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Abstract: Hyaluronic acid (HA) is a natural linear polysaccharide extensively used in many fields,
including the food, medicine, and cosmetics industries. Currently, species that produce HA syn-
thetase (HAS) from microbial sources are relatively small and mainly pathogenic, such as Streptococcus
pyogenes and Pasteurella multicide. Moreover, there is limited research on the safe microbial sources of
HAS. Thus, we characterized SthasA, a HAS derived from the probiotic Streptococcus thermophilus,
and used it for the de novo synthesis of HA in a chassis strain of Bacillus amyloliquefaciens. Metabolic
engineering of the precursor supply modules suggested that hasB (encoding UDPG dehydrogenase),
which was derived from Corynebacterium glutamicum ATCC 13032, effectively promoted the accumula-
tion of HA products. Furthermore, by combining the expression of the global regulatory factor CcpA,
HA yield from the recombinant strain reached 3.20 g/L. Finally, we obtained a yield of 5.57 g/L
HA with a molecular weight of 1.7 × 106 Da using various process optimization strategies in a 5 L
bioreactor. This study enriches our understanding of obtaining HAS from non-pathogenic bacteria
and provides a safe and effective process for producing HA, which has the potential to promote the
industrial applications of HA further.

Keywords: hyaluronic acid; cell factory; hyaluronic acid synthetase; Streptococcus thermophilus;
synthetic biology

1. Introduction

Glycosaminoglycans (GAGs) are a class of straight-chain acidic polysaccharides that
play a broad range of essential biological roles. They are widely distributed in the extra-
cellular matrix and on the cell surfaces of animal tissues. They interact with signaling
molecules and play a role in regulating cell proliferation and differentiation [1,2]. GAGs
can be classified into four main classes based on their structures: hyaluronic acid (HA),
heparin sulfate, chondroitin sulfate, and keratin sulfate. HA is the only non-sulfated linear
polysaccharide in the GAG family that is not bound to proteins. The basic structure of
HA is composed of d-glucuronic acid (GlcUA) and N-acetyl-D-glucosamine (GlcNAc),
which are alternately linked by β-1,3 and β-1,4 glycosidic bonds. HA is widely used in
medicine, cosmetics, and food products because of its unique viscoelasticity, hygroscopicity,
non-immunogenicity, and biocompatibility properties [3–5]. In medical applications, HA
acts as a lubricant to protect the ends of bones [6]. In cosmetics, an aqueous solution of HA
is primarily used to form a viscoelastic gel that can be applied to the skin to moisturize,
rejuvenate, and improve wound healing [7]. Studies on the use of HA in food have focused
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on increasing the amount of HA in the body via oral administration. Schwartz et al. re-
ported that oral dietary supplements containing HA reduced facial wrinkles and increased
skin elasticity and collagen content [8]. In addition, oral HA supplementation prevents
symptoms such as arthritis, arteriosclerosis, and an irregular pulse.

HA is primarily derived from animal tissues and microbial fermentation processes.
Due to the limited quality and quantity of raw materials, HA yield costs are high. Coupled
with the frequent occurrence of animal epidemics, source cross-infection events lead to
increased health and safety concerns, thus limiting the application of HA in biomedicine
and clinical practice [9,10]. In recent years, microbial fermentation has gradually replaced
tissue extraction as the main source of HA, mainly using the fermentation of Streptococcus
zooepidemicus [11,12]. The mechanism for HA synthesis has been continuously analyzed due
to the continuous developments in synthetic biology [13,14]. The use of microorganisms
with well-defined genetic backgrounds and high biosecurity to synthesize HA has become
a trend in developing microbial fermentation to synthesize HA. The HA synthesis path-
way has been successfully developed for efficient recombinant HA yield in safe microbial
hosts, such as Bacillus subtilis [15], Corynebacterium glutamicum [16], and Bacillus amyloliq-
uefaciens [17]. As shown in our previous studies, compared to the traditional B. subtilis
chassis, B. amyloliquefaciens is an important, safe microbial host that has been developed for
the production of biopolymers such as HA [17], poly(γ-glutamic acid) [18,19], and other
high-value-added chemicals such as ornithine [20]. Although Ma et al. confirmed that the
HA synthesis pathway constructed in B. amyloliquefaciens could synthesize HA, its yield
was 2.89 g/L, which was still low [17]. Therefore, mining for efficient HA synthetase (HAS)
is an effective method for efficient HA biosynthesis.

Using a bioinformatics analysis of the HAS domain, this study identified HAS derived
from the probiotic Streptococcus thermophilus using genomic databases. To validate the
ability of this enzyme to synthesize HA, this study successfully synthesized HAS in B. amy-
loliquefaciens. HA synthesis was promoted by optimizing the precursor pathway, improving
the supply of the precursor UDPG-GlcUA, and overexpressing transcriptional regulators.
In addition, the medium in the shaker flask was optimized using statistical techniques
and expanded in a 5 L fermenter to achieve efficient fermentation for HA synthesis. This
study established an efficient method to produce valuable HA biopolymers using the newly
discovered HAS.

2. Materials and Methods
2.1. Materials and Reagents

The DNA standard marker, 2 × Phanta® Flash Master Mix DNA polymerase, and
the ClonExpress II One Step Cloning Kit were purchased from Vazyme Biotech Co., Ltd.
(Nanjing, China). Restriction enzymes (NdeI and BamHI) were purchased from New
England Biolabs (Beijing Co. Ltd., Beijing, China). HA standards for high-performance
liquid chromatography (HPLC) analysis were purchased from Bloomchi Biotechnology
Co., Ltd. (Shandong, China). The pMA5 vector was maintained in our laboratory. All
other chemicals and reagents were purchased from Shanghai Macklin Biochemical Co. Ltd.
(Shanghai, China). All strains and plasmids used in this study are listed in Table 1, and the
primers used are listed in Table S1.

