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Abstract: Mutagenesis is an important tool for breeding and genomic research. In this study, the
germinated seeds and isolated microspores of a double haploid line ‘FT’ were treated with EMS,
respectively, with the aim of comparing the effects of the two approaches on generating mutants
in Chinese cabbage. For microspore EMS mutagenesis, the isolated microspores were treated with
0.12% EMS for 20 min, a total of 1268 plantlets were obtained, and 15 M1 mutants were screened
with a mutation frequency of 1.2%. For seed EMS mutagenesis, 7800 germinated seeds were treated
with 0.8% EMS for 12 h, and a total of 701 M2 mutants were screened, with a mutation frequency
of 18.78%. In total, 716 mutants with heritable morphological variation including leaf color, leaf
shape, leafy head, bolting, and fertility, were obtained from the EMS mutagenesis experiments.
Homozygous mutant plants could be screened from M1 lines by microspore mutagenesis, and
M2 lines by seed mutagenesis. The mutation frequency was higher in seed mutagenesis than in
microspore mutagenesis. Based on these results, we propose that seed EMS mutagenesis is more
suitable to generate a large-scale mutant library, and the microspore EMS mutagenesis is conducive
to rapidly obtaining homozygous mutants.

Keywords: Chinese cabbage; EMS; mutagenesis; isolated microspore culture; mutants

1. Introduction

Plant mutants are ideal materials for discovering new genes and revealing their func-
tions, which are widely used in functional genomics researches [1–6]. Plant mutant libraries
are typically constructed by artificial mutagenesis, including chemical mutagenesis [7,8],
physical mutagenesis [9,10], and insertion mutagenesis [11–13]. Ethyl methanesulfonate
(EMS) is a widely used chemical mutagenic agent [14,15]. EMS mutagenesis has various ad-
vantages over other methods, including high mutation rates, low chromosomal aberrations,
simple operation, and no requirement for genetic transformation [16].

EMS mutagenesis has been applied to construct the mutant libraries in a wide range
of crops, such as rice [17,18], Arabidopsis thaliana [7,19], wheat [20–23], tomato [24,25],
soybean [26–29], maize [30], peanut [31], and Brassica napus [32,33]. Regarding EMS muta-
genesis of Chinese cabbage (Brassica rapa L. ssp. pekinensis), there are two approaches, seed
and microspore mutagenesis. For seed mutagenesis, Lu et al. [34] treated an inbred line
‘A03’ seeds with 0.4% EMS for 16 h and constructed a mutant library, containing 4253 M1
families. For microspore mutagenesis, Lu et al. [35] mutagenized the buds with different
concentrations of EMS solution, and the isolated microspore culture was conducted where
a total of 142 mutants were identified. Huang et al. [36] treated the microspores of a

Horticulturae 2022, 8, 232. https://doi.org/10.3390/horticulturae8030232 https://www.mdpi.com/journal/horticulturae

https://doi.org/10.3390/horticulturae8030232
https://doi.org/10.3390/horticulturae8030232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com
https://doi.org/10.3390/horticulturae8030232
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com/article/10.3390/horticulturae8030232?type=check_update&version=1


Horticulturae 2022, 8, 232 2 of 11

double haploid (DH) line ‘FT’ with different concentrations of EMS solution, and then the
microspores were cultured. A total of six stably inherited mutants were obtained, with
a mutation rate of 0.46%. The concentration of the solution, duration of action, and the
starting material (seeds, bulbs, embryos, tissues, pollen, etc.) used for mutagenesis all
affected the efficiency of mutagenesis. The varieties of Chinese cabbage used in the above
studies were different, so it could not provide a basis for us to accurately compare the
mutagenesis efficiency.

The objective of this study was to compare the effects of these two approaches. Seed
EMS mutagenesis and microspore EMS mutagenesis were applied to create mutants in
a Chinese cabbage DH line ‘FT’, which was used as the mutagenic material. Our results
not only provide valuable germplasm resources for Chinese cabbage but also guide future
work involving the generation of mutants.

2. Materials and Methods
2.1. Plant Materials

The DH line ‘FT’ derived from the Chinese cabbage variety ‘Fukuda 50’ was used as
the experimental material. This variety is characterized by heat resistance, early maturity,
white flowers, folded green leaves, and an ovoid leafy head (Figure 1).
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Figure 1. Wild-type ‘FT’ plant. (a) floral organ; (b) leafy head.

