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Abstract: Spatially enabled yield forecasting is a key component of farm Management Information
Systems (MISs) for broadacre grain production, enabling management decisions such as variable rate
fertilization. However, such a capability has been lacking for soft (fleshy)-tree-fruit harvest load, with
relevant tools for automated assessment having been developed only recently. Such tools include
improved estimates of the heat units required for fruit maturation and in-field machine vision for
flower and fruit count and fruit sizing. Feedback on the need for and issues in forecasting were
documented. A mango ‘harvest forecast engine’ was designed for the forecasting of harvest timing
and fruit load, to aid harvest management. Inputs include 15 min interval temperature data per
orchard block, weekly manual or machine-vision-derived estimates of flowering, and preharvest
manual or machine-vision-derived estimates of fruit load on an orchard block level across the farm.
Outputs include predicted optimal harvest time and fruit load, on a per block and per week basis,
to inform harvest scheduling. Use cases are provided, including forecast of the order of harvest of
blocks within the orchard, management of harvest windows to match harvesting resources such
as staff availability, and within block spatial allocation of resources, such as adequate placement of
harvest field bin and frost fans. Design requirements for an effective harvest MIS software artefact
incorporating the forecast engine are documented, including an integrated database supporting
spatial query, data analysis, processing and mapping, an integrated geospatial database for managing
of large spatial–temporal datasets, and use of dynamic web map services to enable rapid visualization
of large datasets.

Keywords: estimation; fruit load; geospatial database; orchard; planning; prediction

1. Introduction
1.1. Need for Harvest Forecast

Commercial orchards require management of irrigation, plant nutrition, disease and
pests, and tree canopy architecture to meet agronomic needs, and documentation of labor
and chemical usage to meet administrative requirements. As reviewed in a companion
paper [1], the development of electronic Management Information Systems (MISs) for
tree-fruit management lags behind that for broadacre cropping. The existing orchard
management systems have focused on issues with regulatory requirements, e.g., chemical
and labor usage, with capacities more recently developing around management decision
support, e.g., when to spray chemicals based on weather and pest pressures inputs.

Of the various management tasks involved in the production of soft tree fruit, the
annual organization of harvesting is a major event. Harvesting and grading costs represent
approximately 50% of total production costs for soft tree fruit [2], given the current need to
hand pick most commodities. Summarizing the review of [3], harvest forecast is essential
to the planning of on-farm resourcing (of labor and materials), transport and marketing,
with all of these areas having lead times of week if not months. Harvest forecasts are
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integral in some production systems, e.g., those involving processing, given the need to
co-ordinate input to a central processing plant. Examples include wine grape [4] and juice
citrus production [5]. The US hazelnut industry provides a (dry) tree-fruit example, with
a national crop forecast made by the United States Department of Agriculture (USDA)
based on manual counts of two randomly selected trees in each of 180 randomly selected
orchards [6]. New tools are also emerging for tree-fruit load estimation, ranging from in-
orchard machine vision to relationships based on canopy size or vegetation indices obtained
from satellite imagery [7,8]. The growing requirement for point of origin traceability also
creates a need for electronic databases for harvest data accessed through an information
system [9].

Large mango farms in Australia each employ hundreds of workers for the short
harvest season and must organize appropriate labor resources, materials such as packaging,
and services such as transport. The harvest window is a few weeks in length, with fruit
harvested either earlier or later than the optimum window, presenting different quality
issues which lower the marketability of the fruit. As mango fruit are climacteric, with a low
storability, timeliness of harvest and transport is critical. The downstream supply chain
must organize ripening and marketing for domestic markets, and biosecurity treatments,
transport, and marketing for export markets. For example, retailer advertising is typically
booked six weeks in advance, requiring a forecast of product availability. To support this
decision making, forward knowledge of harvest timing and load is required. Indeed, the
earlier and more accurate the forecast, the better the harvest can be organized, delivering
better quality and more marketable fruit, and thus higher profitability.

The forecast of tree-fruit harvest timing and load is a complex task, requiring evalua-
tion of multiple inputs. Inputs include flowering observations, temperature measurements
for the calculation of heat units, measurements of fruit maturity attributes to support
estimation of the timing of fruit maturation, and fruit count and size measurements to
support estimation of load [3]. These data types require collection at a range of frequencies,
from 15 min interval temperatures records to fruit counts made once or twice in a season.

The current forecast systems used on Australian mango farms and by their market-
ing groups are relatively ‘informal’ systems, relying on nonsystematic manual estimates
by growers, which are kept on paper or electronic spreadsheets. Manual estimation of
flowering level and fruit load can be time-consuming, resource intensive, and inaccurate.
In consequence, orchard MISs for the forecast of harvest timing and load are relatively
immature [1].

1.2. Inputs Required for Hearvest Forecast

Management of any farm requires the delineation of management units. In a tree-
fruit orchard, these land units are blocks of trees of similar management history, viz.
planting date, cultivar, pruning, soil type, etc., and thus, ideally the trees will have a similar
physiological status. Homogeneity in time and extent of flowering and fruit load allows for
decreased sampling effort. In practice, however, priority is often given to factors such as
accessibility or irrigation system design, rather than issues such as soil type and drainage,
resulting in increased variation [10].

As covered in a recent review [3], harvest forecasting of a tree-fruit crop requires
forward estimation of optimum harvest time and the expected fruit load. The importance
of temperature-to-rate-of-fruit-development is understood and utilized in forecast models,
e.g., for banana [11]. Various approaches have been used in the forecast of fruit load, e.g.,
flower counts in strawberry [12] and vegetation spectral indices [13]. These inputs have
been used in models for the optimization of harvest planning [14]. As a generalization [3],
the harvest load of a tree-fruit crop can be forecasted early in the season based on correlation
to a UAV or satellite-assessed vegetation index (but this may be inaccurate if floral induction
is poor), via correlation to canopy ‘surface’ area (but this does not consider height and may
perform poorly with fruit-wall production systems), or with input of ambient temperatures
(e.g., if floral induction requires a low temperature period). A slightly later forecast can
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be made via correlation to the extent of flowering (but this will be an overestimate if
pollination conditions, or fruit retention rates, vary from the ‘norm’). Finally, a late-season
forecast can be made via direct count of the fruit on trees, after the early fruit development
period in which fruit drop occurs.

