
Citation: Gao, Z.; Wang, W.; Wang, H.;

Li, R. Selection of Spectral Parameters

and Optimization of Estimation

Models for Soil Total Nitrogen

Content during Fertilization Period in

Apple Orchards. Horticulturae 2024,

10, 358. https://doi.org/10.3390/

horticulturae10040358

Academic Editor: Moreno Toselli

Received: 11 March 2024

Revised: 31 March 2024

Accepted: 2 April 2024

Published: 4 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Selection of Spectral Parameters and Optimization of Estimation
Models for Soil Total Nitrogen Content during Fertilization
Period in Apple Orchards
Zhilin Gao 1,†, Wenqian Wang 2,*,†, Hongjia Wang 1,* and Ruiyan Li 3

1 College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China;
katherinegzl@163.com

2 Shandong Yuanhong Survey Planning and Design Co., Ltd., Jinan 250014, China
3 Jinan Survey and Mapping Research Institute, Jinan 250101, China; jnlry0418@126.com
* Correspondence: wenqian9506@163.com (W.W.); hongjiawang0101@163.com (H.W.)
† These authors contributed equally to this work.

Abstract: The rapid and accurate diagnosis of nitrogen content in apple orchard soil is of great
significance for the rational application of nitrogen fertilizer in orchards to improve apple yield and
quality. An apple orchard in Shuangquan Town, Changqing District, Jinan City, Shandong Province,
was taken as the experimental area. The optimal method for extracting spectral characteristic bands
and screening spectral characteristic indices (SCIs) of soil total nitrogen (TN) for independent and
comprehensive fertilization periods was explored. Independent and comprehensive soil TN content
estimation models were constructed and optimized for each and the entire fertilization period, re-
spectively. The results show that compared with the correlation coefficient method, stepwise multiple
linear regression (SMLR) performs better in extracting hyperspectral characteristic bands of soil TN
content. It helps to achieve a higher modeling accuracy, smaller root mean square error (RMSE), and is
more conducive to avoiding the influence of multicollinearity of model variables. The sensitive areas
of soil TN content in the SCI do not undergo significant changes due to different fertilization periods.
Among them, the ratio spectral indices (RSIs) are in the range of 800–900 nm, 1900–1950 nm, and
2200–2300 nm, while the sensitive areas of the difference spectral index (DI) and Normalized differ-
ence spectral index (NDSI) are in the range of 1900–1950 nm and 2200–2300 nm. The combination of
SCI and characteristic bands significantly improves the prediction accuracy of soil TN estimation
models. The independent and comprehensive estimation models for each fertilization period based on
the BP (back propagation) neural network optimized by the Mind Evolution Algorithm (MEA-BPNN)
can achieve a more stable and accurate estimation of soil TN. Finally, using soil spectral characteristic
bands selected through continuum removal (CR) transformation and SMLR, combined with SCI, the
model based on the MEA-BPNN (CR-SCI-MEA-BPNN) has the best prediction performance. The
modeling determination coefficients R2 for each fertilization period reached 0.94, 0.95, 0.92, and 0.94,
respectively, with RMSE of 0.0032, 0.0024, 0.0035, and 0.0027. The R2 and RMSE of the modeling
and validation set of the entire fertilization period comprehensive model are 0.899, 0.0038, and 0.89,
0.0041, respectively. The results of this article provide technical support for promoting the timely
monitoring of soil TN content and guiding rational fertilization in apple orchards.

Keywords: spectral parameters; estimation model; soil total nitrogen; apple orchards

1. Introduction

Apple is one of the four major fruits in the world, cultivated in over 80 countries
worldwide. China is the world’s largest producer and consumer of apples. According
to the 2022 China Apple Industry Report released by the China Apple Industry Associa-
tion, the national planting area in 2022 was 2 million hectares, with a total production of
45.9734 million tons, which accounted for 58.3% of the global total production [1]. Nitrogen
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is an essential nutrient for maintaining the growth of apple trees [2], and plays an irreplace-
able role in organ development, material metabolism, fruit quality, and yield [3–7]. Soil
nitrogen is the main source of nutrients for fruit trees, and its content is the basis for orchard
fertilization and an important indicator for evaluating and managing orchard quality [6].
Due to the challenge of estimating the nitrogen content of orchard soil in advance, fruit
farmers often apply too much or too little nitrogen in their application of nitrogen fertilizer
in orchards. This leads to the abnormal growth of fruit trees, susceptibility to diseases,
and soil and groundwater pollution [8]. Therefore, knowing how to diagnose the soil
nitrogen in apple orchards quickly and accurately is of great significance for the timely
monitoring and scientific management of reasonable nitrogen application to improve yield
and quality [2–4].

At present, in the monitoring of soil nitrogen in apple orchards, the laboratory Kjel-
dahl nitrogen determination method is commonly used to determine the soil total nitrogen
(TN) content. Although it can be highly accurate, the experimental steps are cumbersome,
especially the drawbacks of sampling causing significant damage to soil and roots [9],
which greatly limits its application in practice. The emergence of hyperspectral remote
sensing technology provides a new way for non-destructive estimation of soil nutrients,
which has advantages such as being fast, accurate, non-destructive, and pollution-free. It
is widely used in the estimation and inversion of soil physicochemical properties [10,11].
Hyperspectral inversion has achieved good research results in soil iron oxides [12], or-
ganic carbon [13,14], organic matter [10,15,16], and soil moisture content [17], providing a
reference for the rapid monitoring of soil nitrogen in orchards.

In recent years, scholars at home and abroad have conducted extensive research on
spectral estimation techniques for soil TN content and found that the spectral corresponding
characteristics of soil TN content are mainly concentrated in the visible near-infrared
region [18–20]. Multiple modeling methods have been attempted to prove the feasibility of
quantitative inversion of soil TN spectra [21–23]. Niu et al. constructed a hyperspectral
estimation model for TN content in Shajiang black soil and found that the accuracy of
the SVM model was slightly higher than that of the indices model, but both models
could facilitate the rapid estimation of TN content in Shajiang black soil [24]. The spectral
estimation technology of soil nutrients has achieved some preliminary results in the research
in apple orchards [25,26], navel orange orchards [27], and rubber orchards [28]. Liu et al.
constructed an estimation model for soil organic matter content in apple orchards using the
random forest method, and the R2 of the modeling sample set reached 0.88 [29]. Tang et al.
extracted hyperspectral features of rubber plantation soil using the successive projection
algorithm (SPA) and established a partial least squares regression (PLSR) model for soil TN
content [30]. Liu et al. used the competitive adaptive reweighting algorithm (CARS), SPA,
and CARS-SPA algorithm to select the characteristic bands of soil TN spectrum. The SVM
model established using the characteristic wavelengths selected by the CARS method had
the best performance [31]. Overall, most spectral inversion methods for nitrogen content in
orchard soil currently used conventional spectral transformation and correlation analysis
to screen characteristic bands, and based on this, commonly used regression models were
constructed. There is a lack of in-depth exploration of soil spectral information, which
affects the predictive performance of the models. And there is a lack of systematic analysis
and screening of data processing methods. In addition, existing research often randomly
selected a certain point in the year for sample collection, and the model lacked a duration
test, resulting in low practicality of the model.

The purpose of this study is as follows: (i) Screen the optimal soil spectra characteristic
band extraction method for soil TN during each fertilization period; (ii) select the most
suitable soil TN spectral characteristic index (SCI); (iii) construct and optimize independent
and comprehensive soil TN estimation models for each fertilization period and the entire
fertilization period, respectively. The layout of this article is as follows: firstly, collect and
transform the soil spectral reflectance for each fertilization stage; then, conduct in-depth
research step by step according to the order of the three objectives mentioned above.
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2. Materials and Methods
2.1. Data Acquisition
2.1.1. Overview of Experimental Orchard

The experimental orchard is located at the foot of a hill in Shuangquan Town, Changqing
District, Jinan City, Shandong Province, China, with an area of approximately 33 hm2

(116.7426–116.7507◦ E, 36.3139–36.3216◦ N). It is located at the northwest foot of Mountain
Taishan, and the soil type is brown soil. The apple tree spacing is 1.5 m, the row spacing is
4.5 m, the number of plants per 667 m2 is about 100, the crown width is 1–1.5 m, and the
overall canopy closure of the orchard is about 0.6. Apple varieties include Gala and Fuji,
with an age of about 5 years. During the 4 stages of apple growth: young fruit (in early May,
young fruit formation with slower growth), swelling (in mid-June, fruit volume rapidly
increases, the flesh thickens, and the skin color lightens), quality (in mid-July, fruit volume
is basically fixed, and the color and taste are formed), and postpartum (in early October,
after fruit picking, the roots grow at its peak before winter) period, nitrogen fertilizer is
applied using drip irrigation, respectively.