2.2. Microspore EMS Mutagenesis

A total of 50 germinated ‘FT’ seeds were vernalized at 4 ◦C for 15 days and sown in
trays in a greenhouse (15 ◦C–26 ◦C) at Shenyang Agricultural University from September
to December 2016. Four hundred and fifty unopened flower buds containing late unin-
ucleate spores were selected for isolated microspore culture, following the methods of
Zhang et al. [37]. The isolated microspores were treated with EMS solutions of 0.12% for
20 min. Based on the previous research of Huang et al. [36], we set up a pre-experiment.
EMS concentration of 0.12% and 0.16%, which were treated for 10 min, 15 min and 20 min,
respectively, and the embryo rate was calculated. Finally, the EMS concentration was
determined to be 0.12%, and the treatment for 20 min was a semi-lethal dose, which was
conducive to the creation of mutants.

The ploidy levels of the regenerated plants from the microspore culture were checked
using a FACSCalibur Flow Cytometer (BD Biosciences, San Jose, CA, USA). Flow cytometry
was performed according to the methods of Huang et al. [36].

2.3. Seed EMS Mutagenesis

In total, 7800 ‘FT’ seeds were germinated at 25 ◦C for 12 h. The germinated seeds
were immersed in 0.8% EMS and placed in a 50-turn shaker for 12 h. The treated seeds
were then thoroughly washed in flowing water for 12 h and sown in trays in a greenhouse
(12–26 ◦C) in December 2017. The live plants (M0) were self-pollinated, and the M1 seeds
were harvested.
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3. Results
3.1. Microspore EMS Mutagenesis

In total, we obtained 1339 embryoids after EMS mutagenesis treatment and 1268 regenerated
plants (M0 plants) after rooting culture. Regenerated plants were divided into haploids,
diploids, and tetraploids (Figure 2). Among them, a total of 1034 DH plants were obtained
to further identify the mutants.
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In M0 generation, a total of 30 DH plants exhibited mutant phenotypes, including leaf
shape, leaf color, leafy head, and fertility mutants (Table 1). In the M1 generation, a total of
15 mutants were identified, and the mutation frequency was 1.2% (Table 2).

Table 1. Characterization of mutation types in M0 plants of Chinese cabbage (microspore
EMS mutagenesis).

Trait Variant
Characteristics

No. of Mutant
Plants (M0)

Mutation
Frequency (%)

Leaf shape Crinkled leaf 4 0.32

Leaf color
Leaf etiolation 5 0.40

Partial leaf etiolation 5 0.40

Leafy head
Small leafy head 6 0.48

Vertical leafy head 7 0.56
Non-heading 2 0.16

Fertility Male sterile 1 0.08

Total 30 2.40

Table 2. Characterization of mutation types in M1 plants of Chinese cabbage (microspore
EMS mutagenesis).

Trait Variant
Characteristics

No. of Mutant
Plants (M1)

Mutation
Frequency (%)

Leaf shape Crinkled leaf 2 0.16

Leaf color
Leaf etiolation 4 0.32

Partial leaf etiolation 4 0.32

Leafy head Small leafy head 3 0.24
Vertical leafy head 2 0.16

Total 15 1.20

Mutants were mainly classified as leaf traits (leaf color and leaf shape) and leafy head
mutants. A total of 10 leaf trait mutants were detected in the M1 generation. The mutation
frequency was 0.8%. Leaf color is the main type of leaf trait mutation, such as complete leaf
etiolation (Figure 3a right) and partial leaf etiolation (Figure 3b,c right). In addition, two leaf
shape mutants were detected. Compared to wild-type ‘FT’ plants, these two crinkled leaf
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mutants (Figure 4a,b right) both exhibited the crinkled leave characteristics, and one of
them developed slowly at all stages.
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head mutants (Figure 5c right) were identified.
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3.2. Seed EMS Mutagenesis

A total of 7800 seeds were treated with EMS solution, 4920 seeds germinated, and
3990 plants survived in the M0 generation. After self-pollination, the seeds (M1 generation)
of 3731 lines were harvested. The germination rate and seedling survival rate were 63.1%
and 51.2%, respectively.

Among 3731 M1 lines, 1121 lines exhibited mutant phenotypes as compared to the wild-
type ‘FT’ phenotype, and the mutation rate was 30.04% (Table 3). We obtained 701 stably
inherited mutations in the M2 generation, indicating an 18.78% mutation frequency (Table 4).
The mutants with variation in multiple traits were also screened, including those with
chlorophyll-deficient and flat leaves, and chlorophyll-deficient and crinkled leaves. The
major types of mutants were leaf color, leaf shape, leafy head, bolting, and fertility traits.
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Table 3. Characterization of mutation types in M1 plants of Chinese cabbage (seed EMS mutagenesis).