For mango specifically, harvest timing and load forecast for a given orchard can be
achieved given knowledge of the criteria established in Anderson et al. [3]:

(a) The cultivar specific heat unit (also known as the thermal time or Growing Degree
Days, GDD) maturation requirement from flowering to harvest maturity;

(b) The time at which a harvest-maturity fruit dry matter content (DMC) specification will
be achieved, the time and intensity of flowering events, and orchard temperature data.

While a forecast of harvest load for a given tree block can be achieved given knowledge
of the following:

(a) Fruit count;
(b) Fruit size;
(c) Fruit marketability (proportion of fruit that are marketable).

Several sensor technologies and statistical methodologies have been developed that
aid in the estimation of harvest timing and load (Table 1) [3]. In-field temperature can be
remotely logged in real time using wireless sensors, fruit dry matter content can be assessed
nondestructively for fruits on trees using handheld near-infrared spectroscopy (NIRS),
statistically valid sampling strategies provide a foundation to the manual estimation of
flowering and fruit count, machine vision can be used for flower and fruit count, and
statistically valid sampling strategies and machine vision for fruit count and fruit sizing are
relevant to the estimation of harvest load. Other approaches for harvest-load estimation
use satellite-imagery-derived vegetation indices [15,16] and UAV-derived canopy structure
attributes [8]. Our research group has reviewed each of these aspects, i.e., the forecast of
harvest timing based on GDD [17] and/or DMC [18], the forecast of fruit number [3,19],
and the forecast of fruit size at harvest [20].

Table 1. Inputs for a mango harvest timing and load forecast system, with methodology references.

Information Input Data Source

Harvest timing flowering machine vision or manual estimates of the extent of
flowering, per week [3]

GDD temperature (daily min and max) [17]
fruit DMC NIRS measurement [19]
flesh color destructive visual assessment [18]

Harvest load fruit count machine vision or manual estimates [3]
fruit size machine vision or manual estimates [21]
fruit marketability manual estimates

fruit load satellite-derived vegetation index imagery and historical
time series data [15]

1.3. Aim and Structure

The current study extends our earlier work on the forecast of the optimum harvest time
based on the noninvasive measurement of fruit dry matter content. Given the availability of
such data sources, it is timely that harvest information management systems be developed
to translate this ‘data into information’. The aim of the current paper is to codify how such
data can be brought together to create a ‘harvest forecast engine’ and how such an engine
could be used in an electronic MIS, managing data into information on both harvest load
and timing.

Industry practitioner input on the need for and issues in mango harvest-load forecast
was sought (Section 3). A review was undertaken of the approaches and tools available
for the forecasting of harvest timing, i.e., tools for the provision of data on temperature,
flowering time, and dry matter content (Section 4) and for the forecasting of fruit load,
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i.e., for data on fruit numbers and fruit size (Section 5). This section includes farm data to
illustrate the points raised. Consideration of the use of this data in harvest scheduling and
other management tasks is presented in Section 6.

The novelty of the current manuscript lies in the description of the structure of the
‘harvest forecast engine’. Practical use of such a ‘harvest forecast engine’ requires integration
into a Management Information System with functions for data management, archival,
analysis, visualization, and interpretation [1]. The design requirements for an effective
harvest MIS software artefact are presented in Section 7. While we do not attempt to detail
or evaluate the constructed artifact in the current manuscript, we have used outputs from a
prototype system in illustrating the operation of the forecast engine.

2. Methodology
2.1. Data Sources

As noted, our research group has been active in the development of sensor systems
relevant to the forecasting of harvest timing and load (Table 1). This work has involved
on-farm testing, e.g., on 37 orchards across the major mango producing regions of Australia
for assessment of machine vision technologies [21]. In the current paper, the logic of a
harvest forecast engine is developed, with data to illustrate these discussions, which were
obtained from equipment and protocols referenced in Table 1.

2.2. External Feedback

‘Industry’ input was sought on the need for, and proposed utility and operation of, the
‘harvest forecast engine’. Informal feedback over this period guided the development of the
system. Feedback from growers, agronomists, and supply chain partners involved in these
trials was acquired through semi-structured interviews based on the questions outlined in
Appendix A, occurring over the period 2022–2024 (CQUniversity low risk ethics approval
number: 21660). The interviews occurred primarily as electronic one-on-one meetings with
eight farm managers of medium (>20,000, <50,000 trees) and large (>50,000 trees) farms,
three agronomic advisors or researchers in tropical Australia, and three mango marketers.
Further, our work on the development of sensor systems (Table 1) involved on-farm data
collection, with the sharing of data through a developmental electronic MIS platform to the
host farms, generally within a day of collection. Informal feedback over this period guided
development of the system.

3. External Feedback

The expressed needs for a documented harvest forecast (Table 2) were common across
all interviewees, but the need increased with scale of production and the length of the
supply chain. The issues raised in the context of making harvest forecasts (Table 2) were
used to guide the proposed ‘forecast engine’.
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Table 2. Examples of user feedback on the need for, and issues in the operation of, harvest forecasts.