2.1.2. Soil Sample Collection and Analysis

The experimental orchard was divided into modeling and validation areas, with 100
and 40 sampling points evenly distributed, respectively, and a fruit tree was selected as
the center of each sampling point. Soil samples were collected 10 days before each of the
4 fertilization dates. To ensure the collection of soil as close as possible to the capillary roots
and reduce damage to fruit trees during sampling, a soil drill was used to collect mixed soil
samples from 0 to 30 cm below the soil surface at a distance of 30 cm horizontally from the
apple tree roots [31]. Sand, gravel, and animal and plant residues were removed from the
collected soil samples. Soil samples were placed in a dry and ventilated place for natural air
drying. During the airdrying process, the samples were kept clean and not contaminated
with each other. Then, the samples were ground through a 60-mesh sieve and mixed evenly
before being divided into two parts using the quartering method. One sample was used to
determine the soil TN content using the micro Kjeldahl nitrogen determination method
(Table 1). Another one was placed in a completely black container (diameter 10 cm, depth
2 cm, default infinite depth) for obtaining soil spectral data.

Table 1. Descriptive statistical characteristics of soil TN content in each fertilization periods.

Study
Area

Sample
Size

Index
Soil TN Content (%)

Young
Fruit Swelling Quality Postpartum

Modeling
area

100
Max 0.0840 0.0726 0.0882 0.0812
Min 0.0353 0.0254 0.0406 0.0307

Mean 0.0512 0.0427 0.0523 0.0482

Validation
area

40
Max 0.0813 0.0764 0.0796 0.0779
Min 0.0339 0.0233 0.0328 0.0290

Mean 0.0526 0.0428 0.0528 0.0491

2.1.3. Soil Spectral Collection

The collection of soil spectral data was carried out outdoors in an open and unob-
structed area with artificial control of the surrounding environment, using natural sunlight
as the light source. The ASD Fieldspec3 ground object spectrometer was adopted, with a
spectral range of 350–2500 nm and a resampling interval of 1 nm for data output. A total of
2151 bands of reflectance were collected. To ensure the solar altitude angle, measurements
were taken from 10:00 to 14:00. When measuring, the dish filled with the soil sample to
be tested was placed on black rubber with a field of view angle of 25◦ and a distance of
15 cm from the soil sample. To reduce the influence of soil spectral anisotropy [32], each soil
sample was rotated at 90◦ three times during measurement, and a total of 20 spectral curves
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were collected in each direction. After arithmetic averaging, the reflectance spectrum of the
sample was obtained. During the measurement process, a white board with a reflectivity of
1 was used for calibration in a timely manner [33].

2.1.4. Spectral Data Preprocessing

On the basis of breakpoint correction, edge noise removal, and SG smoothing, the
original soil spectral reflectance (R) was transformed into eight forms: reciprocal (1/R),
logarithmic (LogR), square root (

√
R), first-order derivative [(R)′], reciprocal first-order

derivative [(1/R)′], logarithmic first-order derivative [(LogR)′], square root first-order
derivative [(

√
R)′], and continuum removal (CR). The transformation result data were used

together with the original spectrum as modeling and analysis data.

2.2. Modeling Parameter Screening
2.2.1. Characteristic Band Screening

1. Correlation coefficient method

Correlation analysis band by band was performed between the TN content of the
sample soil and the original soil reflectance, as well as various transformations. The bands
at the extreme or sudden change point of the correlation coefficient were selected as the
characteristic bands [34]. The commonly used Pearson coefficient was selected as the
correlation coefficient, and the calculation formula is as follows:

ri =
∑N

n=1
(

Rni − Ri
)(

TNn − TN
)√

∑N
n=1

(
Rni − Ri)2∑N

n=1
(
TNn − TN

) (1)

where ri represents the correlation coefficient between soil TN content and input spectrum
and i is the band number; R is the input spectrum; Rni represents the input value of the
nth sample at the i-th band; Ri represents the mean of the input spectral values of all soil
samples in the i-th band; TNn is the soil TN content of the nth soil sample; TN is the average
TN content of all soil samples.

2. Stepwise multiple linear regression (SMLR)

The spectral data of the original soil reflectance and its various transformation forms
in the range of 400–2450 nm were taken as the input spectrum, and the SMLR method was
used to screen the characteristic bands of soil TN content. The basic operation steps were
divided into two steps: first, variables that have not been tested as significant based on a
certain level of significance were eliminated; second, new variables were introduced into
the regression model [35]. The representation of the filtering model is as follows:

TN = a0 + ∑N
n=1 aiRi (2)

where TN represents the soil TN content, a0 and ai are the constant terms and coefficients of
the regression model, N is the number of filtered bands, and Ri is the input spectral value
of the wavelength at the i-th modeling band.

2.2.2. Spectral Characteristic Index (SCI) Screening

In the range of 400–2450 nm, SCIs were calculated for the original soil spectra of each
fertilization period band by band [36], and different spectral index matrices were obtained
for the entire band range; SCI included the ratio spectral index (RSI), difference spectral
index (DI), and Normalized difference spectral index (NDSI). A correlation coefficient
matrix was obtained through performing correlation analysis with soil TN content and
analyzed by using contour maps [37]. Then, the SCIs for the sensitive areas of soil TN
content was analyzed, the combination of SCI with high correlation with soil TN were
screened and determined.
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The formulas for RSI, DI, and NDSI are as follows:

RSI(R1, R2) = R1/R2, (3)

DI(R1, R2) = R1 − R2, (4)

NDSI(R1, R2) = (R1 + R2)/(R1 − R2), (5)

where R1 and R2 represent the spectral reflectance of any two bands in the sample spectrum.

2.3. Modeling Methods

Firstly, R and its 8 transformations during each fertilization period were used as input
spectra, respectively, and the soil TN characteristic bands were extracted based on correla-
tion coefficient method and SMLR method, respectively. Afterwards, the modeling effects
of univariate regression and MLR, as well as the MEA-BPNN method (Back propagation
neural network optimized by Mind Evolution Algorithm) were compared. Subsequently,
the optimal characteristic bands extraction method was selected based on the model’s
coefficient of determination (R2) and root mean square error (RMSE). Then, using band by
band analysis techniques and correlation analysis methods, the sensitive areas of soil TN
spectral index were determined, and SCIs with high correlation with soil TN were screened
out. Finally, based on SCIs and characteristic bands combinations, MLR and MEA-BPNN
methods were used to construct and optimize independent and comprehensive soil TN con-
tent estimation models for each fertilization period, and the optimal models were validated.
The above steps were implemented using MATLAB (version: 2016b) software.

2.3.1. Regression Analysis

Univariate regression is used for regression analysis that includes only one indepen-
dent variable and one dependent variable [38]. MLR is the most common method for the
quantitative relationship analysis between multiple variables [39]. The calculation method
is as follows:

TN =


TN1
TN2
TN3

...
TNn

, R =


R11 R12 R13 · · · R1m
R21 R22 R23 · · · R2m
R31 R32 R33 · · · R3m

...
...

...
...

...
Rn1 Rn2 Rn3 · · · Rnm

, (6)

where TN is the TN content value of the soil sample and R is the spectral characteristic
band matrix of the soil sample; TNi refers to the TN content of the i-th soil sample; Rij
(i = 1, 2, 3. . . n; j = 1, 2, 3. . . m) represents the reflectance value of the i-th sample at the j-th
characteristic band; n is the soil sample capacity, i.e., the number of samples; and m is the
number of characteristic bands.