Trait Variant Characteristics No. of Mutant Lines (M1) Mutation Frequency (%)

Leaf color

Leaf etiolation 386 10.34
Partial leaf etiolation 73 1.95
Leaf gloss variation 15 0.40

Dark-green leaf 15 0.40
Light-green leaf 10 0.26

Anthocyanin accumulation 15 0.4
Stay-green leaf 23 0.62

Leaf shape

Crinkled leaf 189 5.06
Leaf thickness variation 12 0.32
Petiole length variation 22 0.59

No mesophyll 7 0.19
Leaf margin variation 22 0.59

Cracked leaf 16 0.43
Slender leaf 17 0.46

Leaf senescence 16 0.43
Entire leaf 20 0.54

Abnormal leaf 36 0.96

Leafy head

Non-heading 61 1.63
Vertical leafy head 32 0.86

Earlier leafy head formation 5 0.13
Later leafy head formation 4 0.11

Small leafy head 13 0.34
Large leafy head 3 0.08

Abnormal leafy head 4 0.11

Bolting Early bolting 44 1.18

Fertility Male sterile 58 1.55
Female sterile 3 0.08

Total 1121 30.04

Table 4. Characterization of mutation types in the M2 plants of Chinese cabbage (seed EMS mutagenesis).

Trait Variant Characteristics No. of Mutants (M2) Mutation Frequency (%)

Leaf color

Leaf etiolation 221 5.92
Partial leaf etiolation 65 1.74
Leaf gloss variation 8 0.21

Dark-green leaf 8 0.21
Light-green leaf 5 0.13

Anthocyanin accumulation 8 0.21
Stay-green leaf 8 0.21

Leaf shape

Crinkled leaf 143 3.83
Leaf thickness variation 9 0.24
Petiole length variation 18 0.48

No mesophyll 2 0.05
Leaf margin variation 18 0.48

Leaf crack 10 0.26
Slender leaf 10 0.26

Leaf senescence 10 0.26
Entire leaf 12 0.32

Abnormal leaf 18 0.48
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Table 4. Cont.

Trait Variant Characteristics No. of Mutants (M2) Mutation Frequency (%)

Leafy head

Non-heading 46 1.23
Vertical leafy head 20 0.54

Earlier leafy head formation 3 0.08
Later leafy head formation 3 0.08

Small leafy head 7 0.18
Large leafy head 2 0.05

Abnormal leafy head 4 0.11

Bolting Early bolting 16 0.43

Fertility Male sterile 25 0.67
Female sterile 2 0.05

Total 701 18.78

In total, 8.65% of mutations affected leaf color, which was the most frequent mutation
type. Among the leaf color mutations, leaf etiolation was most common, including complete
leaf etiolation (Figure 6a–c right) and partial leaf etiolation (Figure 6d–f right).
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A total of 250 leaf shape mutants were obtained in the M2 generation. The mutation
frequency was 6.7%. The mutations included changes in leaf margin (Figure 7a,b right),
mesophyll (Figure 7c right), and crimp degree (Figure 7d–f right). The no mesophyll
mutants were rare, and their leaves were twisted into strips (Figure 7c right).

The leafy head of wild-type ‘FT’ was ovoid, and the heading leaves were folded and
shriveled. A total of 85 leafy head mutants were verified in the M2 generation, and the
mutation frequency was 2.27%. Forty-six non-heading mutants were identified (Figure 8).
Twenty vertical leafy head mutants were observed at a frequency of 0.54%.

A total of 16 early-bolting mutants were observed (Figure 9 right), and the flowering
time was about 25 days earlier than the wild-type ‘FT’ plants.
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The frequency of fertility mutations was 0.72%, including male-sterile mutant (Figure 10)
and female-sterile mutant (Figure 11). The stamens of male-sterile mutants completely
degenerated without pollen. The female-sterile mutants showed pistil abortion and smaller
floral organs.
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3.3. Comparison of the Two Mutagenesis Approaches

As shown in Table 5, for the EMS mutagenesis of seeds, 701 stably inherited mutations
were screened in the M2 generation, with a mutation frequency of 18.78%. For the EMS
mutagenesis of microspores, 15 stably inherited mutations were screened from the M1
generation, with a 1.2% mutation frequency.

Table 5. Comparison of two mutagenesis approaches.