Table 1. Strains and plasmids used in this study.

Strain or Plasmid Relevant Characteristics References

E. coli DH5α
F-, ϕ80dlacZ∆M1, ∆(lacZYA-argF) U169,
deoR, recA1, endA1, hsdR17 (rk-, mk+),
phoA, supE44, λ − thi-1, gyrA96, relA1

This lab

E. coli GM2163

F-, ara-14 leuB6 thi-1 fhuA31 lacY1 tsx-78
galK2 galT22 supE44 hisG4 rpsL 136 (Strr)

xyl-5 mtl-1 dam13::Tn9 (Camr) dcm-6
mcrB1 hsdR2 mcrA

This lab
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Table 1. Cont.

Strain or Plasmid Relevant Characteristics References

B. amyloliquefaciens NB NX-2S derivate, BamHI::PHpaII-pgsR This lab
B. amyloliquefaciens NF NB∆pgsBCA This lab
B. amyloliquefaciens SE NF∆epsA-O∆sacB This lab

pMA5 E. coli and B. amyloliquefaciens Shuttle
expression vector; AmpR, KmR This study

pMA5-StA pMA5 derivate consists of the SthasA gene
between BamHI and NdeI This study

pMA5-StAB pMA5-StA derivate consists of the tuaD
gene CghasB This study

pMA5-StABC1 pMA5-StAB derivate consists of the gtaB
gene BmhasC This study

pMA5-StABC2 pMA5-StAB derivate consists of the gtaB
gene CghasC This study

pMA5-StABC3 pMA5-StAB derivate consists of the gtaB
gene BshasC This study

pMA5-StABC4 pMA5-StAB derivate consists of the gtaB
gene SphasC This study

pMA5-StABC5 pMA5-StAB derivate consists of the gtaB
gene PahasC This study

pMA5-StAB1 pMA5-AB derivate consists of the translation
factor gene CcpA This study

pMA5-StAB2 pMA5-AB derivate consists of the translation
factor gene CodY This study

pMA5-StAB3 pMA5-AB derivate consists of the translation
factor gene ThrA This study

pMA5-StAB4 pMA5-AB derivate consists of the translation
factor gene ComK This study

pMA5-StAB5 pMA5-AB derivate consists of the translation
factor gene Spo0A This study

pMA5-StAB6 pMA5-AB derivate consists of the translation
factor gene AbrB This study

pMA5-StAB7 pMA5-AB derivate consists of the translation
factor gene Rex This study

pMA5-StAB8 pMA5-AB derivate consists of the translation
factor gene FruR This study

pMA5-StAB9 pMA5-AB derivate consists of the translation
factor gene BkdR This study

pMA5-AB10 pMA5-AB derivate consists of the translation
factor gene CtsR This study

pMA5-StAB11 pMA5-AB derivate consists of the translation
factor gene GltC This study

pMA5-StAB12 pMA5-AB derivate consists of the translation
factor gene SigA This study

2.2. Bioinformatics Analysis

Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/ accessed on 20 October
2022) was used to analyze the amino acid sequence homology. MEGA software was used
to construct a phylogenetic tree. MEME (https://memesuite.org/meme/doc/meme.html
accessed on 23 October 2022) was used to analyze conserved amino acid sequence mo-
tifs. Multi-sequence alignment and secondary structure prediction were performed using
ESPript 3 (https://espript.ibcp.fr/ESPript/ESPript/ accessed on 1 November 2022). The
CCTOP prediction server (http://cctop.enzim.ttk.mta.hu/ accessed on 2 November 2022)
was used to predict the transmembrane domains. SWIS-SMODEL (https://swissmodel.
expasy.org/interactive accessed on 5 November 2022) was used to perform three-level
spatial structure analysis and model building. Finally, PyMOL software (Schrödinger,

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://memesuite.org/meme/doc/meme.html
https://espript.ibcp.fr/ESPript/ESPript/
http://cctop.enzim.ttk.mta.hu/
https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
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Schrodinger, New York, NY, USA) produced the SthasA cartoon three-level structure and a
surface TV distribution map.

2.3. Construction of the Recombinant Strains

The SthasA sequence was synthesized by General Biology (Chuzhou, China). NdeI
and BamHI were used to digest the pMA5 plasmids. pMA5-StA was generated by ligating
linearized vectors and PCR fragments with the ClonExpress II One Step Cloning Kit,
which was then transformed into E. coli DH5α cells and GM2163 for plasmid construction
and demethylation. Incubation was performed at 37 ◦C for 12 h with a positive colony
carrying the pMA5-StA plasmid in Luria–Bertani medium containing 100 mg/L ampicillin.
pMA5-StA was identified using enzymatic digestion with NdeI and BamHI.

To investigate the effects of UDPG-GlcUA on HA expression, primers CghasB-F/R
were used to amplify the UDPG-dehydrogenase-encoding gene tuaD (hasB) from C. glutam-
icum ATCC 13032, yielding the plasmid pMA5-StAB. Primers BmhasC-F/R, CghasC-F/R,
BshasC-F/R, SphasC-F/R, and PahasC-F/R were used to amplify the UTP-glucose-1-
phosphate uridylyltransferase-encoding gene gtaB (hasC) in B. amyloliquefaciens ATCC
13032, C. glutamicum ATCC 13032, B. subtilis 168, Sphingomonas sp. NX-3, and Pantoea alhagi
NX-11. The plasmid pMA5-StABC1∼5 was produced as a result. All the plasmids were
sent to General Biology (Chuzhou, China) for DNA sequencing. The resulting plasmids
were transformed into B. amyloliquefaciens for HA production.