Assuming that the soil TN value can be expressed linearly by Ri (i = 1, 2, 3. . ., m), the
linear form is as follows:

TN = a0 + a1R1 + . . . + amRm + ℓ, converted into a matrix representation as: TN = TA + E,

T =


1 R11 R12 · · · R1m
1 R31 R22 · · · R2m
1 R31 R32 · · · R3m
...

...
...

...
...

1 Rn1 Rn2 · · · Rnm

, A =


a0
a1
a2
...

am

, E =


ℓ1
ℓ2
ℓ3
...
ℓn

, (7)

where matrix A is the regression coefficient of the model, which is generally solved by
partial least squares method, that is, A =

(
RT R)−1RTTN , and the predicted value of the

model is TN∗ = T
(

RT R)−1RTTN .
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2.3.2. Optimization of BP (Back Propagation) Neural Network Based on Mind Evolution
Algorithm (MEA-BPNN)

BP (back propagation) neural network was proposed by Rnmelhart and Hinton in the
mid-1980s as a multi-layer feedforward neural network information processing system that
simulates human brain function. The two key points in the BP neural network algorithm
are the initial weights and thresholds of the network, which play a decisive role in the
computational speed and prediction accuracy of the model. Knowing how to quickly and
accurately determine the appropriate weights and thresholds is the most critical issue
in BP neural network inversion [40,41]. Evolutionary Computation (EC) can be used to
solve complex combinatorial optimization problems, but early evolutionary algorithms
have problems such as premature convergence and slow convergence when optimizing
BP neural networks. The MEA overcomes the drawback of EC [42] and has significant
advantages in finding global optimal solutions. Therefore, this study selected the MEA
algorithm to optimize the BP neural network estimation model for soil TN content in order
to achieve better prediction results.

The MEA is a new type of algorithm optimized on the basis of genetic algorithm.
It simulates the evolutionary process of human thinking, and through operations such
as “convergence” and “dissimilation” operators, continuously iterates to minimize the
error between predicted values and expected values. Figure 1 shows the design process
of a BP neural network based on MEA optimization. The basic idea is to first map the
solution space to the encoding space based on the topology of the BP neural network after
obtaining soil sample data, that is, each encoding corresponds to an individual; then, select
the scoring functions of individuals and populations, and continuously iterate and analyze
them using the MEA algorithm; finally output the optimal initial weights and thresholds,
and use this to train the BP neural network.
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Figure 1. BP (back propagation) neural network (BPNN) flowchart optimized based on Mind
Evolutionary Algorithm (MEA).

3. Results
3.1. Selected Soil TN Characteristic Bands and Their Modeling Effects

The screening results based on correlation coefficients show that in each fertilization
period, the characteristic bands of the same transformation at different stages are different
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but their positions are similar, and the distance between bands does not exceed 10 nm.
The characteristic bands of different transformation forms during the same fertilization
period are not entirely the same, with the characteristic band positions of 1/R, LogR,
and

√
R being the same as that of R; the characteristic bands of all first-order derivative

transformations are located similarly, while the characteristic bands of CR are mainly
concentrated around 600–900 nm and 2220 nm. For the entire fertilization period, the
characteristic band positions of R and 1/R, LogR, and

√
R are basically consistent, which

are all around 666 nm. The characteristic band positions of each first-order derivative and
CR have changed, but most of them are concentrated around 562, 808, 1429, 1924, and
2223 nm.

The characteristic band screening results based on SMLR show that there is only one
sensitive band for R, 1/R, LogR, and

√
R in each fertilization period, which is consistent

with the correlation analysis and is close to the results of the entire fertilization period. The
bands are 663 nm, 666 nm, 666 nm, and 664 nm, respectively. The number of characteristic
bands selected by the first derivative and CR transformation during each fertilization period
ranges from 8 to 12, while the number of characteristic bands selected during the entire
fertilization period increases from 1 to a maximum of 15, with a few cross bands between
different transformations. This is consistent with the results of the correlation analysis
method. At the same time, most of the characteristic bands selected based on SMLR for
the entire fertilization period include bands selected by the correlation coefficient method
or their nearby position bands, but all first-order derivatives and CR transformations
have not been selected into the 666 nm band. Based on the screening results of various
transformation forms, the bands 562 nm, 706 nm, 808 nm, 1933 nm, and 2345 nm are
significantly affected by soil TN content.

3.1.1. Modeling Analysis Based on Univariate Regression

Using the selected characteristic bands as independent variables, univariate regression
analysis on soil TN for each fertilization period, including univariate linear, polynomial,
and exponential function regression was performed. The results are shown in Table 2. It can
be seen that although the univariate regression model based on a single characteristic band
is simple and convenient, the overall accuracy is relatively low. Except for the postpartum
period (with a maximum R2 of 0.479), the accuracy R2 of the models for other fertilization
periods is lower than 0.3, indicating poor modeling performance.

In the same fertilization period, from the perspective of fitting equations, regardless of
the transformation form, for univariate regression analysis, the fitting effect of the third-
order polynomial model is better than other univariate linear models and exponential
models, and the modeling accuracy is slightly higher. From the perspective of spectral
transformation forms, the model established based on

√
R has slightly higher accuracy,

followed by LogR and 1/R. Among all the univariate regression models, the third-order
polynomial model with

√
R is the best for all four fertilization periods. The young fruit

stage corresponds to the 663 nm wavelength band, and the modeling determination co-
efficient R2 = 0.19; the swelling period corresponds to the 666 nm wavelength band, and
R2 = 0.264; the quality period corresponds to the 666 nm wavelength band, and R2 = 0.246;
and the postpartum period corresponds to the 664 nm wavelength band, with R2 = 0.479.
However, overall, compared with R, the accuracy difference between univariate regression
models based on 1/R, LogR, and

√
R is very small, and all of them are relatively low. The

results indicate that all three transformations have little significance in extracting effective
information from soil spectra. Therefore, in the subsequent research on spectral estimation
of soil TN content, univariate linear regression analysis may not be necessary.
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Table 2. Univariate regression analysis of soil original reflectance and its transformation form with
soil TN content in each fertilization period.

Sampling Period Input Spectrum Regression Equation R2 RMSE

Young fruiting

x = R663

y = −0.2146x + 0.0954 0.101 0.0087
y = −349.8x3 + 228.8x2 − 49.818x + 3.6604 0.183 0.0083

y = 0.1095e3.755x 0.094 0.0091

x = 1/R663

y = 0.0098x + 0.0033 0.137 0.0086
y = 0.0251x3 − 0.3515x2 + 1.6407x − 2.5031 0.186 0.0083

y = 0.022e0.171x 0.104 0.0090

x = LogR663

y = −0.0461x − 0.0217 0.107 0.0087
y = −3.0554x3 − 14.048x2 − 21.523x − 10.938 0.189 0.0083

y = 0.0142e0.804x 0.099 0.0089

x =
√

R663

y = −0.1991x + 0.1416 0.104 0.0087
y = −263.37x3 + 368.04x2 − 171.39x + 26.646 0.190 0.0083

y = 0.2445e3.477x 0.097 0.0092

Swelling fruit

x = R666

y = −0.2376x + 0.0982 0.238 0.0081
y = −34.815x3 + 28.138x2 − 7.6531x + 0.7374 0.264 0.0080

y = 0.1394e5.166x 0.227 0.0082

x = 1/R666

y = 0.013x − 0.0134 0.251 0.0081
y = −0.0004x3 + 0.013x2 − 0.0782x + 0.1682 0.264 0.0080

y = 0.0124e0.282x 0.2376 0.0084

x = LogR666

y = −0.0558x − 0.0387 0.245 0.0081
y = −0.1746x3 − 0.5915x2 − 0.6622x − 0.2077 0.264 0.0082

y = 0.0071e1.212x 0.233 0.0083

x =
√

R666

y = −0.2306x + 0.154 0.241 0.0081
y = −21.463x3 + 34.296x2 − 18.313x + 3.304 0.264 0.0082

y = 0.4688e5.01x 0.230 0.0084

Quality period

x = R666

y = −0.3209x + 0.1203 0.215 0.0081
y = 24.822x3 − 9.6462x2 + 0.4149x + 0.1602 0.246 0.0080