Topic Comments

Need—on farm Resourcing:
Boxes and tray liners are ordered months before harvest, so we need to anticipate fruit numbers and size.
I need months of lead time to arrange harvest labour.
I plan on 120 days from flowering to harvest but that can be out a couple of weeks either way.
Operation:
If I get an order early in the season, I need to know where to find mature fruit.
If we know fruit sizes expected from a block, we can set the packline line drops up before sorting starts.
The grade of the fruit depends on defect level. Ideally, we would know the proportion (of grade 1/grade
2/reject) fruit before harvest.
It’s not just about total weight, it’s when (week) and what (fruit number, size, quality).
I have 22 harvest crews working in parallel through a block, each line needing 10 to 17 bins, but my bin
runners only hold 6 bins each. I need them to place the bins right the first time.
If you know your weekly fruit load you can set a daily volume target depending on the number of days (in the
week) you operate. You adjust daily depending on volume picked on previous day. This lets you give the crew
notice (whether there will be a weekend break or not).
We need to decide whether there’s enough fruit left after a first harvest to justify a second harvest.
The amount of fruit discarded in field during harvest or left on tree can vary considerably.
Harvest never goes to plan–staff absent, rain or machine issues or other delays, like no transport available. But
without a forecast you don’t have a plan.

Need—post farm We spent (AUD)$0.9 M on marketing last year but it’s wasted if fruit isn’t available to deliver to market, or if
we supply more than the market is ready to handle.
It’s not just about tonnage or number of fruit, fruit size is important.
The (fruit) price drops if we supply more than we anticipated to market, and its hard to recover price.
We pick with the aim of having the product in the hands of the consumer in 14 days, but with a storage life of
28 days. We need to get the harvest date right.
We need forecasts on a weekly basis from all our supplier farms.

Forecast issues Nothing is ‘set and forget’, you need to be able to adjust values as the seasons progresses. For example,
nothing may come of a flowering event, it may not set fruit, or the fruit may drop.
Things change between years. If the foliage is denser (hiding fruit), I underestimate on fruit count.
Hanging time (the time fruit can be left on tree before ripening begins) gives you some flexibility in harvest
timing. It varies with cultivar, ranging from 7 to 21 days.
You need to factor in our capacity to harvest.
Things get busy, any system has to be easy to use, easy to put data in, and easy to see.

4. Harvest Timing
4.1. GDD

Reproductive development from flowering to ‘harvest maturity’ is a cultivar specific
function of time and temperature. This index is referred to as ‘thermal time’, ‘heat units’
or ‘Growing Degree Days’ (GDD), with units accumulated daily. Simple calendar time
could be used if seasonal temperatures did not vary between years, but in practice, the time
from a given flowering to fruit harvest maturity can vary by weeks between locations with
different temperature profiles.

GDD units for mango reproductive growth are typically calculated using the average
of the daily minimum (Tm) and maximum (TM) temperatures, minus a minimum base
temperature value (Tb). Amaral et al. [17] implemented a set of equations (1 to 5) for the
calculation of daily GDD, as proposed by Ometto [22], which involve a maximum base
temperature value (TB). Working with Australian mango cultivars, the optimum Tb and TB
was established to be 12 and 32 ◦C, respectively, and cumulative GDD targets were set for
the fruit maturation of a suite of cultivars (Table 3).

I f TM < Tb then GDD = 0 (1)

I f Tm > Tb then GDD = Tm − Tb +
(TM − Tm)

2
(2)
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I f Tm < Tb then GDD =
(Tm − Tb)2

2(TM − Tm)
(3)

I f Tm > Tb and TB < TM then GDD =
2(TM − Tm)(Tm − Tb) + (TM − Tm)2 − (TM − Tb)2

2(TM − Tm)
(4)

I f Tm < Tb and TB < TM then GDD =
(Tm − Tb)2 − (TM − TB)2

2(TM − Tm)
(5)

Table 3. Mango cultivar GDD (Tb of 12, TB of 32 ◦C) requirement for fruit development from the
reproductive development stage of 50% flower opening on panicle to harvest maturity, with maturity
defined by flesh color [17].

SN Cultivar Flesh Color GDD

1 Honey Gold 9 1560
2 Calypso 7 1540
3 Keitt 13 1936
4 R2E2 1600
5 KP 7 1420

In practice, this estimate provides a recommended earliest harvest date. Fruit can be
harvested later, with decreasing shelf life and increasing postharvest quality issues. Further
work is required to document acceptable harvest windows, referred to as ‘hanging time’ by
growers, by cultivar and growing condition, for use in harvest management systems.

4.2. Temperature Measurement

To achieve a GDD estimate, a record is required of current season temperatures to the
current date and a forecast of temperatures through to fruit maturity. This forecast can be
as simple as an average of daily temperatures over past years or as complex as the output
of a current season climate model. The heat unit calculation can be updated daily using
actual (orchard) season temperatures.

For temperature measurements, farms lacking a weather station can access a local
public monitoring resource, e.g., the Bureau of Metrology (BoM); however, these recording
locations can be >100 km from farms. Farms with a recording station often rely on a
single station for temperature records. While it is obvious that temperatures and thus
GDD accumulation will vary regionally, temperatures can also vary across a given farm
(Figure 1) as a function of farm geography. The development of low-cost remote monitoring
technologies such as LoRa (Long Range radio) allows for multiple temperature recording
stations to be maintained on a given farm [17].

For the proposed harvest MIS, it is recommended that wireless temperature sensors
be established according to Bureau of Meteorology specification (viz., enclosed in a white,
slatted screen, mounted 1.5 m above grassed or mulched ground, and positioned at least
10 m from tall objects) in each geographic zone of the farm, with orchard blocks within
those zones linked to the output of respective sensors in the MIS database. Data from these
sensors should be collected at 15 min intervals [17] to support the measurement of Tm and
TM. These records can be accumulated over the years to produce a historical record for each
location. This historical record can be augmented with data from the nearest farm sensor or
from the nearest public resource, e.g., BoM (Equation (1)). The historical record can be used
in the forecast from a given date and to fill in data gaps due to technical failures associated
with sensors of associated data transfers (Equation (6)).
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St = Ot1 + Nt2 + Bt3 + Ht4 (6)

where the variables represent the following:

S is the matrix of Tm and TM values for use in the calculation of GDD;
O is a matrix of observed current season daily Tm and TM values;
N is the matrix of observed current season and historical daily Tm and TM values of the
nearest farm sensor;
B is the matrix of current season daily Tm and TM values from the nearest BoM site;
H is the matrix of historical (e.g., 10-year average) daily Tm and TM values;
t1to4 are mutually exclusive periods within the season.
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from a flowering event at day 212 (horizontal green dotted line) is reached on days 335 (1 December),
341 (7 December), and 354 (20 December), respectively.

