
Citation: Mei, Y.; Liu, Z.; Zheng, J.;

Wang, W.; Zu, Y.; Wu, Y.; Zhang, L.;

Feng, R.; Shen, F. Genome-Wide

Identification and Expression Pattern

Analysis of the TCP Gene Family in

Radish (Raphanus sativus L.).

Horticulturae 2022, 8, 656.

https://doi.org/10.3390/

horticulturae8070656

Academic Editor: Young-Doo Park

Received: 1 July 2022

Accepted: 16 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Genome-Wide Identification and Expression Pattern Analysis of
the TCP Gene Family in Radish (Raphanus sativus L.)
Yi Mei, Zhe Liu, Jiaqiu Zheng, Weiwei Wang, Yanxia Zu, Yongcheng Wu, Lina Zhang, Ruchao Feng
and Feng Shen *

Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China; yanchengjiajia@163.com (Y.M.);
zhe696@126.com (Z.L.); nky8236@163.com (J.Z.); biluoweiwei@163.com (W.W.); yxzu2000@163.com (Y.Z.);
ycwyc75206@126.com (Y.W.); linayhs@163.com (L.Z.); frc17826256671@163.com (R.F.)
* Correspondence: shenfengycnky@163.com

Abstract: TCP transcription factors are a unique transcription family in higher plants, and play
important roles in plant development, responses to environmental stresses and phytohormones.
Radish is an important crop and widely cultivated worldwide. However, genome-wide identification
and expression analysis of TCP family in radish has not been reported yet. In this study, 32 RsTCP
genes were identified from the whole genome. Phylogenetic analysis showed that the RsTCP
family can be divided into two major groups and three subgroups, namely Class I (PCF), Class
II (CIN), and Class II (CYC/TB1). Chromosome mapping showed that 32 genes were distributed
on all nine chromosomes of radish. Transcriptome data indicated that the transcription of RsTCP
genes differed between tissues and developmental stages. Multiple phytohormone-related cis-acting
elements in the promoter region of RsTCPs and several post-translational modification sites in RsTCP
protein sequences were identified. The real-time quantitative PCR (RT-qPCR) analysis indicated that
several RsTCP genes changed significantly in response to the treatments, including low temperature,
drought, salt, gibberellin (GA3), and abscisic acid. Among them, RsTCP16 showed significantly
higher levels in leaves than in other radish tissues, and the transcription of RsTCP16 was significantly
upregulated under the five treatments, especially during low temperature, salt shock, and GA3

response, suggesting that RsTCP16 could be involved in the development of radish leaves and the
response to stress. In summary, these results provided a basis for further exploring the molecular
mechanism of RsTCP genes in radish.

Keywords: radish; TCP gene family; genome-wide analysis; expression profiling

1. Introduction

Plant transcription factors play key roles in regulating the initiation of transcription of
specific genes, which are crucial for development and responses to environmental changes
in plants [1,2]. TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FAC-
TOR1 (TCP) transcription factors are a unique family in higher plants, because they are
only detected in plants and are involved in physiological processes, including cell differen-
tiation, seed germination, flowering, and phytohormone response in higher plants [3–6].
TCP is named using the acronyms of the three isolated members, including TEOSINTE
BRANCHED 1 (TB1) in Zea mays, CYCLOIDEA (CYC) in Antirrhinum majus, PROLIFERAT-
ING CELL FACTORS 1 and 2 (PCF1 and PCF2) in Oryza sativa [7]. With the completion of
genome sequencing of plant species, many TCP transcription factors have been identified
and analyzed in recent decades. Up to date, a total of 24, 30, 27, 23, 39, 75, 21, and 27 TCP
members have been identified in Arabidopsis thaliana [8], Solanum lycopersicum [9], Citrullus
lanatus [10], Phalaenopsis equestris [11], Brassica rapa ssp. rapa [12], Gossypium barbadense [13],
Oryza sativa [14], and Cucumis sativus [15], respectively.

There is a conserved TCP domain that is important for DNA binding existing in TCP
transcription factors. Although the TCP domain has a N-terminal basic helix–loop–helix
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(bHLH) structure, there are significant differences between the TCP and bHLH transcription
factors [7]. Based on homology analysis of amino acid sequences of the conserved TCP
domain, TCP transcription factors can be classified into two classes, namely Class I (PCF
or TCP-P) and Class II (TCP-C) [8]. Distinctly different from the Class I, which contains
a non-canonical bHLH motif, the Class II has four more amino acids in the conserved
domain [7,16,17]. In addition, Class II members can be further subdivided into CIN and
CYC/TB1 branches based on the sequence differences in the TCP domain [18,19].