2.4. Studies on Global Transcription Regulators

B. amyloliquefaciens genomic DNA was extracted using a Novezan (Nanjing, China)
Gram-positive bacterial genome extraction kit. Using the primers CcpA-F/R, CodY-F/R,
ThrA-F/R, ComK-F/R, Spo0A-F/R, AbrB-F/R, FruR-F/R, and Rex-F/R, we amplified
seven common global metabolic transcriptional regulators and one redox factor gene
from the genome of B. amyloliquefaciens. Because transcription factors targeting both HA
precursors have not been reported, four relevant transcription factors were predicted
using the website (https://dbtbs.hgc.jp/ accessed on 21 November 2022) and amplified
using the primers SigA-F/R, CtsR-F/R, BkdR-F/R, and GlnR-F/R. The recombinant strain
B. amyloliquefaciens SE-StAB1-12 was constructed using the method described in Section 2.3.
HA yield was determined, and the transcriptional regulator with the most significant effect
on HA yield was screened.

2.5. Box–Behnken Design and Response Surface Methodology Experiment

The culture medium for recombinant B. amyloliquefaciens SE-StAB was optimized to
improve the HA yield. Initially, single-factor experiments determined the level of each
factor. The optimal medium composition is sucrose 40 g/L, yeast extract powder (YEP)
10 g/L, Mg4SO2 6 g/L, temperature 32 ◦C, pH 7.0, and inoculation 6%. Then, sucrose, YEP,
and MgSO4·7H2O were selected as independent variables and further optimized using
response surface methodology for HA yield. In this study, a Box–Behnken design (BBD)
was used, and the 17 experiments are listed in Table 2. Each batch was fermented in a
250 mL Erlenmeyer flask containing 50 mL of medium and repeated three times.

Table 2. Experimental design and results of the Box–Behnken Design.

Assay
Factors HA Concentration (g/L)

X1 X2 X3 Observed Predicted

1 25.00 (−1) 5.00 (−1) 6.00 (0) 4.35 ± 0.03 4.36
2 55.00 (1) 5.00 (−1) 6.00 (0) 3.95 ± 0.06 3.94
3 25.00 (−1) 15.00 (1) 6.00 (0) 3.85 ± 0.06 3.86
4 55.00 (1) 15.00 (1) 6.00 (0) 4.29 ± 0.10 4.29
5 25.00 (−1) 10.00 (0) 4.00 (−1) 3.61 ± 0.08 3.61
6 55.00 (1) 10.00 (0) 4.00 (−1) 3.56 ± 0.11 3.58

https://dbtbs.hgc.jp/
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Table 2. Cont.

Assay
Factors HA Concentration (g/L)

X1 X2 X3 Observed Predicted

7 25.00 (−1) 10.00 (0) 8.00 (1) 3.79 ± 0.09 3.77
8 55.00 (1) 10.00 (0) 8.00 (1) 3.81 ± 0.10 3.81
9 40.00 (0) 5.00 (−1) 4.00 (−1) 3.63 ± 0.08 3.63
10 40.00 (0) 15.00 (1) 4.00 (−1) 3.80 ± 0.03 3.79
11 40.00 (0) 5.00 (−1) 8.00 (1) 4.06 ± 0.10 4.07
12 40.00 (0) 15.00 (1) 8.00 (1) 3.76 ± 0.10 3.76
13 40.00 (0) 10.00(0) 6.00 (0) 4.82 ± 0.06 4.82
14 40.00 (0) 10.00 (0) 6.00 (0) 4.82 ± 0.08 4.82
15 40.00 (0) 10.00 (0) 6.00 (0) 4.83 ± 0.10 4.82
16 40.00 (0) 10.00 (0) 6.00 (0) 4.81 ± 0.06 4.82
17 40.00 (0) 10.00 (0) 6.00 (0) 4.84 ± 0.04 4.82

X1, X2, and X3 are the coded values for the test variables sucrose, YEP, and MgSO4·7H2O concentrations (g/L), respectively.

2.6. HA Overproduction in a 5 L Fermenter

The fermentation of recombinant B. amyloliquefaciens SE-StAB was investigated in a 5 L
fermenter. The model, BIOTECH-5BG-2, was purchased from Shanghai Baoxing Bio-device
Engineering Co., Ltd. (Shanghai, China). After incubating the seed fluid for 10 h, it was
inoculated into a 5 L fermenter containing 3 L of liquid at 6% of the inoculum volume for
batch fermentation. Simultaneously, kanamycin sulfate and sucrose were added such that
the concentration of kanamycin sulfate was 25 mg/L, and the final sucrose concentration
was 40 g/L. Sodium hydroxide was used to control the pH at 7.0 ± 0.1. The ventilation and
rotational velocities maintained the dissolved oxygen (DO) at 20%. The initial rotational
speed and ventilation rate were set to 400 rpm and 4 vvm, respectively. During fermentation,
samples were collected every 4 h, and the residual sugar, HA concentration, and dry cell
weight (DCW) in the fermenting liquid were measured. Shaker fermentation was used as
a control.