4.3. Peak Flowering Dates

A flowering date is required for GDD estimation in the forecast of harvest time.
Mango reproductive development involves the conversion of a vegetative branch terminal
apex, with the production of a panicle with hundreds of flowers. This process progresses
through the stages of (i) swollen bud; (ii) ‘asparagus’ stage; (iii) panicle elongation phase;
(iv) ‘Christmas tree’ stage with 50% of flowers on the panicle open; and (v) fruit set stage.
A panicle will typically hold one to four fruits, with this number being cultivar dependent.

In current international best practice, as seen in mango production systems dealing
with large volumes of fruit and long supply chains, the percentage of canopy terminals
in reproductive growth per tree is estimated manually in a slow (approx. 10 km/h) drive
through of several rows of a given orchard at up to weekly intervals. Dates of peak
flowering, also known as ‘maturity zones’ or ‘flowering events’ in the Australian mango
industry, can be estimated from this time series assessment, for each orchard (Table 4,
Figure 2). The designation of a flowering event is tied to a user-defined minimum change
in flowering level, e.g., of at least 20% of terminals in reproductive growth (Figure 2), as, in
general, the selective harvest of fruit from a lesser change would not be economically viable.
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Table 4. Example of manual data collection on flowering for five orchard blocks (A to E) across
7 weeks. (i) Raw data of weekly assessment of % of canopy terminals in reproductive growth based
on a manual visual assessment from driving through several rows in each block. (ii) The cumulative
values are normalized to the maximum flowering level achieved in each block. (iii) Manager input is
required in denoting flowering ‘events’ (generally an event involving an increase of at least 20% in
flowering), the percentage of total flowering within a given block associated to each event, with user
manipulation required to spread harvest activity over the available time window.

Block
Week

1 2 3 4 5 6 7

(i) Raw data

A 0 0 5 5 55 60 60
B 10 50 65 65 85 90 90
C 30 85 90 90 90 90 90
D 10 50 65 65 65 65 65
E 0 20 20 20 60 90 90

(ii) Normalized data

A 0 0 8 8 100 100 100
B 20 56 72 72 94 100 100
C 33 94 100 100 100 100 100
D 15 77 100 100 100 100 100
E 0 22 22 22 67 100 100

(iii) Condensed data

A 100
B 20 52 28
C 33 67
D 77 23
E 22 45 33

Horticulturae 2024, 10, 301 8 of 24

through of several rows of a given orchard at up to weekly intervals. Dates of peak flow-
ering, also known as ‘maturity zones’ or ‘flowering events’ in the Australian mango in-
dustry, can be estimated from this time series assessment, for each orchard (Table 4, Figure 
2). The designation of a flowering event is tied to a user-defined minimum change in flow-
ering level, e.g., of at least 20% of terminals in reproductive growth (Figure 2), as, in gen-
eral, the selective harvest of fruit from a lesser change would not be economically viable. 

Table 4. Example of manual data collection on flowering for five orchard blocks (A to E) across 7 
weeks. (i) Raw data of weekly assessment of % of canopy terminals in reproductive growth based 
on a manual visual assessment from driving through several rows in each block. (ii) The cumulative 
values are normalized to the maximum flowering level achieved in each block. (iii) Manager input
is required in denoting flowering ‘events’ (generally an event involving an increase of at least 20% 
in flowering), the percentage of total flowering within a given block associated to each event, with 
user manipulation required to spread harvest activity over the available time window. 

Block 
Week 

1 2 3 4 5 6 7 
(i) Raw data
A 0 0 5 5 55 60 60
B 10 50 65 65 85 90 90
C 30 85 90 90 90 90 90
D 10 50 65 65 65 65 65
E 0 20 20 20 60 90 90
(ii) Normalized data 
A 0 0 8 8 100 100 100 
B 20 56 72 72 94 100 100
C 33 94 100 100 100 100 100 
D 15 77 100 100 100 100 100 
E 0 22 22 22 67 100 100
(iii) Condensed data 
A  100  
B 20  52 28
C 33  67
D  77 23
E  22  45  33

Figure 2. Cont.
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Figure 2. Time series of flowering assessments for an orchard: (a) machine vision count of panicles
at the ‘50% flower opened’ developmental stage (blue line) and manual estimation of percentage of 
canopy terminals in reproductive growth (green line) for an orchard block (data of block E in Table 
4, where week 1 is 21 July); (b) machine-vision-based panicle count for the same block in the next 
production season (orange line). The period in the outline denotes a significant flowering period. X 
axis date format is mm/dd. 

While assessment of the percentage of terminals in reproductive growth via human 
visual assessment is a current industry practice, this attribute has not yet been assessed
with machine vision. Panicle count, but not vegetative terminal count, has been reported 
using machine vision. Machine vision has been used in the detection and count of mango 
panicles at three developmental stages (elongation, Christmas tree, and fruit set) using 
imagery collected from a camera and a GNSS-equipped ground vehicle [23]. In this ap-
proach, panicle counts from images sourced at intervals equivalent to the tree spacing 
along the tree row have been used in the spatial visualization of flowering across orchard 
blocks, and the average counts for the number of panicle counts per frame for the three 
developmental stages have been used in time-series presentation [3] (Figure 2). Such a 
time series allows for the elicitation of the timing of flowering events. 

4.4. Accumulation of Storage Reserves 
The GDD forecast of harvest time has the following weaknesses: (i) potential varia-

tion between the sensor measured temperature and fruit temperature, both across orchard 
and within canopy and (ii) variation in the time of flowering within each panicle (which 
consists of hundreds of flowers which progressively open over at least a week). To ‘fine 
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Figure 2. Time series of flowering assessments for an orchard: (a) machine vision count of panicles
at the ‘50% flower opened’ developmental stage (blue line) and manual estimation of percentage
of canopy terminals in reproductive growth (green line) for an orchard block (data of block E in
Table 4, where week 1 is 21 July); (b) machine-vision-based panicle count for the same block in the
next production season (orange line). The period in the outline denotes a significant flowering period.
X axis date format is mm/dd.