y = 0.1721e5.679x 0.220 0.0081

x = 1/R666

y = 0.0145x − 0.0166 0.228 0.0081
y = −0.0054x3 + 0.0873x2 − 0.4458x + 0.7828 0.245 0.0081

y = 0.0153e0.2568x 0.233 0.0081

x = LogR666

y = −0.0686x − 0.0543 0.222 0.0082
y = 0.438x3 + 2.2879x2 + 3.8672x + 2.1798 0.246 0.0080

y = 0.0078e1.213x 0.227 0.0081

x =
√

R666

y = −0.2971x + 0.189 0.219 0.0081
y = 28.267x3 − 34.101x2 + 13.124x − 1.5215 0.246 0.0080

y = 0.5798e5.255x 0.224 0.0082

Postpartum period

x = R664

y = −0.4319x + 0.1418 0.371 0.0074
y = −621.75x3 + 418.04x2 − 93.809x + 7.0712 0.478 0.0071

y = 0.3988e9.803x 0.4287 0.0072

x = 1/R664

y = 0.0206x − 0.0471 0.393 0.0074
y = 0.0473x3 − 0.635x2 + 2.8474x − 4.2225 0.477 0.0071

y = 0.0056e0.4627x 0.4432 0.0072

x = LogR664

y = −0.0945x − 0.0964 0.382 0.0074
y = −5.5455x3 − 24.909x2 − 37.326x − 18.615 0.478 0.0071

y = 0.0018e2.135x 0.436 0.0073

x =
√

R664

y = −0.4043x + 0.2364 0.377 0.0075
y = −417.18x3 + 670.28x2 − 317.29x + 50.13 0.479 0.0071

y = 3.377e9.156x 0.433 0.0072



Horticulturae 2024, 10, 358 9 of 23

3.1.2. Modeling Analysis Based on Multiple Regression

1. Modeling effect of characteristic bands based on correlation analysis screening

Based on the correlation coefficient method, the characteristic bands of R and its eight
transformations were screened, and multiple sensitive bands could be selected. Therefore,
the MLR method was used for modeling and fitting analysis. The results are shown in
Table 3. The coefficient of determination R2 of each model is above 0.7. Among them, (

√
R)′

has the best fitting effect in the young and swollen fruit stages; the model determination
coefficient R2 and root mean square error RMSE are 0.74, 0.75, and 0.0047, respectively, in
which R2 are 0.55 and 0.49 higher than the univariate regression. CR has the best fitting
effect during the quality period, where R2 = 0.78, RMSE = 0.0038, and R2 has a maximum
increase of 0.53; (LogR)′ has the best fitting effect during the postpartum period, with
R2 = 0.77, RMSE = 0.0039, and R2 increasing by a maximum of 0.37.

Table 3. Multiple linear regression (MLR) results of soil TN based on characteristic bands screened
with correlation analysis.

Sampling Period Input Spectrum Regression Equation R2 RMSE

Young fruiting

x = (R)′ y = 0.1049 − 46.70x571 + 116.09x849 − 40.17x1425 − 6.29x1925 0.71 0.0049
x = (1/R)′ y = 0.0409 − 9.17x809 − 3.46x849 + 5.57x1427 + 0.71x1914 0.73 0.0047

x = (LogR)′ y = 0.0663 − 5.49x559 + 47.46x809 − 10.96x1426 + 0.27x1927 0.70 0.0050
x = (

√
R)′ y = 0.0915 − 38.39x559 + 150.86x809 − 45.39x1425 − 2.49x1926 0.74 0.0047

x = CR y = −0.0424 − 0.49x664 − 2.39x694 + 2.77x878 + 0.22x2222 0.73 0.0048

Swelling fruit

x = (R)′ y = 0.0758 − 22.29x567 + 110.10x836 − 41.68x1430 − 8.42x1923 0.71 0.0043
x = (1/R)′ y = 0.0274 − 6.50x803 − 8.53x837 + 5.07x1430 + 0.87x1916 0.71 0.0051

x = (LogR)′ y = 0.0986 − 9.46x561 + 37.68x836 − 4.75x1430 + 0.33x1923 0.72 0.0049
x = (

√
R)′ y = 0.0979 − 32.91x548 + 103.57x836 − 52.49x1429 − 8.73x1922 0.75 0.0047

x = CR y = 0.9725 + 0.07x499 − 5.77x692 + 4.57x840 + 0.29x2215 0.74 0.0047

Quality period

x = (R)′ y = 0.0847 − 28.52x563 + 101.52x836 − 28.97x1428 − 15.3x1915 0.73 0.0042
x = (1/R)′ y = 0.0451 − 4.82x800 − 2.84x827 + 4.87x1415 + 1.15x1915 0.72 0.0043

x = (LogR)′ y = 0.0751 − 3.94x561 + 31.18x827 − 5.83x1428 − 5.42x1915 0.72 0.0043
x = (

√
R)′ y = 0.1007 − 40.73x533 + 93.54x827 − 38.18x1428 − 17.50x1915 0.76 0.0040

x = CR y = 1.5867 − 1.2x640 − 3.63x699 + 2.77x849 + 0.57x2219 0.78 0.0038

Postpartum period

x = (R)′ y = 0.0799 − 36.67x585 + 151.09x836 − 33.74x1428 − 13.57x1924 0.73 0.0044
x = (1/R)′ y = 0.0345 − 6.06x817 − 7.12x837 + 6.76x1415 + 2.09x1914 0.74 0.0043

x = (LogR)′ y = 0.0951 − 9.69x562 + 39.75x817 − 3.77x1428 − 7.73x1914 0.77 0.0039
x = (

√
R)′ y = 0.1074 − 47.69x548 + 137.48x837 − 37.11x1428 − 13.51x1915 0.76 0.0040

x = CR y = 0.9601 + 2.73x662 − 0.81x678 + 1.89x863 + 0.79x2223 0.75 0.0041

Using data from the 40 sampling points in the validation area for each fertilization
period, the four selected models with acceptable accuracy were tested. The validation
accuracy was evaluated using two indicators: R2 and RMSE, and a 1:1 histogram was
created (Figure 2).

It can be seen that, except for the fruit swelling period (R2 = 0.803) and the postpartum
period (R2 = 0.779), the validation accuracy of the other period models is less than 0.75.

2. Modeling effect of characteristic bands based on SMLR screening

Using the characteristic bands screened based on SMLR, MLR fitting was performed
on the soil TN content for each fertilization period. The results are shown in Table 4.

From Table 4, it can be seen that based on the principle of maximum R2, models with
better soil TN estimation for each fertilization period were selected. Among them, the
optimal models for each fertilization period are the MLR models based on CR transforma-
tion, with R2 reaching 0.82, 0.84, 0.85, and 0.82, and RMSE being 0.0039, 0.0037, 0.0031, and
0.0034, respectively. Compared with the model established based on correlation analysis
screening method, the modeling accuracy increased by 0.095, 0.099, 0.067, and 0.068, re-
spectively, and the RMSE decreased by about 0.001. Secondly, the MLR model based on
(LogR)′ performed well, with R2 of 0.81, 0.81, 0.80, and 0.80, and RMSE of 0.0040, 0.0041,
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0.0036, and 0.0036, respectively. The maximum variance inflation factor (Max VIF) of all the
selected model variables above is less than 10, avoiding the influence of multicollinearity
of model variables. To further test the stability and reliability of the model prediction, the
four selected models were tested using data from 40 sampling points in the validation area
during each fertilization period, and a 1:1 histogram was created (Figure 3). As shown in
the figure, except for the quality period (R2 = 0.702), the modeling accuracy of the other
three models is higher than 0.8, indicating good validation results.
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Table 4. Multiple linear regression (MLR) fitting results of soil TN content based on stepwise multiple
linear regression (SMLR) screening characteristic bands.