2.7. Analytical Method

According to the reference [17], the HA yield from the recombinant strain was deter-
mined using HPLC. The fermenting solution was diluted 5 times and centrifuged to remove
bacteria. The supernatant was filtered with a 0.22 µm filter membrane and collected in a
chromatographic injection bottle. A solution of 0.1 M Na2SO4 was prepared as the moving
phase, with the pH adjusted to 4.0 using acetic acid at a flow rate of 0.8 mL/min. The
peak region was monitored, and the HA standard was used to produce the standard curve.
Upon conversion, the HA yield was obtained. DCW was determined using the constant
weight method, and the cell concentration in the fermentation broth was calculated [17].
The purified HA samples were sent to Hangzhou Yanqu Information Technology Co., Ltd.
(Zhejiang, China). The product was characterized and analyzed using Fourier transform
infrared (FT-IR) and 1H-NMR spectroscopy to demonstrate that the purified product was
indeed HA. Therefore, the screening enzyme SthasA could be used for HA synthesis in
B. amyliquefaciens. All measurements were taken three times, and the SPSS 19.0 software
(IBM, Chicago, IL, USA) was used for statistical analysis. All figures were drawn using
Origin 2021 software (OriginLab Corporation, Northampton, MA, USA).

3. Result and Discussion
3.1. Bioinformatics Analysis of a New HAS (SthasA) from S. thermophilus

The intracellular synthesis of HA requires the involvement of several enzymes. HAS
is a key enzyme in the HA synthesis pathway because it catalyzes the polymerization
of two precursors, UDPG-GlcUA and UDPG-GlcNAc. HAS catalyzes seven different
reactions, including binding two monomeric substrate molecules and two extended HA
chain segments, glycosylation of two substrate molecules, and transmembrane transport
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of HA product chains. The HAS identified to date can be classified into Type I and
Type II. Type I HAS is derived from (1) bacterial sources: Group A Streptococcus pyogenes
(SphasA) and Group C Streptococcus equisimilis (SehasA), (2) viral sources: Chlorella virus
(CvhasA), and (3) vertebrate sources: Homo sapiens (HshasA1-3), whereas Type II HAS
is only derived from Pasteurella multocida (PmhasA). Amino acid sequence homology
analysis revealed that the homology of SthasA with the Type II HAS PmhasA was 20.16%,
whereas that with the Type I HAS HshasA1, HshasA2, HshasA3, CvhasA, SehasA, and
SphasA was 29.95%, 30.00%, 30.03%, 33.59%, 33.59%, 36.62%, and 36.36%, respectively
(Table S2). Khuri et al. demonstrated that branches of genetic evolutionary trees constructed
from amino acid sequences of proteins reflect genetic relationships among species and
serve as a basis for evaluating the functional relevance of proteins [21]; this is because
genes that perform relevant physiological functions are relatively conserved due to their
important protective effects during the evolutionary process of long-term adaptation to
the environment. Therefore, this study used MEGA-X software to construct phylogenetic
trees based on SthasA amino acid sequences. As shown in Figure 1, SthasA is very closely
related to prokaryotic Streptococcus in terms of amino acid sequence alignment. In contrast,
vertebrate HAS exhibits a high genetic distance from SthasA. SehasA is widely used in HA
synthesis because of its high polymerization efficiency, and the crystal structure of CvhasA
has been previously analyzed. Therefore, SehasA and CvhasA were selected as references
for subsequent bioinformatics analyses.

Fermentation 2023, 9, x FOR PEER REVIEW 6 of 18 
 

 

19.0 software (IBM, Chicago, U.S.) was used for statistical analysis. All figures were 
drawn using Origin 2021 software (OriginLab Corporation, Northampton, MA, USA). 

3. Result and Discussion 
3.1. Bioinformatics Analysis of a New HAS (SthasA) from S. thermophilus 

The intracellular synthesis of HA requires the involvement of several enzymes. HAS 
is a key enzyme in the HA synthesis pathway because it catalyzes the polymerization of 
two precursors, UDPG-GlcUA and UDPG-GlcNAc. HAS catalyzes seven different reac-
tions, including binding two monomeric substrate molecules and two extended HA chain 
segments, glycosylation of two substrate molecules, and transmembrane transport of HA 
product chains. The HAS identified to date can be classified into Type I and Type II. Type 
I HAS is derived from (1) bacterial sources: Group A Streptococcus pyogenes (SphasA) and 
Group C Streptococcus equisimilis (SehasA), (2) viral sources: Chlorella virus (CvhasA), and 
(3) vertebrate sources: Homo sapiens (HshasA1-3), whereas Type II HAS is only derived 
from Pasteurella multocida (PmhasA). Amino acid sequence homology analysis revealed 
that the homology of SthasA with the Type II HAS PmhasA was 20.16%, whereas that 
with the Type I HAS HshasA1, HshasA2, HshasA3, CvhasA, SehasA, and SphasA was 
29.95%, 30.00%, 30.03%, 33.59%, 33.59%, 36.62%, and 36.36%, respectively (Table S2). 
Khuri et al. demonstrated that branches of genetic evolutionary trees constructed from 
amino acid sequences of proteins reflect genetic relationships among species and serve as 
a basis for evaluating the functional relevance of proteins [21]; this is because genes that 
perform relevant physiological functions are relatively conserved due to their important 
protective effects during the evolutionary process of long-term adaptation to the environ-
ment. Therefore, this study used MEGA-X software to construct phylogenetic trees based 
on SthasA amino acid sequences. As shown in Figure 1, SthasA is very closely related to 
prokaryotic Streptococcus in terms of amino acid sequence alignment. In contrast, verte-
brate HAS exhibits a high genetic distance from SthasA. SehasA is widely used in HA 
synthesis because of its high polymerization efficiency, and the crystal structure of 
CvhasA has been previously analyzed. Therefore, SehasA and CvhasA were selected as 
references for subsequent bioinformatics analyses.  

 
Figure 1. Phylogenetic analysis of SthasA and other strains. The GenBank accession number appears 
at the end of the strain. The number of nodes is the percentage bootstrap value based on 1000 repli-
cations. The figure bar of 0.2 indicates the genetic distance. 