While assessment of the percentage of terminals in reproductive growth via human
visual assessment is a current industry practice, this attribute has not yet been assessed with
machine vision. Panicle count, but not vegetative terminal count, has been reported using
machine vision. Machine vision has been used in the detection and count of mango panicles
at three developmental stages (elongation, Christmas tree, and fruit set) using imagery
collected from a camera and a GNSS-equipped ground vehicle [23]. In this approach,
panicle counts from images sourced at intervals equivalent to the tree spacing along the
tree row have been used in the spatial visualization of flowering across orchard blocks, and
the average counts for the number of panicle counts per frame for the three developmental
stages have been used in time-series presentation [3] (Figure 2). Such a time series allows
for the elicitation of the timing of flowering events.

4.4. Accumulation of Storage Reserves

The GDD forecast of harvest time has the following weaknesses: (i) potential variation
between the sensor measured temperature and fruit temperature, both across orchard
and within canopy and (ii) variation in the time of flowering within each panicle (which
consists of hundreds of flowers which progressively open over at least a week). To ‘fine
tune’ the GDD-based estimate of harvest date, fruit attributes such as skin color, flesh color,
or storage reserve level can be used as indicators of fruit maturity. However, skin color is
not a reliable index for the mango cultivars of commercial relevance in Australia, which can
have a well-developed ‘blush’ (skin color) by the time of harvest. Flesh color is a definitive
index of fruit maturity, but assessment is destructive of the fruit, effectively limiting the
number of fruit that can be sampled [24].

Flesh dry matter content (DMC) has been recommended as a maturity index for mango
fruit [25]. It can be estimated destructively via weight loss on drying, or noninvasively for
fruits on trees using a portable near-infrared spectrometer (e.g., F750, Felix Instruments,
Camas, WA, USA). Such instruments are Wi-Fi- and GNSS-enabled, enabling the upload of
geo-tagged data. In brief, DMC reflects the accumulation of storage reserves, being soluble
sugars and starch content, in a mango fruit. DMC of fruit at harvest is strongly correlated
to juice soluble solid content in the ripened fruit and thus, eating quality. The DMC level
associated with harvest maturity will vary with growing condition but can be established
via association with flesh color [17] (Figure 3).
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Images of cut cheeks of Keitt cultivar fruit. The flesh color associated with harvest maturity (card 13)
of these fruit was associated with a dry matter content of 17% w/w.

Once mango fruit are past the stone-hardening stage of development, fruit ‘drop’
(abscission) decreases greatly, and the rate of increase in DMC (% w/w) is generally linear
(with exceptions, particularly around marked changes in water status, e.g., following
rain) [26]. Thus, the rate of increase in the DMC estimated from at least two weekly
observations allows for the forward prediction of a harvest maturity date given a DMC
target associated with harvest maturity (Equation (7), with example data shown in Figure 4).

∆x =
(TDMC − DMC)

∆DMC
× 100 (7)

where the variables have the following representations:

∆x is the number of days to harvest maturity date;
TDMC is the target dry matter content, associated with harvest maturity;
DMC is the value of dry matter content exceeded in x% of observations of the last measure-
ment date, where x is user defined (typically 90%);
∆DMC is the rate of DMC increase (%/day) estimated from average dry matter content at
two measurement dates.

An example
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measurement to date of visualization based on a measured rate of DMC increase. Dots are colored
with reference to a user specified DM target (in this case 16%). Blue, yellow, and red dots represent
values on and above target, within one unit less than target and >1 unit less than target. Blocks are
colored in context of meeting a user specification, in this case 90% of measurements above the set
target of 16%, with red and green indicating specification not achieved and achieved, respectively.

4.5. Proposed Workflow on Harvest Timing

A recommendation on harvest timing can thus be achieved on the consensus of
estimated dates from: (a) flowering time and accumulated GDD, given dates of peak
flowering events and measurement of daily (minimum and maximum) temperatures, and
(b) fruit DMC, given measurements on at least two dates prior to harvest.

A proposed workflow is described in Figure 5. The date and extent of peak flowering
events (maturity zones), as observed manually or through machine vision, are recorded.
A recommended harvest date associated with these flowering events is estimated from
temperature records and required GDD for a given cultivar and the associated Tb and TB
values. Another harvest date recommendation associated with these flowering events is
estimated from a minimum fruit dry matter (DM) harvest specification established for each
mango cultivar and a rate of dry matter increase established in the weeks before harvest
used to estimate optimal harvest date. A consensus between GDD and dry matter harvest
time forecasts (examples presented in Table 5) requires the input of an orchard manager to
consider harvest timing in context of farm harvesting capacity (as illustrated in Table 4 and
detailed in the next section). This can involve a decision to shift harvest from the week of
forecasted fruit maturity to a week with lower harvest load, to balance harvest resourcing.
This decision may also be used to influence marketing, i.e., intended market and pricing.
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Table 5. Example forecasts of optimum harvest date for fruit of two flowering events in each of five
mango blocks (A to E), using the methods of (i) Growing Degree Days (GDD) from time of flowering
and (ii) achievement of a dry matter content (DMC) specification (in units of %FW), based on a linear
rate of DMC increment, established per block. Dates are in dd/mm format.

FE1 FE2
Block GDD DMC GDD DMC
A 4/10 1/10 16/10 21/10
B 6/10 8/10 22/10 20/10
C 6/10 9/10 24/10 27/10
D 30/9 7/10 22/10 25/10
E 24/9 2/10 8/10 6/10

5. Harvest Load
5.1. Fruit Number

A first forecast of potential fruit load can be based on the extent of flowering propor-
tional to the maximum load associated with flowering of 100% of the canopy terminals for
a given orchard condition (cultivar, canopy size, architecture, management history, etc.).
Such an estimate represents a potential, based on the extent of flowering, which may not
be realized if conditions cause fruit drop. This approach has also been reported in other
soft-fruit tree crops, including apples [27] and almonds [28].

