002, which were separated from shrimp-aquaculture water and
preserved in our laboratory to generate pMA02 and pMB01. DNA sequencing suggested
that lcgadB from L. lactis JN001 consisted of 1401 bases, encoding 466 amino-acid residues
with a calculated molecular weight of 54.0 kDa and a pI of 5.02. LpgadB from L. plantarum
JN002 consisted of 1404 bases, encoding 467 amino-acid residues with a calculated molecu-
lar weight of 53.4 kDa and a pI of 5.63. BLAST results of the protein-sequence alignment
suggest that LcgadB shared 98.93%, 97.64%, and 44.92% homology with the GAD of L. lactis
CV56, L. lactis MG1363, and E. coli Nissle 1917, respectively (Figure 1). As for LpgadB,
it shared 68.52%, 68.52%, and 44.57% homology with the GAD of L. lactis CV56, L. lactis
MG1363, and E. coli Nissle 1917, respectively.

EcgadB, LcgadB, and LpgadB were cloned into C. tyrobutyricum and the engineered
strains were named Ct-pMA01, Ct-pMA02, and Ct-pMB01, respectively. Cytoplasmic
GAD activity was determined to investigate the enzymatic properties of different GADs,
and the results suggest that wild-type C. tyrobutyricum ATCC 25755 had no glutamate-
decarboxylase activity since it appeared as the color of substrate, whereas Ct-pMA02 and
Ct-pMB01 turned a deeper blue than Ct-pMA01, indicating that higher GAD activity was
achieved by introducing LcgadB and LpgadB (Figure 2A). GAD activity in the exponential
phase and the stationary phase was determined using cell extracts of engineered strains
under the pH gradient (Figure 2B,C). Overall, the GAD activity of engineered strains
was higher in the stationary phase than in the exponential phase, and there was a rapid
increase in GAD activity of the three engineered strains from pH 3.5 to 4.5, which then
quickly dropped. The activity of Ct-pMA02 and Ct-pMB01 was the highest at pH 4.5, and
Ct-pMA02 exhibited overall higher activity than Ct-pMB01.
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MEGA6. The amino-acid sequences of GAD from L. lactis JN001 and L. plantarum JN001 were aligned
with those of other GADs; L. lactis subsp. lactis CV56 (ADZ63898.1), L. lactis subsp. lactis cremoris
MG1363 (CAL97772.1), and E. coli Nissle 1917 (UJL93810.1).

3.2. Production of GABA by Engineered C. tyrobutyricum

GABA production of recombinant strains was evaluated in 50 mL serum bottles
(Figure 3). After 36 h of culture, a higher OD600 was achieved by Ct-pMA02 and Ct-pMB01,
and MSG was rapidly consumed by Ct-pMA02 in the first 24 h with a GABA production
of 6.05 g/L. Moreover, a longer fermentation period was observed for Ct-pMA01 and
Ct-pMB01 to reach the highest GABA titer, which was 5.76 g/L and 5.42 g/L, respectively.
A slight decrease in GABA concentration was observed during the fermentation period
of Ct-pMA02 after 48 h, which might have been due to GabT, gamma-aminobutyrate
aminotransferase, which is responsible for GABA degradation, and the encoding gene was
found in the C. tyrobutyricum genome. Similarly, degradation of GABA was also found in
a previous report on E. coli [35]. On the contrary, no significant GABA degradation was
observed for Ct-pMA01 or Ct-pMB01, which might have been due to the lower productivity
of GABA compared to Ct-pMA02, indicating that GABA degradation might be induced by a
high productivity of GABA. Overall, Ct-pMA02 exhibited the best GABA-synthesis ability.
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3.3. Enhanced MSG Tolerance and GABA Production by Class I Heat-Shock Protein
GroESL Overexpression