Mutagenesis Approach No. of Mutants Mutation Frequency (%) Homozygous Generation Technical Operation

Seed mutagenesis 701 18.78 M2 Easy
Microspore mutagenesis 15 1.2 M1 Complicated

4. Discussion

Mutants are important for the investigation of gene function in crop plants. Wang et al. [18]
obtained zebra-15 mutants from the restorer line Jinhui10 (Oryza sativa L. ssp. indica)
by treatment with EMS for studies of chlorophyll. Ansari et al. [22] treated the seeds
of diploid wheat Triticum monococcum with 0.25% EMS to obtain brittle culm mutants
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(brc1, brc2, and brc3), therefore the cloning of mutant genes could contribute to wheat
improvements. Li et al. [29] constructed a mutant library by treating 80,000 seeds of
the soybean Glycine max cv. Zhongpin661 (Zp661) with 50 mmol/L EMS for 9 h and
identified a yellow pigmentation mutant (gyl) with a significantly decreased chlorophyll
(Chl) content and abnormal chloroplast development. Similarly, the construction of a
Chinese cabbage mutant library by EMS mutagenesis has important implications for
studies of the functional genome.

The precise mutagenesis materials and methods are crucial for the successful construc-
tion of a mutant library. Inbred lines have been usually used as mutagenesis materials
in Brassica crops [34,38–40]. In this study, a Chinese cabbage DH line was employed as
the mutagenesis material to create a mutant library. The genetic background of the DH
line was homozygous, which was a benefit to screen the mutants. Moreover, the genetic
background was highly consistent between the wild-type and the mutants, and the genetic
differences only occurred at the mutation sites, which was helpful to further study the
functional genomics in Chinese cabbage.

Various methods for EMS mutagenesis are used to create Chinese cabbage mutants
and the treatment of microspores and seeds are the most common approaches. In a
comparative analysis of these two methods, we found that the mutation rate was higher
for seed mutagenesis. We could easily obtain a substantial number of mutants in a small-
scale mutagenesis experiment. Wang et al. [32] treated seeds of a Brassica napus L. cv.
Ningyou7 DH line with 0.6% EMS for 18 h and obtained 1652 mutants from 7110 plants
(mutation frequency, 23.23%). Zhang et al. [33] treated seeds of NJ7982 (Brassica napus L.)
with 0.4% EMS for 12 h and obtained a large number of mutants in the M2 generation,
with a mutation rate of 18.51%. Lu et al. [34] treated 12,000 seeds of the Chinese cabbage
inbred line ‘A03’ with 0.4% EMS for 16 h and obtained various types of mutants in the
M2 generation at a frequency of 37.62%. In our experiment, 701 mutants were obtained
by the treatment of 7800 seeds with 0.8% EMS. The mutants exhibited altered leaf color,
leaf shape, leafy head, bolting, and fertility. The potential breeding value of the mutants
was revealed, such as stay-green mutants, male-sterile mutants, non-heading mutants and
bolting mutants, which have important significance for the improvement of these traits.
Seed mutagenesis is simple and easy to implement. The mutant rate was satisfactory, but
stably inherited mutations could only be screened in the M2 generation. Therefore, seed
mutagenesis was more suitable for large-scale functional genomics, genetic diversity, and
the innovation of germplasm resources.

Microspore mutagenesis is a rapid approach for creating the homozygous mutants,
which can be screened in M1 generation and can accelerate the functional genomic studies.
Huang et al. [36] treated microspores of the Chinese cabbage DH line ‘FT’ with 0.04%, 0.08%,
and 0.12% EMS for 10 min and obtained six mutants from among 1304 regenerated plants
in the M1 generation (mutation rate, 0.46%). In our experiment, isolated microspores were
treated with 0.12% EMS for 20 min, yielding 15 stably inherited mutations in regenerated
plants, with a mutation frequency of 1.2%. Microspore mutagenesis had a lower mutation
rate, and it relied on the mature isolated microspore culture system. We speculated that the
lower mutation rate might be due to the majority of mutant microspores with the inability
to form embryoids.

In both mutagenesis methods, a large number of variant features, such as male sterility,
early-bolting, and leaf etiolation, cannot be stably inherited. We speculated that these
variations might be related to environmental conditions or physiological injury, and similar
results have been reported in our previous research [36]. In addition, it is possible that
some EMS-induced mutations were unstable and may recover its original genotype in
some cases.

In conclusion, we compared and analyzed the EMS mutagenesis efficiency between
two different approaches. In total, we obtained 716 mutants by EMS mutagenesis of seeds
and microspores, and the mutation frequency was lower using microspores of Chinese
cabbage (1.2%) than using seeds (18.78%). Based on our results, we propose that seeds of
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DH lines or other homozygous strains are more suitable for EMS mutagenesis to generate a
large-scale mutant library, and microspores are conducive to rapidly obtain homozygous
mutants. In addition, these mutants could be used to investigate gene function by gene
mapping and cloning, and further reveal the molecular mechanism underlying important
traits. The Chinese cabbage mutants derived in this study also provide new germplasm
resources for genetic studies and breeding.
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