The MEME website was used to analyze the conservative modular order of these 
HASs. The results showed that they had three identical modular sequences (Figure 2A), 

Figure 1. Phylogenetic analysis of SthasA and other strains. The GenBank accession number appears
at the end of the strain. The number of nodes is the percentage bootstrap value based on 1000
replications. The figure bar of 0.2 indicates the genetic distance.

The MEME website was used to analyze the conservative modular order of these HASs.
The results showed that they had three identical modular sequences (Figure 2A), among
which the E-value of MEME 1 was 6.2 × 10−21 (p < 0.05), showing the most significant
difference and indicating that this MEME had the highest confidence level (Table S3). In
CvhasA, R256 in mode sequence 1 is an important site affecting the enzyme activity, which
is lost upon mutation with Lys, and C267 is an important site affecting the conserved
switching ring after nucleotide binding [22]. Therefore, we hypothesized that these sites are
present in SthasA, providing a basis for the directional transformation of SthasA to yield
highly efficient HA. The sequence identification graph plots the residuals at each position
in the sequence alignment. The accumulation of residuals at each position reflected the
consistency of the residues. The size of the corresponding graphic character for each residue
is proportional to the frequency at which the residue occurs at that location (Figure 2A).
To identify the key catalytic groups in SthasA, multiple sequence alignment analyses of
SthasA amino acid sequences were performed and secondary structures were predicted
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using CvhasA as a model. The secondary structure predictions show that the SthasA
protein molecule contains 12 α helices, 9 β folds, and 2 β corners. The binding protein-
conserving motifs 1, 2, and 4 formed similar domains based on the secondary structure of
the protein, suggesting that conserved motifs play a key role in the formation of higher
protein structures (Figure 3).

Structurally, unlike conventional HAS [5,22], transmembrane prediction analyses
have shown that SthasA consists of only four lipid-dependent intact transmembrane
domains (TM1, TM3, TM4, and TM5), and one membrane-anchoring domain (Figure 2B).
Two UDPG-substrate-binding sites, two HA-monosaccharide-UDPG feeding sites, two
glycosyl transferase catalytic sites, and one domain are available that assist the HA sugar
chain transmembrane domain. Significant differences were observed in the catalytically
conserved motifs, with the key region TM2 missing from the molecular weight (MW)
regulation of HA. The fourth and fifth transmembrane domains were conserved to a certain
extent, whereas the other transmembrane domains were not. Therefore, we conjecture that
the first two membrane sequences of HAS are the main factors responsible for differences
in HA synthesis and MW. Three-dimensional (3D) homology modeling of structural and
functional proteins based on conserved amino acid sequences is important for clarifying
the correlation between protein structure and function [23,24]. The tertiary structure is
composed of α helix, β folding, and other secondary structures, which are then folded into
a spherical, tightly wrapped three-dimensional spatial structure. Amino acid residues in
the primary structure can be folded such that their side chains are close to each other, and
active sites can be formed by hydrophobic action. In this study, the SWISS-MODEL tool
was used to predict the tertiary structure of SthasA using CvhasA as a template (Figure 2C).
The similarity between the two structures was 36%, which was the highest fit among the
HA structures analyzed. Combined with the crystal structure data for CvhasA, this helped
identify the key motifs involved in the polymerization of this enzyme. This enzyme is
the first new Type I HAS isolated from a non-pathogenic strain, providing a rationale for
further evolution of SthasA for targeted HA synthesis.
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3.2. Construction and Optimization of the HA Synthesis Pathway in B. amyloliquefaciens

To further verify the ability of the HAS (SthasA) from S. thermophilus to heterosyn-
thesize HA, we tested it in B. amyloliquefaciens NF chassis. As shown in Figure 4B, we
successfully detected HA synthesis (up to 0.8 g/L) in recombinant strains with constitutive
expression of SthasA genes, and it has been reported that hasB and hasC, which are HA
precursors, have important effects on HA biosynthesis. To further balance growth and HA
synthesis, we optimized the precursor pathway and improved the supply of UDPG-GlcUA,
as shown in Figure 4A. First, hasB from C. glutamicum ATCC 13032 was further assembled,
and it was observed that the introduction of hasB had the strongest promoting effect on
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HA biosynthesis, and the yield reached 1.91 ± 0.01 g/L, which is a 3-fold increase. The
hasC sources were optimized to include BahasC (B. amyloliquefaciens ATCC 13032), CghasC
(C. glutamicum ATCC 13032), BshasC (B. subtilis 168), SphasC (Sphingomonas sp. NX-3), and
PahasC (Pantoeaalhagi NX-11). The introduction of hasC did not significantly affect the HA
yield in the B. amyloliquefaciens strain (Figure 4B). These results indicated that hasB is a
major rate-limiting enzyme in HA synthesis. In the original B. amyloliquefaciens strain,
the low expression of UDPG dehydrogenase limited UDPG-GlcUA expression, inhibit-
ing HA synthesis [25]. The inhibition is because the original hasB gene is inhibited by
excessive phosphate production during fermentation [26], resulting in the underexpres-
sion of UDPG dehydrogenase in the original strain. Finally, a combination of probiotic
food-grade SthasA and CghasB was selected and attached to the plasmid pMA5 using
one-step cloning. The strain B. amyloliquefaciens SE, constructed in this study and lacking
the oligosaccharide synthesis gene sacB and the polysaccharide operon gene epsA-O, was
electrically re-transformed into B. amyolliquefaciens SE-StAB. Due to its excellent ability to
synthesize HA, it was used as a new chassis strain for subsequent HA biosynthesis studies.
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Figure 4. HA synthesis pathway in B. amyloliquefaciens. (A) Gene combination in HA-producing oper-
ons. (B) Fragment expression of different UTP-glucose-1-phosphate uridylyltransferases. Different
lowercase letters (a, b, c, d, e, f) mean significant (p < 0.05).