Quantitative real-time PCRs were carried out to test whether MSG stress could induce
transcriptional changes of the Class I heat-shock genes (HSGs) in Ct-pMA02, and the results
indicate that all six measured genes (grpE, dnaK, dnaJ, groES, groEL, and htpG) were highly
overexpressed during the time course of all the MSG stress conditions tested (Figure 4A,B).
The expression of grpE, dnaK, dnaJ, groES, groEL, and htpG increased by more than 1.5 times
when treated with 10 g/L MSG and further increased with 40 g/L MSG, especially grpE,
groES, groEL, and htpG (Figure 4A). With the prolonged treatment time, the expression of
grpE, dnaK, dnaJ, groES, groEL, and htpG slowly decreased (Figure 4B). These results suggest
that the expression of Class I heat-shock protein genes would be significantly up-regulated
under stress from a high concentration of MSG, thus facilitating C. tyrobutyricum to respond
to MSG stress. After adapting to MSG stress, the expression of these genes would gradually
return to the normal level.
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Figure 4. Relative expression level of grpE, dnaK, dnaJ, groES, groEL, and htpG under different
concentration of MSG in Ct-pMA02. The error bars indicate the variations of three biological replicates.
(A) MSG treatment for 15 min; (B) MSG treatment for 30 min. (C) The specific growth rate of wild-
type, Ct-pMA02, and Ct-pMAG in CGM medium with different MSG concentrations (0–40 g/L) was
compared. (D) Final GABA production of Ct-pMA02 and Ct-pMAG in CGM medium with different
MSG concentrations (10–40 g/L) at 37 ◦C after 72 h. Statistically significant differences (*** p < 0.001,
** p < 0.01, * p < 0.05, Student’s t-test) are indicated by asterisks.

Distinct increased expression levels for groES and groEL were observed under MSG
stress, and the relative expression levels of groES and groEL were nearly 1.8 and 1.3 times
higher, respectively, with the increased MSG concentration after treatment for 15 min
(Figure 4A). Inspired by these facts, groES and groEL were overexpressed to test whether
engineered strains could be more tolerant against MSG stress and improve GABA produc-
tion. Based on the plasmid pMA02, groES and groEL were ligated to Pcat1 under lcgadB to
generate plasmid pMAG, which was further transformed to C. tyrobutyricum to generate
Ct-pMAG.

Specific growth rate was used to evaluate the inhibitory effect caused by MSG. Wild-
type, Ct-pMA02, and Ct-pMAG strains were cultured with different concentrations of
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MSG in 50 mL serum bottles to examine whether overexpression of HSGs could improve
tolerance to MSG. The specific growth rate of the wild-type strain decreased gradually
with increased MSG concentration; however, the specific growth rate of Ct-pMA02 and
Ct-pMAG increased from 0 to 30 g/L and then dropped (Figure 4C). The specific growth
rates of Ct-pMAG and Ct-pMA02 were highest when 30 g/L MSG were added. Ct-pMAG
exhibited a generally higher specific growth rate under the MSG gradient, indicating that
the tolerance to MSG stress was improved by HSG overexpression. The final GABA titer
was measured as shown in Figure 4D. As for Ct-pMAG and Ct-pMA02, GABA production
was similar under 10 g/L MSG; however, a higher titer was achieved by Ct-pMAG as the
MSG concentration increased from 20 to 40 g/L. The highest GABA production (14.26 g/L)
was observed under 40 g/L MSG using Ct-pMAG, which was 34.53% higher than that
of Ct-pMA02. These results suggest that overexpression of groESL could improve GABA
production, which is consistent with a previous report on E. coli [16].

3.4. Production of GABA in Fed-Batch Fermentation

As described above, strain Ct-pMAG exhibited the highest GABA production under
the given condition. Thus, Ct-pMAG was selected for GABA synthesis in a 5 L bioreactor
with pH-free and pH-control strategies. During the fermentation, C. tyrobutyricum produced
butyric acid and acetic acid, leading to the acidic condition [36], which drove GABA
synthesis. No additional alkalis needed to be added during the fermentation since GABA
production consumed MSG and protons in the broth to maintain pH. When applying the
pH-free strategy, Ct-pMAG grew rapidly within 12–36 h, and the pH of the fermentation
broth dropped quickly to drive the synthesis of GABA. Consumption of protons resulted
in an increase in pH. The MSG-consumption rate gradually decreased after fermentation
for 60–84 h, resulting in a final GABA titer of 35.57 g/L (Figure 5A).
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Figure 5. Fed-batch fermentation of Ct-pMAG in a 5 L bioreactor at 37 ◦C for 84 h. MSG and glucose
were supplied during the period. (A) Fermentation using the pH-free strategy, with 2 times 50 mL
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MSG aliquot (700 g/L) added. The black arrow indicates the MSG-feeding moment and the red arrow
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The pH-control strategy was applied to further improve the GABA production
(Figure 5B). After the first 36 h, the fermentation process using the pH-control strategy was
essentially the same as that under the pH-free strategy. Then, when the biomass peaked
at 36 h, H2SO4 solution was supplied to maintain the pH at 4.5 to reach the highest GAD
activity. A total of 200 mL MSG aliquot (700 g/L) was added to the bioreactor at 36 h
and 48 h. After 48 h, the MSG-consumption rate and GABA synthesis steadily decreased,
which might have been due to the substantial fall in biomass that was responsible for
bio-transformation. At the end of the fermentation, a 122.34 g/L final titer of GABA was
achieved by applying pH-control strategy, which was 3.43 times as much as that under the
pH-free strategy (Figure 5A,B).
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3.5. Improvement of GABA Biosynthesis by Two-Stage Strategy Using Glutamate Acid (L-Glu)
as Substrate