Sampling
Period

Input
Spectrum

Variables
Number Regression Equation R2 RMSE Max VIF

Young
fruiting

x = (R)′ 8 y = 0.0848 − 66.35x570 + 82.79x679 + 79.45x808 + 1.66x845 +
10.11x1297 − 41.49x1423 − 14.43x1967 + 1.21x2375

0.77 0.0043 4.69

x = (1/R)′ 10
y = 0.0396 + 0.83x541 + 0.72x574 − 2.75x678 − 3.90x706 −
6.14x808 + 3.34x1462 + 2.28x1589 + 3.37x1661 + 0.19x1780 −
0.30x2339

0.81 0.004 8.29

x = (LogR)′ 11
y = 0.0817 − 9.73x541 + 26.18x808 + 31.94x848 − 3.99x1462
− 8.08x1561 − 11.64x1696 − 1.36x1804 − 4.08x2046 −
0.46x2138 − 0.70x2366 − 0.34x2423

0.81 0.004 7.55

x = (
√

R)′ 12
y = 0.0874 − 36.52x541 + 164.14x808 − 13.20x975 +
21.72x1001 + 28.58x1281 − 58.75x1422 + 14.54x1588 +
1.73x2138 + 9.52x2236 + 3.41x2311 + 3.76x2342 − 1.04x2423

0.76 0.0044 6.85

x = CR 10
y = 1.5527 − 5.71x693 + 4.95x712 − 9.21x806 + 1.90x876 −
0.08x972 + 2.10x1092 + 3.72x1695 + 1.16x1830 − 0.52x2287 +
0.20x2351

0.82 0.0039 8.57



Horticulturae 2024, 10, 358 11 of 23

Table 4. Cont.

Sampling
Period

Input
Spectrum

Variables
Number Regression Equation R2 RMSE Max VIF

Swelling
fruit

x = (R)′ 8 y = 0.0761 − 46.65x580 + 55.23x691 + 70.7x813 − 9.69x1009
+ 23.2x1141 + 3.28x1374 − 65.84x1428 + 3.66x2153

0.73 0.0049 5.01

x = (1/R)′ 10
y = 0.0373 + 0.75x554 + 2.18x583 − 3.45x680 − 2.6x691 −
4.5x701 − 4.78x812 − 1.88x1099 + 7.73x1185 − 1.59x2097 −
0.08x2301

0.79 0.0043 9.58

x = (LogR)′ 11
y = 0.0852 − 5.08x554 − 9.97x560 + 14.49x703 + 27.24x777 +
3.26x1062 + 24.78x1192 − 2.8x1367 + 0.61x1627 − 4.98x1931 +
0.39x2301 − 0.19x2438

0.81 0.0040 7.17

x = (
√

R)′ 12
y = 0.0837 − 27.62x565 − 37.51x580 + 105.86x719 +
27.28x775 + 26.34x901 + 7.42x1130 + 16.83x1292 − 18x1375 −
53.69x1418 + 17.26x1740 − 15.78x1931 + 0.06x2296

0.78 0.0044 6.57

x = CR 10
y = 3.3908 − 2.85x675 + 4.72x837 − 1.9x983 − 1.81x1008 +
2.58x1087 − 3.77x1352 + 0.5x1841 − 1.36x2092 + 1.17x2188 −
0.57x2293

0.84 0.0037 7.11

Quality
period

x = (R)′ 8 y = 0.0992 + 7.34x402 − 27.67x556 − 42.26x562 +
126.85x893 + 16.7x1000 + 23.34x1020 + 9.85x1330 + 4.28x2147

0.66 0.0047 5.75

x = (1/R)′ 10
y = 0.0519 + 0.05x428 − 0.05x435 + 0.53x511 − 7.06x816 −
6.96x826 + 0.37x864 + 0.37x2041 + 0.33x2184 − 0.47x2313 +
0.06x2450

0.74 0.0041 6.28

x = (LogR)′ 11
y = 0.0836 − 7.04x555 − 6.22x590 + 15.12x677 + 20.32x826 +
10.25x864 + 15.25x1328 + 0.27x1752 − 1.6x2041 + 3.15x2179
− 1.08x2292 − 0.21x2450

0.80 0.0036 5.59

x = (
√

R)′ 12
y = 0.1187 − 48.73x543 − 33.76x549 + 109.16x802 +
4.64x865 − 21.4x1547 + 61.57x1572 + 41.88x1579 − 8.63x1862
+ 17.39x2130 − 3.69x2192 + 0.32x2240 − 1.43x2213

0.79 0.0037 8.31

x = CR 10
y = −20.7013 + 0.11x490 − 4.88x698 − 6.61x752 − 5.02x777
+ 75.52x779 − 37.54x780 + 4.01x844 − 5.66x1322 + 1.39x1332
− 0.54x2066

0.85 0.0031 9.21

Postpartum
period

x = (R)′ 8 y = 0.0765 − 24.13x562 − 86.39x660 + 33.61x679 +
91.15x809 + 83.75x815 − 22.64x1922 − 3.92x2255 + 4.53x2347

0.79 0.0038 7.04

x = (1/R)′ 10
y = 0.0351 + 0.15x476 + 1.41x551 − 6.48x679 − 7.35x837 −
7.37x1541 − 9.32x1575 + 3.78x1666 + 0.85x1676 + 1.24x1771
− 0.53x2269

0.81 0.0034 8.81

x = (LogR)′ 11
y = 0.0994 − 11.48x541 + 28.76x829 + 23.56x836 + 6.79x1542
+ 5.84x1772 − 0.71x2135 + 2.55x2198 + 1.42x2269 − 0.42x2316
+ 0.84x2391 + 0.4x2401

0.80 0.0036 5.42

x = (
√

R)′ 12

y = 0.1133 − 65.15x562 + 76.01x809 + 12.11x858 +
26.67x1044 + 30.36x1227 + 1.04x1550 − 14.9x1602 +
15.07x1676 − 27.51x1912 − 15.56x2070 + 7.35x2199 +
8.81x2269

0.79 0.0037 7.57

x = CR 10
y = 39.6808 − 3.47x676 − 41.67x773 + 2.92x858 − 1.78x974 +
4.26x1120 − 2.69x1732 + 2.71x1746 − 0.66x1841 + 0.85x1874
− 0.08x2437

0.82 0.0034 6.91
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3.1.3. Modeling and Analysis Based on MEA-BPNN

The characteristic bands selected through the correlation coefficient method and SMLR
analysis in R and its various transformation forms were used as input spectra, and the
MEA-BPNN was used for modeling. The results are shown in Table 5.

Table 5. Modeling and validation results of soil TN content estimation based on BP (back propagation)
neural network optimized by Mind Evolution Algorithm (MEA-BPNN).

Sensitive Band Screening Correlation Analysis Stepwise Multiple Linear Regression