In addition, synthetic products of SthasA have been identified. The product synthe-
sized from the recombinant strain was subjected to repeated alcohol precipitation, after
which the protein was removed. Finally, the HA solution was added to a dialysis bag to
remove small molecules in the HA solution. The purified products were initially analyzed
using FT-IR and 1H-NMR. FT-IR spectroscopy is an intuitive way to characterize the struc-
ture of biopolymers and their functional groups. The FT-IR spectrum of the HA sample
is shown in Figure 5A. The strong O-H stretching vibrational absorption at 3419.51 cm−1

in the HA sample indicates the presence of a COOH group. At 2797.57 cm−1, a strong
characteristic absorption of C-H stretching vibrations was observed. At 1614.63 cm−1,
strong C=N and C=O stretching and N-H bending vibrations were observed, indicating
the presence of -CONH2. At 1356.09 cm−1, there was a stretching vibration of C-O in the
carboxyl group and a C-O-C stretching vibration at 1117.07 cm−1, which is consistent with
the group position of the HA standard in the reference [27]. Subsequently, the structure of
the HA sample was further characterized with 1H-NMR (Figure 5B), and it was observed to
be consistent with the data in the 1H-NMR spectrum of HA produced from strains reported
in the literature [28]. Other miscellaneous peaks in the 1H-NMR spectra were mainly due
to impurities caused by sample separation and insufficient purification. Similar cases were
reported by Güngöret et al. [29]. However, in general, the chemical shift values for the
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H nucleus were similar. These results imply that HA is the fermentation product of the
recombinant strain.
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3.3. Study on Global Transcriptional Regulators of HA Synthesis in B. amyloliquefaciens

To further improve the efficiency of HA synthesis, we attempted to increase HA
yield using recombinant B. amyloliquefaciens by adjusting the strategy for global regulatory
factors. Global transcriptional regulatory engineering can effectively improve the synthesis
of target metabolites using transcription factors with specific functions to activate or
inhibit the co-expression of multiple genes in specific metabolic pathways. This strategy is
currently viable for bioethanol [30] and organic acid synthesis [31]. In the HA synthesis
process, except for the modification of rate-limiting components or steps described in
Section 3.2, to improve HA synthesis efficiency in the B. amyloliquefaciens cell factory, we
altered the regulatory network of global carbon and nitrogen metabolism by randomly
expressing polytropic global transcription regulatory factors to achieve optimal nutrient
intake and efficient HA biosynthesis. Therefore, a transcription prediction system for
B. subtilis was used in this study. First, the effects of the common global transcription
factors CcpA, CodY, ThrA, ComK, Spo0A, AbrB, and FruR and the redox factor Rex acting
on carbon and nitrogen sources on HA synthesis by recombinant B. amyloliquefaciens SE-
StAB were overexpressed. The results show that recombinant strains expressing CcpA
(3.2 g/L), CodY (2.8 g/L), and ComK (2.9 g/L) exhibited an increase in HA yield. In
contrast, the remaining strains exhibited a decrease in HA yield (Figure 6C). Considering
the importance of HA precursor accumulation, we used bioinformatics analysis to predict
the transcription factors SigA, CtsR, BkdR, and GlnR that regulate GlcUA and GlcNAc
production in B. amyloliquefaciens (Figure 6A,B). The expression plasmids SigA, CtsR, BkdR,
and GlnR were constructed and fermented to determine HA yield, and it was observed
that CtsR promoted the synthesis of HA to a certain extent (3.0 g/L). At the same time,
SigA, BkdR, and GlnR did not inhibit or promote HA synthesis significantly (Figure 6D). In
contrast, overexpression of the transcription regulatory factor CcpA promoted HA yield
by 28%, reaching 3.20 ± 0.09 g/L. Cao et al. edited metabolic regulatory networks in
recombinant strains by randomly mutating and screening the global regulatory factors
CcpA and CodY and then further applying mutations in CcpA and CodY, which increased
the yield of green fluorescent protein (GFP), confirming that up-regulated GFP protein
expression was due to a slight loss in the growth rate under mutated global regulators
in the mutant strain and recombination of central nitrogen metabolism [32]. CcpA and
CodY act as suppressors and activators of gene expression, respectively, by specifically
binding to the sequences in or near the promoter region of the target gene. Together, these
global regulatory proteins and their ligands control the intersection of large regulatory
proteins that balance the utilization of available nutrient sources, systematically coordinate
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intracellular carbon and nitrogen fluxes, and promote cellular homeostasis by stimulating
specific catabolic processes.
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3.4. Culture Medium Optimization for HA Yield using Response Surface Methodology