As mentioned above, excessive soluble MSG inhibited cell growth. Although the
detrimental effects of excessive MSG could have been decreased by using the fed-batch
approach, continuous H2SO4 supplementation was required to achieve a high titer of
GABA, which made the fermentation process more complicated. It was reported that
GABA production could be further improved using L-Glu as the substrate instead of
MSG [37,38]. L-Glu functioned equally as MSG during the glutamate decarboxylation.
However, L-Glu was barely soluble in water (1.51 g/100 g water, 40 ◦C) and the pH
value of the saturated water solution was about 3.2, which might have provided little
inhibitory effect and ideal acidic conditions for the reaction. Thus, the supplement of
L-Glu was equivalent to a substrate-sustained release process, as the solution of L-Glu was
accompanied with substrate consumption by glutamate decarboxylation dynamically.

Compared to Ct-pMA02, Ct-pMAG also showed improved GABA production during
the bioconversion of L-Glu (Figure S3). To further enhance GABA production in the 5 L
bioreactor, a two-stage strategy was applied, including a growth stage (Figure 6A–C) and
a bioconversion stage (Figure 6D–F). Totals of 60, 90, and 120 g/L glucose were supplied
to examine how the carbon source would influence the cell growth and GABA synthesis.
Additionally, NH3·H2O was supplied at the growth stage to maintain the pH at 6 for cell
growth. The biomass of Ct-pMAG with 60 g/L glucose increased quickly after the first 16 h
and peaked at 24 h, reaching an OD600 of 26.4. When 90 g/L and 120 g/L glucose were
added initially, the strain grew quickly after 16 h of culture and obtained a higher OD600
than that with 60 g/L glucose at the end of the growth stage (Figure 6A). Cell-bound activity
was also examined during the growth stage and the results indicate that the maximal cell-
bound activity in the three groups was comparable (Figure 6B); however, the addition of
90 g/L glucose resulted in the highest total cell-bound activity (Figure 6C). At the beginning
of the bioconversion stage, 588.52 g/L L-Glu was supplied in the bioreactor. Under the
condition of 60 g/L glucose, 277.96 g/L GABA were produced with a productivity of
16.35 g/L/h after bioconversion for 17 h. The GABA production and productivity were
improved under the condition of 90 g/L and 120 g/L glucose, which were 400.32 g/L and
36.39 g/L/h, and 400.55 g/L and 36.41 g/L/h, respectively (Table 1).
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Figure 6. Profiles of two-stage bioconversion of L-Glu into GABA by Ct-pMAG. OD600, cell-bound
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pH, and GABA concentration in the bioconversion stage are shown in (D–F), respectively. Total
cell-bound activity (UT) = OD600 × cell-bound activity.
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Table 1. Comparison of GABA production from L-Glu by Ct-pMAG under the two-stage strategy.

Sugar Concentration
(g/L)

Initial OD600 of
Bioconversion Stage Titer (g/L) Productivity

(g/L/h)
Molar

Yield (%)

60 24.40 277.96 5.67/16.35 * 67.40
90 34.40 400.32 9.31/36.39 * 97.07

120 33.4 400.55 7.85/36.41 * 97.13
* Indicates that the productivity was calculated only considering bioconversion time, and the culture time of the
bacteria was not included.