Sampling
Period

Input
Spectrum

Variables
Number

Modeling Validation Variables
Number

Modeling Validation

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Young
fruiting

(R)′ 5 0.75 0.0045 0.73 0.0068 8 0.78 0.0048 0.76 0.0065
(1/R)′ 5 0.75 0.0046 0.72 0.0070 10 0.83 0.0045 0.82 0.0056

(LogR)′ 5 0.73 0.0048 0.75 0.0066 11 0.86 0.0043 0.85 0.0052
(
√

R)′ 5 0.77 0.0044 0.76 0.0065 12 0.83 0.0045 0.81 0.0058
CR 5 0.74 0.0048 0.71 0.0072 10 0.87 0.0043 0.87 0.0047

Swelling
fruit

(R)′ 5 0.74 0.0042 0.68 0.0060 8 0.85 0.0042 0.84 0.0043
(1/R)′ 5 0.72 0.0045 0.66 0.0063 10 0.85 0.0041 0.84 0.0042

(LogR)′ 5 0.73 0.0042 0.71 0.0058 11 0.85 0.0037 0.87 0.0038
(
√

R)′ 5 0.75 0.0041 0.76 0.0053 12 0.84 0.0037 0.87 0.0038
CR 5 0.81 0.0040 0.79 0.0041 10 0.86 0.0033 0.89 0.0035

Quality
period

(R)′ 5 0.75 0.0041 0.68 0.0069 8 0.82 0.0048 0.69 0.0068
(1/R)′ 5 0.73 0.0042 0.66 0.0070 10 0.84 0.0046 0.81 0.0053

(LogR)′ 5 0.72 0.0043 0.60 0.0077 11 0.85 0.0046 0.82 0.0052
(
√

R)′ 5 0.76 0.0040 0.65 0.0072 12 0.78 0.0051 0.74 0.0062
CR 5 0.78 0.0038 0.66 0.0071 10 0.86 0.0043 0.84 0.0049

Postpartum
period

(R)′ 5 0.75 0.0042 0.70 0.0063 8 0.87 0.0043 0.85 0.0045
(1/R)′ 5 0.77 0.0055 0.69 0.0064 10 0.87 0.0043 0.86 0.0044

(LogR)′ 5 0.77 0.0056 0.70 0.0063 11 0.84 0.0046 0.83 0.0047
(
√

R)′ 5 0.77 0.0055 0.71 0.0062 12 0.85 0.0050 0.80 0.0051
CR 5 0.79 0.0053 0.75 0.0057 10 0.88 0.0038 0.87 0.0042
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Similar to the MLR method, the model based on SMLR method for screening variables
has better performance, with modeling accuracy of over 0.8 except for the young fruit stage
(R)′ (R2 = 0.78). Based on the performance of the models in the comprehensive modeling
and validation sets, the selected models for each period are all MEA-BPNN models based
on CR, with R2 of 0.87, 0.86, 0.86, and 0.88, and RMSE of 0.0043, 0.0033, 0.0043, and 0.0038,
respectively. Compared with the model established by MLR method, the accuracy increased
by 0.054, 0.021, 0.012, and 0.058, respectively, and the validation accuracy is 0.87, 0.89, 0.84,
and 0.87, respectively. In summary, it can be seen that the SMLR method is more effective
in screening sensitive bands, and this method will be used for characteristic band screening
in future research.

3.2. SCI Screening Results
3.2.1. Independent Soil SCIs for Each Fertilization Period

Figure 4 shows the Isoline map of the correlation coefficient between soil SCI and
TN content during each fertilization period. It can be seen that the form of contour maps
for each fertilization period is not significantly different, with only slight differences in
correlation size. Among them, RSI is the most stable, and the sensitive areas of soil TN
are the same in the four fertilization periods, all located in the range of 800–900 nm,
1900–1950 nm, and 2200–2300 nm bands. Under DI and NDSI, the sensitive regions of soil
TN during the four fertilization periods are all located in the range of 1900–1950 nm and
2200–2300 nm bands. However, the correlation coefficient of soil TN varies over time in
the wavelength range of 800–900 nm, and the quality period performance is poor. The
absolute value of the correlation coefficient R is less than 0.6. Therefore, this region will
not be considered in the subsequent screening of sensitive differences and normalized
spectral indices.

To avoid the multicollinearity effect between variables caused by close band distance,
an SCI band combination with the highest correlation was selected for each fertilization
period in different sensitive areas of the spectral index (Table 6). It can be seen that
the combination bands of each SCI are not within the screening range of the spectral
characteristic bands mentioned above, so calculating spectral indices based solely on
characteristic bands cannot fully explore spectral information.

Table 6. Spectral characteristic index of each fertilization period.

Spectral
Characteristic

Index

Fertilization Period

Young Fruiting Swelling Fruit Quality Period Postpartum Period

Band
Combination R Band

Combination R Band
Combination R Band

Combination R

RSI
(R860, R870) 0.84 (R835, R844) 0.80 (R829, R814) 0.78 (R826, R842) 0.89

(R1907, R1941) −0.80 (R1905, R1936) −0.84 (R1902, R1949) −0.80 (R1909, R1926) −0.91
(R2203, R2283) −0.77 (R2210, R2292) −0.82 (R2203, R2216) −0.78 (R2213, R2300) −0.89

DI
(R1907, R1940) −0.80 (R1906, R1935) −0.86 (R1903, R1949) −0.81 (R1909, R1926) −0.91
(R2208, R2285) −0.77 (R2210, R2291) −0.82 (R2215, R2303) −0.79 (R2230, R2267) −0.91

NDSI
(R1907, R1943) 0.83 (R1907, R1937) 0.82 (R1909, R1948) 0.77 (R1910, R1934) 0.92
(R2202, R2283) 0.80 (R2209, R2286) 0.83 (R2163, R2218) 0.78 (R2211, R2285) 0.89

The combination bands of various soil spectral characteristic indices during each fertiliza-
tion period have little interval, and the sensitive areas are mainly concentrated in the range of
800–900 nm, 1900–1950 nm, and 2200–2300 nm bands. Among them, the correlation between
characteristic parameters is higher in the range of 1900–1950 nm. To reduce data redundancy,
only these three regions are used as screening areas for spectral characteristic parameters
in conducting large-scale data analysis during the entire fertilization period.
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3.2.2. Comprehensive Soil SCI during the Entire Fertilization Period

Based on the sensitive areas of SCI during each fertilization period, the screening of
comprehensive soil SCI for the entire fertilization period of the orchard was conducted. A
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band combination with the highest correlation was selected in different sensitive areas of the
spectral indices. The results are shown in Table 7. Correlation coefficient contour analysis
between SCI and TN during the entire fertilization period was performed (Figure 5). It can
be seen that 1904 nm and 1949 nm perform well in both RSI and DI, consistent with the
results of each period, indicating that this band range has advantages in SCI screening.

Table 7. Spectral characteristic index of the entire fertilization period.

Spectral Characteristic Index Band Combination R

RSI
(R808, R810) 0.62

(R1904, R1949) −0.83
(R2221, R2300) −0.72

DI
(R1904, R1949) −0.85
(R2210, R2286) 0.79

NDSI
(R1908, R1954) 0.79
(R2210, R2286) 0.68
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3.3. Estimation Model Based on SCI and Characteristic Band Combination
3.3.1. Independent Estimation Models for Each Fertilization Period

The seven SCIs (three RSIs, three DIs, and two NDSIs) were used together with the
SMLR selected characteristic bands as independent variables, and the soil TN content in
each period was used as the training target. MLR and MEA-BPNN were used for modeling,
respectively. The results are shown in Table 8.



Horticulturae 2024, 10, 358 16 of 23

Table 8. Estimation model for each fertilization period based on spectral characteristic index (SCI)
and characteristic band combination.

Model Multiple Linear Regression Mind Evolutionary Algorithm-BPNN

Sampling
Period

Input
Spectrum

Variables
Number

Modeling Validation Variables
Number

Modeling Validation

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Young
fruiting

(R)′ 15 0.83 0.0037 0.77 0.0064 15 0.89 0.0044 0.88 0.0047
(1/R)′ 17 0.85 0.0036 0.80 0.0058 17 0.88 0.0045 0.85 0.0045

(LogR)′ 18 0.86 0.0035 0.78 0.0062 18 0.91 0.0040 0.88 0.0047
(
√

R)′ 19 0.83 0.0038 0.74 0.0068 19 0.92 0.0038 0.90 0.0040
CR 17 0.87 0.0032 0.81 0.0058 17 0.94 0.0032 0.92 0.0033

Swelling
fruit

(R)′ 15 0.81 0.0041 0.73 0.0056 15 0.93 0.0290 0.92 0.0031
(1/R)′ 17 0.86 0.0035 0.79 0.0050 17 0.92 0.0030 0.91 0.0032

(LogR)′ 18 0.83 0.0038 0.84 0.0043 18 0.93 0.0027 0.91 0.0031
(
√

R)′ 19 0.82 0.0039 0.78 0.0050 19 0.92 0.0031 0.91 0.0031
CR 17 0.86 0.0035 0.85 0.0042 17 0.95 0.0024 0.93 0.0029

Quality
period

(R)′ 15 0.85 0.0031 0.68 0.0069 15 0.87 0.0043 0.85 0.0045
(1/R)′ 17 0.85 0.0031 0.66 0.0071 17 0.90 0.0039 0.88 0.0041

(LogR)′ 18 0.85 0.0030 0.68 0.0068 18 0.88 0.0042 0.85 0.0045
(
√

R)′ 19 0.86 0.0030 0.69 0.0068 19 0.89 0.0040 0.88 0.0040
CR 17 0.88 0.0028 0.71 0.0065 17 0.92 0.0035 0.91 0.0037

Postpartum
period

(R)′ 15 0.82 0.0033 0.82 0.0048 15 0.92 0.0033 0.89 0.0035
(1/R)′ 17 0.83 0.0032 0.81 0.0051 17 0.92 0.0032 0.90 0.0034

(LogR)′ 18 0.83 0.0032 0.82 0.0049 18 0.91 0.0035 0.87 0.0040
(
√

R)′ 19 0.82 0.0034 0.79 0.0052 19 0.90 0.0036 0.87 0.0041
CR 17 0.87 0.0032 0.86 0.0043 17 0.94 0.0027 0.93 0.0033

Overall, regardless of the modeling method, the addition of SCI has improved the
modeling accuracy. Among them, the two models constructed based on CR transformation
have slightly higher modeling and validation accuracy than the other transformation
methods. Therefore, it can be proven that this transformation form has advantages in
spectral processing. Compared with the two modeling methods, the MEA-BPNN model
still maintains its modeling advantages, with better performance in R2 and RMSE than the
MLR model, and some models have modeling accuracy greater than 0.9.