Fruit number data for a given orchard block can also be estimated with direct, manual
count, based on a sound sampling strategy. This count should be undertaken after the
‘fruit drop’ period, generally at or after the ‘stone (endocarp) hardening’ stage of fruit
development, i.e., from about six weeks before harvest. The estimate will involve manual
count of the number of fruit per tree on a sample of trees in the orchard block, with the
number of trees to be counted related to the square of the SD of this attribute [29]. Ideally,
a preliminary sample of trees would be counted to evaluate SD; however, this imposes a
workload cost. In compromise, an SD value based on prior knowledge (from blocks of
similar appearance or from previous years) can be adopted and then iteratively adjusted
based on actual counts. A systematic sampling procedure offers the practical advantage
of ease of location of the sample trees, compared to, e.g., a random sampling protocol [3].
Such a system can be implemented in a mobile device, with a download of orchard block
boundaries and tree number per orchard block to enable calculations of tree spacing in
systematic sampling. An example of a system in commercial operation employing this
principle is Pronofruit [30].

Alternatively, the number of fruit per block can be assessed using machine vision. In an
early demonstration (2013), machine vision using deep learning techniques (convolutional
networks) was used in an apple-fruit-load estimation method [31], with the technique
shortly thereafter applied to mango-fruit-load estimation [19,32]. In these systems, images
of the canopy sides are collected using a camera system mounted to a vehicle moving
through the inter-rows, with fruit tracked between frames and counted once no longer
present in subsequent frames. Cumulative count for set lengths of the rows (generally set
at the distance of tree spacing along the row, e.g., 3.5 m) can be displayed as a ‘heat map’
of fruit load, or a cumulative count for the orchard block can be displayed and tabulated,
e.g., [19,21].

5.2. Fruit Size

There is an allometric relationship between mango fruit lineal dimensions and fruit
mass [20]. Fruit lineal dimensions can be collected manually, using calipers, and a statisti-
cally robust sampling regime, with data capture aided with a mobile device. Alternatively,
lineal dimensions of fruits on trees can be estimated using machine vision for the subset
of imaged fruit that are not partly occluded and are in the center of the field of view, to
avoid perspective distortion [33]. These data can be presented as a size class frequency
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histogram. Hectre [34] provides an example of commercial software for monitoring fruit
size distribution of fruit in field harvest bins using a mobile device and machine vision.

Mango fruit mass increases linearly in the month leading up to harvest, except if
growth is disturbed via a major change in tree physiology, e.g., in water stress or source–
sink balance [35,36]. For nondisturbed conditions, size measurements (S) taken on two
occasions (t1 and t2) can therefore be used to estimate rate of growth, m (e.g., in g/day),
as follows:

m =
St2 − St1

t2 − t1
(8)

where St1 and St2 are the average size of fruit at t1 and t2, respectively. This rate can be
used to forecast weight distribution at the forecast time of harvest (th), from data of the last
measurement event, as follows:

Sh = St2 + m(th − t2) (9)

where St2 is the size distributions at t2, and Sh is the forecast size distribution at harvest.
An example of a size profile forecast (made three weeks before harvest) is compared

to the size distribution assessed of fruit at harvest in Figure 6.
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cultivar ‘Calypso’ population for the forecast and actual fruit size at harvest. Forecast size was based
on a growth rate of 23.2 g/week (as estimated from the mass change between weeks 4 and 3) for this
population. Fruit mass was calculated using fruit lineal dimensions. Data from Amaral et al. [36].

5.3. Fruit Quality

A distinction can be made between ‘biological’ and ‘marketable’ yield. Biological yield
is the total number of fruits on trees, characterized by fruit number and size. ‘Marketable
yield’ is that proportion of biological yield that is saleable. Factors determining marketabil-
ity include size, blemish level, and level of maturity. For example, less than six spots or a
total area of 1 cm2 or more of pink spots on the mango skin, a symptom caused by a scale
insect, is recognized as a defect in marketing chains, reducing fruit value [37].

As for total fruit number and fruit size, surveys can be conducted for fruits on trees
to estimate the proportion of the crop impacted by a given attribute. Current industry
best practice involves manual visual assessment of a sample of fruit in each orchard block,
with paper or basic electronic recording. There is potential to implement machine vision
solutions. For example, Scalisi et al. [38] report estimation of blush levels of stone fruit
using a vehicle-mounted camera system.
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6. Data to Information
6.1. Harvest Schedule

As an early-in-season approximation of fruit yield, the % of terminals that enter reproduc-
tive growth can be used in context of the maximum yield for this cultivar/canopy/growing
condition, as associated with a 100% flowering event (Equation (10)). For example, if 40%
flowering is recorded for a block with a prior maximum yield of 40 t/ha associated with
100% flowering, then the potential yield forecast is 16 t/ha.

Yf = F × Ymax × A (10)

where, for a given block, the variables have the following representations:

Yf is the forecast yield (kg) associated with a given flowering event;
F is the flowering extent (% of terminals) associated with a flowering event;
Ymax is the maximum fruit yield per hectare (kg/ha), at 100% flowering;
A is area (ha).

However, as noted above, flowering can occur in waves (flowering events, FEs) of
different magnitudes within a given orchard block. The forecast harvest date of each of the
events can be forecast based on GDD and on fruit DMC measurements. The % of canopy
terminals involved in a flowering event can be normalized to the maximum achieved
and used to partition the estimated total fruit load based on FEs, and thus harvest date
(Equation (11)). The forecast of harvest load can be based on a machine vision or manual
count of fruit per orchard block undertaken from fruit stone-hardening stage, i.e., after the
fruit drop period, up to 6 weeks before harvest.