4. Discussion

As a major inhibitory neurotransmitter in the mammalian central nervous system,
GABA has been employed in various fields. A cost-effective method of GABA biosynthesis
was required to meet the growing needs in the market. C. tyrobutyricum ATCC 25755 is a non-
pathogenic strain and could attain a large amount of biomass under anaerobic conditions,
which is necessary in the industry application [26,29,36]. Compared to employing pure
GAD enzymes, using cells as a biocatalyst to generate GABA is a promising method
because of its efficiency and stability. Several studies have been conducted on metabolic
engineering of GABA-producing bacteria, focusing on improving GABA-production titer
and productivity, which are summarized in Table 2.

Table 2. Summary of strategies for enhanced GABA production using wild-type and metabolically
engineered strains.

Microorganism Engineering/Process
Strategy Substrate Operation Mode

and Strategy Titer (g/L) Productivity
(g/L/h) References

E. coli BW25113
↓lacI, ↓gabT, ↓sucA,
↓aceA (IPTG based
dynamic control)

Glucose Batch, aerobic 4.8 0.15 [9]

E. coli BW25113

+Lactococcus lactis GAD
mutation, removing

C-plug of GadC,
↑groESL, ∆gabT

L-Glu
Batch,

bioconversion,
aerobic

308.26 44.04 * [16]

Lactobacillus brevis
NCL912 Wild type L-Glu Batch, aerobic 205 4.8 [38]

Lb. brevis
CGMCC1306 ∆F0F1-ATPase MSG Batch, pH-control,

aerobic 43.65 0.9 [39]

L. brevis ATCC367 ∆glnR MSG
Fed-batch,

pH-control,
aerobic

284.7 3.95 [12]

Bifidobacterium.
adolescentis JCM

1275
↑gadBC MSG

Fed-batch,
pH-control,
anaerobic

43.99 0.73 [19]

C. glutamicum +L. plantarum GAD,
∆dapA, ∆argB, ∆proA Glucose

Fed-batch,
pH-control,

aerobic
70.6 1 [8]

C. tyrobutyricum
ATCC25755

+L. lactis GAD,
↑groESL MSG Fed-batch, pH-free,

anerobic 35.57 0.42 This work

C. tyrobutyricum
ATCC25755

+L. lactis GAD,
↑groESL MSG

Fed-batch,
pH-control,

anerobic
122.34 1.46 This work

C. tyrobutyricum
ATCC25755

+L. lactis GAD,
↑groESL L-Glu Fed-batch, two

stage, anerobic 400.32 9.31/36.39 * This work

* Indicates that the productivity was calculated only considering bioconversion time, and the culture time of the
bacteria was not included. ↓ and ↑ indicated down regulate and up regulate, respectively. + indicated heterologous
expression.
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GAD played a key role in the GABA synthesis; however, C. tyrobutyricum ATCC 25755
could not synthesize GABA due to a lack of native GAD. GAD from E. coli (EcgadB) is
one of the most widely studied enzymes, and its crystal structure has been reported [9,40].
LcgadB was reported to have a low Km value that possesses a potentially high affinity
with the substrate and high activity [18,41,42]. Recently, many studies on GAD from the
application of L. plantarum (LpgadB) have been carried out due to its relative wide pH
and activity [11,14]. Thus, three GADs were introduced in C. tyrobutyricum, and the GAD
activity of LcgadB was the highest, followed by LpgadB. GAD expression was analyzed
by SDS-PAGE, and the results show that there were deeper bands for Ct-pMA02 (LcgadB)
and Ct-pMB01 (LpgadB) near the 55 kDa marker, as predicted (Figure S2). However, the
expected band for Ct-pMA01 (EcgadB) was unclear, indicating a low expression level of
EcgadB.