Based on the comprehensive performance of each fertilization period model, the
optimal models were selected based on the CR-MEA-BP method, with R2 of 0.94, 0.95, 0.92,
and 0.94, and RMSE of 0.0032, 0.0024, 0.0035, and 0.0027, respectively. Compared with
MLR, the modeling accuracy increased by 0.068, 0.089, 0.054, and 0.066, respectively, and
the validation accuracy was 0.92, 0.93, 0.91, and 0.93, respectively.

In each fertilization period, the optimized model with SCI correction and its original
model were used to predict soil TN, and the prediction curves of SCI-MEA-BPNN and
MEA-BPNN were obtained for each fertilization period (Figure 6). It can be seen that the
model prediction curve with the addition of SCI is more consistent with the measured value
curve, and the prediction effect is better. The overall trend of the MEA-BP predicted value
curve without SCI input is consistent with the measured value curve, but the degree of
conformity is slightly poor. It has a good prediction effect on samples with gentle changes,
and a large prediction error at extreme points. This demonstrates the positive effect of
adding SCI to the construction of soil TN content prediction models.
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Figure 6. Comparison of measured and estimated values of soil TN content in different models
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3.3.2. Comprehensive Estimation Model for the Entire Fertilization Period

Based on the soil TN content, original spectral reflectance, and various transformation
forms of 400 sample data from 100 sampling points during four fertilization periods in the
modeling area, the SMLR method was used to extract characteristic bands, and together
with the seven extracted SCIs, a unified soil TN estimation model for the orchard’s entire
fertilization period was constructed. And a total of 160 sample data from 40 sampling
points during four fertilization periods in the validation area were used for validation.

The MLR and MEA-BPNN modeling results of the soil TN content based on the
original soil spectrum and its first derivative transformation during the entire fertilization
period of the orchard are shown in Table 9.

Table 9. Estimating and modeling results of soil TN content during the entire fertilization period.

Model
Input

Spectrum
Variables
Number

Modeling Validation Input
Spectrum

Variables
Number

Modeling Validation

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

MLR

R 1 0.35 0.0081 0.23 0.012 R + SCI 8 0.788 0.0045 0.611 0.0079
(R)′ 15 0.814 0.0042 0.793 0.0057 (R)′ + SCI 22 0.829 0.0040 0.798 0.0057

(1/R)′ 7 0.838 0.0039 0.797 0.0057 (1/R)′ + SCI 14 0.853 0.0038 0.804 0.0056
(LogR)′ 12 0.835 0.004 0.796 0.0057 (LogR)′ + SCI 19 0.854 0.0037 0.813 0.0055
(
√

R)′ 14 0.841 0.0039 0.826 0.0053 (
√

R)′ + SCI 21 0.859 0.0035 0.831 0.0049
CR 10 0.823 0.0041 0.812 0.0055 CR + SCI 17 0.838 0.0039 0.828 0.0051

MEA-
BP

(R)′ 15 0.826 0.0052 0.814 0.0054 (R)′ + SCI 22 0.865 0.0044 0.857 0.0045
(1/R)′ 7 0.844 0.0051 0.826 0.0052 (1/R)′ + SCI 14 0.869 0.0042 0.861 0.0045

(LogR)′ 12 0.845 0.004 0.822 0.004 (LogR)′ + SCI 19 0.863 0.0045 0.855 0.0046
(
√

R)′ 14 0.855 0.0039 0.837 0.0051 (
√

R)′ + SCI 21 0.872 0.004 0.867 0.0046
CR 10 0.861 0.0038 0.841 0.0041 (CR)′ + SCI 17 0.899 0.0038 0.890 0.0041
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It can be seen that the addition of SCI has less advantages in the estimation model
of the entire fertilization period than in the small sample size estimation model of each
period. The modeling accuracy of each model based on the first derivative transformation
and the CR transformation after adding the index is relatively small, and the validation
accuracy is not significantly different from before. However, the prediction performance of
the model based on the original spectral reflectance is significantly improved after adding
an index. This indicates that the SCI has a better correction effect on linear models with
fewer variables and lower modeling accuracy.

Unlike the results of soil TN estimation models for different fertilization periods, the
advantage of the CR method in the study of soil TN content MLR models for the entire
fertilization period is not significant, while the modeling effect of (

√
R)′ and (LogR)′ is better.

According to the size of R2, it can be seen that the addition of SCI has a more positive effect
on the MEA-BPNN. For instance, The accuracy of modeling and validation increases more
compared to MLR models. The performance of each spectral transformation is basically
consistent with the results of soil TN content estimation modeling in each fertilization
period. The CR-SCI-MEA-BP model has the best prediction performance, with R2 and
RMSE of 0.899, 0.0038, and 0.89, 0.0041, respectively, in the modeling and validation sets.

4. Discussion

In this article, the extraction method of hyperspectral parameters for TN content in
apple orchard soil was explored and its estimation model was optimized. The results show
that SMLR is effective and has significant advantages in extracting hyperspectral character-
istic bands of soil TN content; moreover, the combination of SCI and characteristic bands,
and the use of the MEA-BPNN method for independent and comprehensive estimation of
soil TN content during each fertilization period and entire fertilization period, have the
best modeling effect.

4.1. Collection and Preprocessing of Hyperspectral Data on TN in Orchard Soil

The soil spectrum is the result of the joint action of various components in the soil,
and the relationship between soil spectral reflectance and various nutrients in the soil is
extremely complex [9,11]. Most apple orchards are located in mountainous and hilly areas,
which are affected by factors such as geography, climate, and soil texture. The soil nitrogen
content is low, the spectral signal is weak, and it is easy to be disturbed or masked, making
it difficult to obtain effective spectral information [31]. For this reason, previous studies
have mostly collected spectra of ground and sieved samples under strictly controlled indoor
conditions, resulting in a higher modeling accuracy of the measured spectra. This approach
is far from orchards and extends the estimation time, which is not suitable for the real-time
management needs of modern orchards [29,32]. However, field measurements are greatly
influenced by the weather and surrounding environmental conditions, which can lead to the
inability to guarantee the accuracy of the model [43]. Especially, modern orchards generally
adopt ecological planting methods such as intercropping or grass planting [44], where light
is often obstructed by fruit trees and other plants, and it is not suitable to directly collect soil
spectra. Therefore, this article adopts the method of manually controlling the surrounding
outdoor environment and using natural sunlight as a light source to collect spectral data. In
this way, spectral collection has taken a step closer from indoors to orchard fields, providing
a beneficial exploration for future spectral collection in complex orchard environments. At
the same time, in order to assist with orchard fertilization management, soil samples were
collected 10 days before the fertilization day. This is beneficial for understanding the soil
nutrient situation after the previous fertilization period and providing guidance for the
next fertilization period.