In this study, the production of HA from B. amyolliquefaciens SE-StAB and fermentation
by this strain are discussed. The level of synthesis by recombinant bacteria depends on
the properties of the strain. Second, the composition of the medium and fermentation
conditions have an important effect on the growth and metabolism of microorganisms
and, thus, on the level of fermentation. In the composition of the medium, carbon and
nitrogen sources and inorganic salts are the main factors that affect the microbial yield.
Lai et al. studied the effect of glucose concentration on HA synthesis in recombinant
E. coli BL21 cells. Nutrient-rich media with a glucose concentration of 50 g/L showed a
high HA yield (0.115 ± 0.002 g/L) [33]. Temperature, pH, liquid loading, shaking speed,
and other culture conditions also significantly impacted HA yield. Liu et al. studied the
effects of pH, temperature, aeration, and agitation on the yield from HA synthesis using
S. zooepidemicus HA-13-06 fermentation and coupled two-stage fermentation to produce
HA efficiently, resulting in a yield and MW of HA of 4.75 g/L and 2.36 × 106 Da, respec-
tively [10]. Therefore, improving the HA yield from recombinant strains by optimizing
the fermentation process is imperative. With bacterial content and HA yield as important
indicators, the fermentation process in the shaken flask was optimized, which provided
the basis for the next fermentation step. The results of the single-factor experiment show
that the optimized concentrations of sucrose (Figure S1), YEP, and MgSO4·7H2O were 40,
10, and 6 g/L, respectively, and at a temperature of 32 ◦C, pH of 7.0, and an inoculation
amount of 6%, the HA yield reached a maximum of 3.97 g/L.
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Given the interplay between these factors, it is challenging to develop a theoretical
model because several factors are involved in the optimization of fermentation media
and culture conditions. In addition, there is typically a certain degree of error in the
measured data, which affects the evaluation of the optimization results. Therefore, a
response surface optimization experiment was performed using BBD to determine the
optimal concentrations of sucrose, YEP, and MgSO4·7H2O. Table 2 lists the design cases and
results for the 17 sets of optimization experiments. Subsequently, an analysis of variance
(ANOVA) was performed on the BBD experiment to detect the influence of the above three
factors on HA expression (Table 3). Using a multiple regression analysis of the experimental
data, a second-order polynomial equation was obtained as follows:

HA Concentration = 4.82 + (0.001 × X1) − (0.0.037 × X2) + (0.100 × X3) +
(0.210 × X1 × X 2) + (0.017 × X1 × X3) − (0.120 × X2 × X3) −

(0.420 × X1
2) − (0.300 × X2

2) − (0.710 × X3
2)

Table 3. Regression analysis of the central composite design.

Source SS a DF b MS c F-Value Probe > F

Model 3.89 9 0.43 2355.53 <0.0001 d

X1 1.7 × 10−5 1 1.69 × 10−5 0.092 0.7702
X2 0.01 1 0.01 58.83 0.0001
X3 0.08 1 0.08 443.63 <0.0001 d

X1X2 0.18 1 0.18 956.21 <0.0001 d

X1X3 1.18 × 10−3 1 1.18 × 10−3 6.45 0.0387
X2X3 0.06 1 0.06 303.50 <0.0001 d

X1
2 0.73 1 0.73 3974.35 <0.0001 d

X2
2 0.37 1 0.37 2003.03 <0.0001 d

X3
2 2.15 1 2.15 11729.38 <0.0001 d

Residual 1.28 × 10−3 7 1.83 × 10−4 - -
Lack of Fit 8.17 × 10−4 3 2.72 × 10−4 2.33 0.2155
Pure Error 4.67 × 10−4 4 1.17 × 10−4 - -
Cor Total 3.89 16 - - -

X1, X2, and X3 are the coded values for the test variables sucrose, YEP, and MgSO4·7H2O concentrations (g/L),
respectively. R2 = 0.9997, R2

Adj = 0.9992, R2Pred = 0.9965. a Sum of squares. b Degree of freedom. c Mean square.
d Indicate highly significant.

The coefficient of determination (R2) was greater than 0.90, indicating that the regres-
sion model was highly correlated. As shown in Table 3, the coefficient of determination
(R2) was 0.9997, indicating that this model could explain 99.97% of the substrate change
in response to the HA yield. Furthermore, the F-value of this model was 2355.53, and
the correction determination coefficient R2

Adj was 0.9992, indicating that the model was
plausible. Therefore, the regression model can reasonably predict HA expression within
the range of the variables studied. “Probe > F” was used to determine the significance of
each factor, and the interaction intensity of each independent factor was obtained. The
variance analysis showed that except for X1, the “Probe > F” value of the remaining model
items was below 0.05, which was a significant variable affecting the model.

The experimental data in Table 3 were analyzed using Design-Expert 10.0 software
(Stat-Ease, Inc., Minneapolis, MN, USA) and the results are shown in Figure 7. The re-
sponse surface plots directly reflect the influence of various factors and their interactions
on HA synthesis, with the bottom contour closely reflecting the strength of the interaction
between the two factors. The contour plots between sucrose and YEP and between YEP
and MgSO4·7H2O were approximately slanted ellipses, indicating a significant interaction
(Figure 7A,C) [34]. In contrast, the interaction between MgSO4·7H2O and sucrose concen-
tration on the HA yield was weak, and the contour plot was almost circular (Figure 7B).
According to the typical analysis, when the concentrations of the variables sucrose, YEP,
and MgSO4·7H2O are 39.72, 9.58, and 6.16 g/L, respectively, the actual HA output will be
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4.92 g/L, which is consistent with the predicted value (4.82 g/L), indicating that this model
embodies the basic effect of optimal design. The above results show a 54% increase in HA
yield compared to pre-medium optimization. Therefore, B. amyloliquefaciens SE-StAB can
synthesize HA by optimizing the response surface to fully exploit sucrose and YEP.
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3.5. Batch Fermentation Optimization of HA Production in a 5 L Fermenter