Yi =
FEi

FEmax
× FC (11)

where the variables have the following representations:

Yi is the yield, as fruit number, per FEi;
FEi is the extent of a given flowering event (% of terminals);
i is the number of the FE;
FEmax is the maximum flowering in the given season (% of terminals);
FC is the block fruit count.

For example, if FE1 was associated with flowering of 30% of all terminals, while by
the end of the flowering period 90% of terminals had reproductive growth, and the block
fruit count was 120,000 pieces of fruit, then the fruit count associated with FE1 can be
approximated as 30/90 × 120,000 = 40,000 pieces of fruit (Equation (11)). This value is an
approximation which ignores differential fruit drop between different FEs, but it represents
the first level of the forecast. The forecast can be adjusted based on subsequent observations
of fruit drop and corroborated with other observations, e.g., fruit size distribution.

A workflow is presented in Figure 7.
The estimated Yi per block can be summed across blocks to achieve an estimate of

expected total harvest for a given harvest week (Ycu). This value can be compared to
the farms harvest capacity per week (HCw), as designated by the grower and defined
by the number of harvest workers and harvest aid equipment available. If the forecasted
harvest load exceeds the harvest capacity, the farm manager can adjust the FE timing, e.g.,
harvesting a week late or early relative to forecast dates, to distribute workload.

The output of such a workflow for a farm harvest is illustrated in Table 6. The
difference between forecast and actual harvest can be ascribed to the following: (i) error in
the estimation of the temporal flowering distribution; (ii) errors in the estimation of fruit
count; (iii) errors in the estimation of average fruit weight; and (iv) fruit not harvested or
discarded at harvest, i.e., fruit not reaching packhouse from orchard.
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Table 6. Example forecast data for five orchard blocks. Top panel (A): increment in flowering (%
of terminal in reproductive growth) for a given week has been normalized against the maximum
flowering achieved in that block, i.e., a total of 100% for each block. Total fruit count, average fruit
weight, and the calculated weight of fruits on trees is recorded for each block. Bottom panel (B):
harvest dates are forecast using heat units and the weeks of flowering events. The % flowering value
was used to partition estimated fruit load (kg) to a given harvest week and summed to calculate the
expected harvest volume per week. Forecasted harvest load is also expressed as a percentage of total
expected harvest. Actual packhouse out-turn (shipments) data are also presented.

(A) % Flowering Fruit Count Avg Weight
(kg)

Fruit Weight
(kg)

Calendar week 20 21 22 23 24 25
Orchard A 60 40 451,870 0.47 212,379
Orchard B 57 43 457,799 0.45 206,010
Orchard C 52 48 385,563 0.46 177,359
Orchard D 22 22 56 350,141 0.48 168,068
Orchard E 41 59 363,475 0.49 178,103
Orchard F 53 47 122,750 0.47 57,693

(B) Harvest forecast (fruit weight, kg)

Calendar week 40 41 42 43 44 45

Orchard A 127,427 84,952
Orchard B 117,425 88,584
Orchard C 92,227 85,132
Orchard D 36,975 36,975 94,118
Orchard E 73,022 105,081
Orchard F 30,577 27,115

FORECAST 36,975 92,227 257,999 127,427 258,668 226,314
% of total 4 9 26 13 26 23

ACTUAL 45,975 126,123 199,798 101,752 241,765 191,459
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6.2. Selective Management

The tabulated expected fruit load per week of the harvest period is useful in harvest
resource planning, for issues from labor hire planning to transport logistics. In addition
to this ‘quantitative’ estimate, ‘qualitive’ spatial information inherent in machine-vision-
derived estimates of the level of flowering and fruit load can also be useful in orchard
management. Several examples are provided in this section, including the following:

(i) Delineation of areas of early flowering and fruit set as areas for early selective harvest,
to match market demands;

(ii) Identification of under and over performing areas within a given block, for investiga-
tion of causes;

(iii) Agronomic management (pest, disease, nutrition, and irrigation management).

In Figure 8, spatial variation in flowering is evident in panel A, which was reflected
in spatial variation in fruit count made four months later (panel B). Of interest to farm
management, the following season saw a reversed trend in spatial distribution of flowering
(panel C) and fruit load (panel D).
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Figure 9 illustrates a loss of fruit production due to a frost event, with crop saved
in areas around five frost fans (left panel). In the second season (middle panel), areas
of no production in year 1 became high yielding areas, suggesting a biannual yielding
pattern had been introduced, and allowing for management intervention on the basis of
this information. In the third season (middle panel), spatially uniform production was
re-established.

Figure 10 illustrates a fruit count made before and after a first harvest event, showing
spatial variation in the intensity of harvest. Figure 11 presents frequency distributions for
fruit load per ‘tree’ (per 3.5 m of tree row) and for fruit size, before and immediately after a
harvest event. The distribution of fruit load per tree is shifted to lower values following
harvest, as expected, but fruit size distribution is not visibly impacted, indicating that a
selective harvest on the basis of fruit size did not occur.
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6.3. Field Bin Allocation

Information on the spatial distribution of fruit load within an orchard block can also
be used to inform bin placement, as described in our previous work [39]. In the Australian
mango industry, fruit are harvested into polycarbonate harvest bins of 400 kg capacity.
One harvest related task is the distribution of empty bins into the orchard, ahead of the
harvest crews. In present practice, these bins are allocated based on a human ‘eyeball’ of
fruit load. Information on the spatial distribution of fruit load can be used to calculate
the required number of bins per row, or the required placement of bins within the row.
Such an estimate requires a cumulative estimate of fruit load from the two sides of tree
canopies facing an inter-row. When the cumulative count (Yi) is equal or greater than the
bin capacity (b), a field bin is allocated to that spatial location, and the cumulative count
restarted (Equation (12), Figure 12).
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Yi =


0 i f i = 0 or Yi ≥ b
n
∑
j=i

(
Lj + Rj

)
i f i > 0 and Yi < b (12)

where variables have the following representations:

i is a counter of the data series;
j is a counter from the ith position of the data series to achieve b;
n is the size of series;
Lj is the fruit count series from the left MV camera;
Rj is the fruit count series from the right MV camera.