Performing (1/R), (LogR), (
√

R), and their first derivative transformations on the orig-
inal spectral reflectance R can further reduce the noise effects caused by non-target factors
such as lighting conditions, soil particle size, and air moisture in spectral measurements;
highlight effective information in the spectrum; improve the sensitivity of characteristic



Horticulturae 2024, 10, 358 19 of 23

bands [28]; and explore the optimal spectral transformation form [45]. CR, also known as
envelope division, can effectively enhance the spectral characteristics of the region of inter-
est [46–48]. The results of this study also demonstrated that CR is beneficial for extracting
characteristic spectral information and effectively improving the response ability of spectral
data to soil TN. Through modeling and prediction performance analysis, it was found that
various first-order derivative transformations and CR transformations of reflectance can
improve the prediction accuracy of the corresponding fertilization period estimation model,
which has positive significance for the spectral estimation research of soil TN. However,
the prediction performance of the 1/R, LogR, and

√
R models is not ideal. In addition, the

characteristic bands selected by various transformations are different, and the estimation
models for soil TN content during different fertilization periods also differ.

4.2. Extraction of Characteristic Bands and Selection of SCI

Due to the varying degrees of influence of different spectral bands on the soil TN
content, in order to establish the optimal model, it is necessary to filter out the bands that
have little impact on the soil TN content and leave behind the most suitable characteristic
bands for modeling [11,43,45]. This article compares the screening effects of the correlation
coefficient method and SMLR based on R and its eight transformations.

The results indicate that the correlation coefficient method can determine the char-
acteristic band range of soil TN to some extent, providing a basis for the selection of
characteristic bands. Choosing the band at the extreme point of the correlation coefficient
as the input variable to construct the model has the advantages of simplicity, clarity, and
strong operability. However, the selection of bands located at the extreme points of the
correlation coefficient is subjective and cannot estimate the interrelationships between
bands at the extreme points, thus ultimately failing to achieve ideal model prediction
results [49].

SMLR is a good variable screening method, and a large number of studies have shown
that all independent variables retained after stepwise regression analysis have a significant
impact on the dependent variable [26,50]. In SMLR, this article refers to the correlation
between variables and the variance inflation factor (VIF), and selects variables included
in the equation that pass the 0.05 significance level test and have a maximum variance
inflation factor of no more than 10 as the characteristic bands of soil TN [51]. In this
way, the problem of multicollinearity between bands that are closely spaced within the
same regression equation is avoided, and the modeling effect is improved. The results
of this article indicate that compared with the correlation coefficient method, using the
SMLR method to screen characteristic bands can avoid collinearity issues caused by band
spacing while considering spectral characteristic information [35]. Although the selected
bands are not located at the extreme points of the correlation coefficient, the predictive
performance and stability of the model are slightly better than the previous screening
method. It should be noted that there is a significant difference between the characteristic
bands selected based on SMLR and the corresponding correlation coefficient characteristic
bands during each fertilization period. Except for the characteristic bands transformed
by the first derivative of the original reflectance, the positions of the other transformed
characteristic bands are mostly far apart. It is difficult to screen the same spectral band
for multiple spectral transformations during different fertilization periods. Therefore, this
paper established an estimation model and validated it for evaluation in order to select a
more suitable extraction method for characteristic bands. Compared with the correlation
coefficient method, the model established based on the characteristic bands selected by
the SMLR method can achieve higher modeling accuracy and smaller RMSE under the
same spectral transformation. Moreover, it is easier to select models with a maximum
variance inflation factor of less than 10, thus avoiding the influence of multicollinearity of
model variables.

It can be seen that regardless of which characteristic band selection method is used,
the modeling effect of the MEA-BPNN is superior to the MLR method, and the modeling
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accuracy has been improved, but the RMSE of some models has only slightly improved.
The SMLR method performs better in screening sensitive bands and exhibits greater ad-
vantages. It has good practicality in constructing and predicting both linear and nonlinear
models. Therefore, in the study of spectral estimation of soil TN content during the entire
fertilization period, this article did not further construct a sensitive band model based on
correlation analysis. Instead, the significant bands selected by SMLR and the SCI selected
were mainly used as input spectra for the study.

In terms of SCI, research on models in different periods has found that the addition of
SCI has a positive effect on the prediction accuracy of various types of models [36]. Overall,
the addition of SCI can improve the prediction accuracy of the model, reduce RMSE, and
make the estimation model more stable [37]. Therefore, this article determines the strategy
for modeling using the combination of SCI and characteristic bands.

4.3. About Modeling Methods

Regression analysis is a common statistical analysis method used to determine the
quantitative relationship between two or more variables [52] and is widely used in the
quantitative estimation of soil nutrients [53].

The results of this article show that the modeling effect of univariate regression is not
satisfactory. This indicates that even if a certain band has a high correlation with soil TN, it
cannot cover all the effective information. Relying solely on a single band for the spectral
estimation of soil TN in apple orchards is not ideal. However, simple univariate regression
models can still be used to evaluate the significance and value of various transformations
in extracting effective spectral information.

The use of MLR for the quantitative estimation of soil TN content is simple. Compared
to univariate regression models, the MLR models have higher modeling accuracy [50].
When there is a strong linear relationship between soil TN and characteristic bands, the
modeling effect is better, but the selection of characteristic bands requires higher require-
ments. There should be no strong collinearity between bands, and the number of bands
should not exceed the number of modeling samples. This can be solved by the SMLR filter-
ing of characteristic bands [33]. Overall, the linear regression model is relatively simple,
computationally small, and has strong operability. The predictive effect of the model is
acceptable, and it can achieve a rough prediction of soil TN content in the orchard.

The BP neural network can handle nonlinear relationships between variables well and
has great advantages in the spectral prediction of soil physical and chemical properties [54–56].
The MEA overcomes the shortcomings of EC such as premature convergence and slow
convergence speed [42], solves complex combinatorial optimization problems, and facil-
itates the search for global optimal solutions, ultimately minimizing the error between
the predicted and expected values. The modeling results of this article indicate that the
model based on MEA-BPNN has higher accuracy and stability and can more accurately
estimate soil TN content. The disadvantage is that the model is relatively complex and
computationally intensive. This can utilize computers to achieve automated calculations
and improve the practicality of the model. Among the estimation models for each fertiliza-
tion period and the entire fertilization period, the model based on CR-SCI-MEA-BPNN has
the best prediction performance. It should be pointed out that there are currently not many
studies on the hyperspectral inversion of total nitrogen in apple orchard soil, especially for
different fertilization periods, which have not been reported yet [25,26,30]. Our research
was conducted in a relatively small apple orchard in Shandong Province; due to differences
in natural conditions and management practices among orchards in different regions, this
may limit the generalizability of research results to other regions or orchards with different
soil and climate conditions. Therefore, in the future, research on the application of orchards
in different regions, climates, and soil conditions should be carried out.
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5. Conclusions

This article collected the soil spectral reflectance of apple orchards during different
fertilization periods. The original spectral reflectance (R) and its eight transformations,
including (1/R), (LogR), (

√
R) and their first derivative transformation, as well as CR, were

used to extract the characteristic bands of soil TN using the correlation coefficient method
and SMLR. The best characteristic band extraction method was selected by comparing and
analyzing the modeling effects of linear regression and the MEA-BPNN method. Band
by band analysis techniques and correlation analysis methods were used to select the SCI
suitable for soil TN. Based on the selected SCI and characteristic band combinations, MLR
and MEA-BPNN were used to construct and optimize independent and comprehensive
soil TN content estimation models for each fertilization period and the entire fertilization
period, respectively.

The results indicate that SMLR is effective and has significant advantages in extracting
hyperspectral characteristic bands of soil TN content. Compared with the correlation
coefficient method, under the same spectral transformation, the model based on SMLR
filtering for characteristic bands can achieve a higher modeling accuracy and smaller RMSE.
Moreover, it is easier to select models with a maximum VIF of less than 10 to avoid the
influence of multicollinearity of model variables.

The sensitive areas of soil TN content in the SCI do not undergo significant changes
due to different fertilization periods. Among them, the RSIs are in the range of 800–900 nm,
1900–1950 nm, and 2200–2300 nm, while the sensitive areas of the DI and NDSI are in the
range of 1900–1950 nm and 2200–2300 nm.

The addition of SCI and characteristic band combination significantly improves the
prediction accuracy of soil TN model. The independent and comprehensive soil TN content
estimation models for each fertilization period based on MEA-BPNN can achieve stable
and accurate soil TN estimation. Among the estimation models for each fertilization period
and the entire fertilization period, the model based on CR-SCI-MEA-BPNN has the best
prediction performance.
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