In this study, the ability of the modified strain to synthesize HA was evaluated using
a 5 L fermenter. The use of fermenters for scaled-up experiments is necessary to transition
from laboratory to industrial production. In the laboratory, the amount of liquid in the
flask is limited, and certain conditions, such as pH, cannot be adjusted during fermentation.
However, some conditions such as temperature, pH, and DO electrodes can be used for
real-time detection and adjustment during fermentation, which is important for HA yield
guidance in the industry. Specifically, cells multiply rapidly as fermentation proceeds, and
the continuous synthesis and secretion of viscous HA macromolecules during fermentation
gives the fermentation liquid a viscous state, directly affecting the uptake of oxygen by
the bacteria. In this study, the DO was achieved by controlling the rotational velocity. The
rotational speed was controlled at 400 rpm during the initial fermentation and 600 rpm
during the later stages. Studies have shown that higher shear rates may drive more
carbon fluxes through the HA biosynthesis pathway to a certain extent without negatively
affecting MW [35]. The experimental results are shown in Figure 8. Before 12 h, the strain
rapidly depleted sucrose for cell growth, and HA synthesis was extremely slow. After
12 h, the clumps multiplied rapidly, and the cell density peaked at 36 h with a DCW of
approximately 6.84 g/L. During this period, cell metabolism was extremely vigorous and
HA was efficiently synthesized, and as a result, the HA content increased to 4.56 ± 0.09 g/L.
From 36 h to 72 h, the sucrose content in the medium was almost exhausted and there
was not enough energy to support the growth of the thalli, so the cell density started to
decrease and tended to stabilize. At the same time, bacterial metabolic activity was reduced
and the HA accumulation was slow, so fermentation stopped at 72 h. The content of HA
finally stabilized at 5.57 ± 0.11 g/L in 72 h, which was 1.16-fold that of shake fermentation
yield (4.81 ± 0.10 g/L). Compared to shaken flasks, the HA yield from the recombinant
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strain B. amyloliquefaciens SE-StAB was significantly increased with batch fermentation,
suggesting that batch fermentation is highly favorable for somatic cell growth and can
significantly increase the bacterial content and HA yield.
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As shown in Table 4, the yield of low-molecular-weight HA is based on C. glutamicum
in combination with SphasA from S. pyogenes, which is a down-regulated enzyme involved
in intermediate metabolic pathways and extracellular polysaccharide biosynthesis, and
hyaluronidase, which is used to destroy hyaluronic acid-coated glutamine and restore its
metabolism. The yield of HA was as high as 74.1 g/L and the MW was 5.3 × 104 Da [36].
High-molecular-weight HA was introduced into B. subtilis using the P. multocida-derived
HAS gene, PmhasA, and key genes that encode the precursors UDPG-GlcUA, tuaD, and
gtaB. By establishing a two-stage induction strategy for metabolic engineering of recom-
binant B. subtilis, the final yield and MW of HA reached 6.8 g/L and 4.5 × 106 Da [37],
respectively, after assembly and optimization of the HA synthesis pathway in B. amyloliq-
uefaciens. Ma et al. introduced the HAS gene SehasA from S. equisimilis, expressed the key
gene tuaD from C. glutamicum to construct the HAS synthesis pathway, and investigated
HA yield by fermentation with a crude extract of Jerusalem artichoke inulin. The yield and
MW of HA were 2.89 g/L and 1.5 × 106 Da, respectively [17]. In this study, a new type of
SthasA derived from the probiotic S. thermophilus was re-screened to construct the HA syn-
thesis pathway using the precursor pathway, transcription regulatory factor optimization,
and sucrose as the carbon source, with HA yield and MW of 5.57 g/L and 1.7 × 106 Da,
respectively. Although there is still a gap in the advanced level of macromolecular HA
production in industry, there has been a further breakthrough in the expression of HA
using B. amyloliquefaciens as a chassis strain; thus, there is scope for improvement. At a
later stage, synthetase conversion can be considered, and degradation enzymes and other
techniques can be introduced to further increase HA yield. In conclusion, we confirmed that
B. amyloliquefaciens could be efficiently used as a site strain for HA synthesis using a new
independently screened enzyme in B. amyloliquefaciens to achieve HA synthesis with a rela-
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tively high yield and MW. These results have laid the foundation for the industrialization
of HA.

Table 4. Summarization of HA synthesis in recombinant strains.

Strain HAS Source Carbon Source Yield (g/L) MW (Da) Reference

B. subtilis 168 S. zooepidemicus Sucrose 19.38 6.6 × 103 [15]

C. glutamicum 13032 S. pyogenes Glucose 74.10 5.3 × 104 [36]
S. equisimilis Glucose 28.7 2.1 × 105 [38]

B. subtilis 168 P. multocida Glucose 6.80 4.6 × 106 [37]

L. lactis CES15 S. equi subsp.
zooepidemicus Sucrose 6.09 - [39]

B. amyloliquefaciens CF-AB S. equisimilis Jerusalem artichoke inulin 2.89 1.5 × 106 [17]
B. amyloliquefaciens SE-StAB S. thermophilus Sucrose 5.78 1.7 × 106 This study

4. Conclusions

In this study, gene mining was used to discover a new SthasA derived from non-
pathogenic bacteria in the probiotic S. thermophilus, enriching the existing safe microbial
sources of HAS species. First, SthasA was identified in the B. amyloliquefaciens synthesis
pathway, and HA synthesis was 0.8 g/L. Then, the precursor pathway was optimized,
transcriptional regulatory factors were overexpressed, and the response surface was op-
timized to improve HA yield. In a 5 L fermenter, HA MW and yield were 1.73 × 106 Da
and 5.57 ± 0.11 g/L, respectively, which was 1.16-fold that obtained with shake fermen-
tation (4.81 ± 0.10 g/L). Therefore, this study is the first to achieve the assembly and
efficient expression of a probiotic source of HA synthase in food-grade, non-pathogenic
B. amyloliquefaciens, providing a new method for the green and safe synthesis of HA.
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