7. Criteria for an Electronic Harvest MIS
7.1. Data Acquisition System

Ease of data collection and entry was a major consideration for all potential users of a
harvest forecast MIS. New tools, e.g., LoRa-enabled temperature recording, Wi-Fi-enabled
handheld NIRS devices, and machine vision estimates of panicle and fruit number, have
been expressly developed to ease data collection. However, these technologies impose
hardware costs. Manual data collection remains an alternative approach.

A GNSS-enabled mobile device app can be developed to aid manual data collection
for the extent of flowering, fruit number, and fruit size and quality, with the workflow
illustrated in Figure 13.
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Figure 13. Proposed workflow for a mobile-device app (‘ManGO’) for manual collection of flowering
data (% of terminals in reproductive growth), fruit number, and fruit size. The app must allow data
collection in-orchard, i.e., off-line, with data upload when connectivity allows.

7.2. Harvest Forecast Engine as a Component of an Orchard MIS

A mango harvest forecast engine has been described in this paper, combining the
inputs of multiple sensor systems (Table 1) to achieve forward estimates of harvest timing
and load. This engine can be associated to an orchard MIS (Figure 14).
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and orchard management information system (MIS). Inputs include fruit dry matter content measure-
ments, machine vision based estimates of flowering and fruit number, manually collected flowering
and fruit load data and orchard temperature data.

7.3. MIS System Requirements

To operationalize a harvest forecast MIS (Figure 9), consideration is required of how
data (spatial and nonspatial) are to be stored, managed, and transferred between the
different components of the MIS [23,24], and how data are best visualized, e.g., as tables,
graphs, or maps, to inform decision making. As reviewed in [1], the evolution of farm MISs
has seen a progression from ‘stand-alone’ desktop applications to cloud-based applications
with mobile-device accessibility. A web-based system is therefore recommended, with
raster- rather than vector-based map rendering and implementation at the client rather
than server side, for rapid visualization of large data sets.

Issues with the development of a harvest forecast MIS (Table 7) were identified through
(i) feedback from experts and growers involved in our data acquisition research, (ii) our
previous literature review [1], and (iii) expanding our previous work on MIS develop-
ment [40].

Table 7. MIS requirements.

# Requirement/Component Description

1 Orchard structure Farm location, block name, and boundaries
2 Temperature sensor association Association of temperature sensors to blocks

3 Authentication, data access, and
security Access to and securing data at user and farm level

4 User management Hierarchy of users required, e.g., owner, manager, and
consultants, and permission across farms

5 Crop management
To handle multiple cultivars of mango with varying
production windows
Future expandability to other tree-fruit crops

6 Data standards

Standard data format for compatibility and
interoperability with the subsystems (machine vision
imaging, manual data collection, dry matter data
collection, and temperature), e.g., geolocation data
format and date format

7 Database management
Management of time-series data within a season with
access to past season data
Management of historical seasonal data
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Table 7. Cont.

# Requirement/Component Description

8 Data transmission
Capability to handle big spatial data including images
in terms of rapid upload/ingestion, fetching data from
server to client side, and download.

9 Data visualization with query
able web mapping

Time-aware heat map visualization, e.g., of >50 K data
values for a given farm, of machine vision data over
online basemaps (e.g., Google/ESRI/Bing/hostable
drone imagery) and presentation of data.

10 Visualization of machine vision
images

Display of machine vision images of flower and fruit
at tree level

11 User friendliness

User experience in terms of interface interactiveness
and responsiveness in farm locations to be confirmed
in terms of interactive and responsive map, table,
and charts.

12 RESTful APIs
To enable query ability, interoperability, and
automatability between the systems, and progressive
development of the system and subsystems

13 Communication module Email service to inform users regarding data updates
14 Operationability Maintainability and scalability

8. Conclusions

Harvest time and load forecast is critical to orchard management. The need for accurate
forecast increases as farm size increases and supply chains lengthen, given difficulties in
organizing harvest resources (labor, transport, etc.) and the marketing of large volumes
of fruit. This manuscript has described and codified the logic of a mango harvest forecast
engine and provided design features for the development of a harvest MIS software artefact.
Further, in addition to the quantitative data on harvest load, management value is also
identified in the data on the spatial distribution and frequency distributions of fruit load
per tree and fruit size.

Implementation of such a forecast engine is enabled with sensor systems that have
become available in recent years, reducing the manual effort required for data acquisition.
Required inputs are the following:

• Date of flowering;
• Extent of flowering;
• GDD- and DMC-based forecast of harvest timing for each flowering event;
• Fruit count;
• Fruit quality estimation;
• Fruit size distribution.

This study has utilized in-field machine-vision-based estimation of flowering level
and fruit count, but there is an opportunity to integrate other inputs, e.g., UAV- or satellite-
based imagery for an earlier-in-season, although potentially imprecise, forecast (based on
parameters such as vegetation indices, tree crown area, and floral-induction chill units).

An important requirement in a forecast engine is flexibility, allowing managers to
adjust for such factors as a failed flowering event, e.g., due to poor pollination or to
rainfall causing fungal disease of the flowers or a failed fruit set, e.g., due to a severe water
stress event.

The foundation is thus set for the development of a harvest forecast MIS. However,
farm adoption of such a tool will depend on ease of farm implementation, which implies a
need to integrate into a broader MIS dealing with other aspects of orchard management.
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Appendix A

Semistructured Interview Questions:
How do you currently forecast time of harvest time, and number, size and quality of fruit
at harvest?
Which of these harvest-forecast functions is most and least important to you? (harvest time
forecast, fruit number, size or quality forecast)
Speaking of the software system used to display harvest forecast information:
What aspects of this system do you find useful?
What features do you find irrelevant/difficult to use?
What features would you like to see added?
What aspects of the GUI are good and bad?
What are the barriers to the use of harvest forecast MIS?
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