During GABA fermentation, bacteria constantly encounter stress caused by a high
concentration of MSG as a substrate, which has a side effect on bacterial growth and
GABA production [13]. It was reported that heat-shock proteins are multifunctional in
response to extracellular stress. In Clostridium botulinum, heat-shock proteins were reported
to play a significant role against pH and NaCl [43]. Butyric-acid tolerance and production
were improved by overexpressing groES and groEL in C. tyrobutyricum [29]. The increased
relative-expression level of groES and groEL indicate that the bacterial cells were sensitive
in response to MSG stress (Figure 4A). Thus, groES and groEL were overexpressed to
investigate the potential for enhanced GABA production. Compared to wild-type, the
specific growth rate of Ct-pMA02 and Ct-pMAG increased over the range of 10–30 g/L
and then steadily decreased. This might have been due to GABA synthesis consuming
protons, creating a more alkaline environment suitable for bacterial growth [12]; however,
an excessive amount of MSG (>30 g/L) inhibited the bacterial growth. Improved GABA
production was observed when 20–40 g/L MSG was added using Ct-pMAG (overexpressed
groES and groEL) (Figure 4D), indicating that GroESL might help strains against low pH
and MSG stress to grow better under given conditions (Figure 4C). Although no significant
difference was observed in cytoplasmic GAD activity between Ct-pMAG and Ct-pMA02
(Figure S4A), a higher cell-bound activity was achieved by Ct-pMAG (Figure S4B), which
is consistent with previous work on Lactobacillus brevis [33].

When using the pH-free strategy in fed-batch fermentation, an excessive amount of
MSG remained, which was possibly due to the low GAD activity caused by the increased
pH of the fermentation broth (Figure 5A). Moreover, the final titer of GABA (34.87 g/L)
did not increase with more MSG supplied (Figure S5A). Previous reports revealed that
relative acidic conditions were essential for the reaction of glutamate decarboxylase [8,14].
The pH-control strategy is common in microbial GABA synthesis [2]. By applying the
pH-control strategy, the pH was adjusted to 4.5 to attain the highest GAD activity to
generate GABA synthesis, and increase in the GABA titer (62.59 g/L) was observed under
equivalent MSG supplementation (Figure S5B). With more MSG supplied, a higher titer
(122.34 g/L) and productivity (1.46 g/L/h) were achieved (Figure 5B). Many studies have
revealed that L-Glu as a substrate could enhance GABA synthesis compared with MSG
as a substrate [37,38]. In this study, L-Glu was also investigated as a substrate. However,
during fermentation with 10 g/L L-Glu added, wild-type and engineered strains Ct-pMA01,
Ct-pMA02, Ct-pMAB01, and Ct-pMAG all failed to grow (data not shown). The pH was
considered to be the major obstacle since the initial pH was nearly 3.2, which was not
suitable for the growth of C. tyrobutyricum. It was reported that L. brevis NCL912 could
grow well in an extremely-low-pH environment and synthesize GABA, and the initial pH
of the fermentation medium with L-Glu added was approximate 3.3 [38]. L-Glu inhibited
the growth of C. tyrobutyricum when it was added to the medium at the beginning of the
fermentation, but it could also be added once there are enough cells (as biocatalyst) to
catalyze the synthesis of GABA. Using the two-stage strategy, firstly, the fermentation
procedure began with the accumulation of biomass. At the bioconversion stage, a higher
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GABA titer (400.32 g/L) and productivity (36.39 g/L/h) were achieved under the condition
of 90 g/L glucose with a competitive molar yield (97.07%) (Figure 6F).

5. Conclusions

In conclusion, this study suggested that C. tyrobutyricum could synthesize GABA
by introducing GAD gene. By co-expressing Class I heat-shock genes groES and groEL,
strain tolerance against MSG was improved and a higher GABA titer was achieved. In
fed-batch fermentation using MSG, GABA production reached 35.57 g/L and 122.34 g/L
using the pH-free strategy and pH-control strategy, respectively. To further improve
GABA production, a two-stage strategy was carried out, achieving a final GABA titer of
400.32 g/L with a productivity of 36.39 g/L/h from L-Glu. Thus, our study exhibits a
promising method and platform for high-level GABA production using C. tyrobutyricum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation9050445/s1, Table S1. Primers used in this study;
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colony PCR for recombinant strains; Figure S2. SDS-PAGE of cell extracts prepared by wild-type and
engineered C. tyrobutyricum strains; Figure S3. Profiles of bioconversion of L-Glu using Ct-pMA02
and Ct-pMAG; Figure S4. (A) Comparison of GAD activity between Ct-pMA02 and Ct-pMAG;
Figure S5. Fed-batch fermentation of Ct-pMAG in a 5 L bioreactor at 37 ◦C for 84 h.
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