Previous studies revealed that the TCP transcription factors play important roles in
plant growth, development, and responses to biotic and abiotic stresses in A. thaliana [20].
For example, AtTCP4 regulates jasmonic acid (JA) biosynthesis through interaction with
the JGB gene, which mediates the pollen germination and gametophyte development [21].
MPK8 can interact with AtTCP14 in the nucleus and phosphorylate AtTCP14 outside
the nucleus, promoting seed germination [3]. The TCP transcription factors (Class II)
can be used in combination with the FLOWERING LOCUS T (FT)-FD complex, which
further acts on the AP1 promoter and actively regulates flowering [4]. TCP transcription
factors inhibit the formation of cotyledon epidermal hair by inhibiting the activation of
the MYB–bHLH–WD40 (MBW) complex at both transcription and protein levels [5]. In
addition, TCP transcription factors are regulated by auxin, gibberellin, brassinolide, and
other hormones in A. thaliana [6,22,23]. Under adverse environments, TCP transcription
factors function in plant resistance and adaptation. For example, TCP20 acts as an activator
of nitrate assimilatory genes and promotes the expression of these genes under the nitrogen
starvation condition in A. thaliana [24]. In response to cold stress, overexpression of DgTCP1
improved the cold tolerance of chrysanthemum, while the DgTCP1 editing line showed
decreased survival ratio under cold stress [25]. OsPCF2 has been proved to promote
resistance to salt and drought stress in rice by activating the expression of the OsNHX1
gene [26]. Overall, these results demonstrate a broad spectrum of TCP functions in plant
growth and environmental adaptation.

Radish (Raphanus sativus L) is an important root vegetable crop [27], and the whole
genome sequence of radish has been published [28]. Up to date, genome-wide identification
of the TCP gene family has been performed in several species, but not in radish. In this study,
32 RsTCP genes were identified in the radish genome, and the gene structure, conserved
motif, phylogenetic and evolutionary relationship were analyzed. The expression pattern
of RsTCP genes was further detected in different tissues, developmental stages, and stress
conditions. Overall, these results preliminarily revealed the sequence information and
potential biological functions of RsTCP transcription factors in radish, contributing basic
information for further exploration of the molecular mechanisms underlying radish growth
and responses to environmental stresses.

2. Materials and Methods
2.1. Plant Material and Treatments

The radish variety ‘YC-FH1’ was used to test the changes in RsTCP family expression
in response to low temperature, saline and drought shock, as well as to treatments with
abscisic acid (ABA) and gibberellin. Radish seeds were disinfected with 5% NaClO solution
for 10 min, rinsed with distilled water, and germinated at 25 ◦C in the dark. Next, the
germinated seeds were cultivated in nursery culture pots containing sterilized culture
substrate. The photoperiod was 16 h/8 h (light/dark) and the temperature was 25 ◦C
at day time and 16 ◦C at night. When the fourth or fifth true leaf appeared, healthy
seedlings were randomly subjected to treatments with shocks and phytohormones. For
low temperature shock, the culture temperature was adjusted to 4 ◦C [29]. In response
to salt shock, 250 mM extra NaCl was added in the culture media [30]. Drought shock
was simulated by incorporating 15% PEG6000 in the culture media [31]. For tests of
phytohormones, 100 µM ABA solution [32] and 100 µM GA3 [33] were sprayed on leaves,
independently. All treatments were repeated three times, and at least nine seedlings were
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used for each treatment. The samples were collected after each treatment and immediately
frozen in liquid nitrogen and stored at −80 ◦C for RNA isolation.

2.2. Identification of RsTCP Genes in Radish Genome

The conserved domain of TCP proteins (http://pfam.xfam.org/family/PF03634; ac-
cessed on 13 March 2020) was used as the probe to search RsTCP sequences in the Radish
Genome Database (http://radish-genome.org/; accessed on 15 May 2020) using the
Hidden Markov Model (HMM) with the e-value set to 0.01 [28,34]. Sequences of can-
didate RsTCP genes were further queried against the SMART (http://smart.embl.de/;
accessed on 15 May 2020) [35,36] and InterProScan (https://www.ebi.ac.uk/interpro/;
accessed on 15 May 2020) databases to verify the reliability of the results [37]. The se-
quences of AtTCP genes were downloaded from the A. thaliana Information Resource
(TAIR, https://www.arabidopsis.org/; accessed on 15 May 2020), and the sequences of
OsTCP genes were downloaded from the Rice Genome Annotation Project (RAP) database
(http://rice.plantbiology.msu.edu/index.shtml; accessed on 25 April 2022).

2.3. Protein Properties and Phylogeny Analysis

The characteristics of RsTCP proteins, including the number of amino acids (AA),
theoretical molecular weight (MW), instability index (II), and isoelectric point (pI), were
analyzed through the online ProtParam program (https://web.expasy.org/protparam/;
accessed on 3 April 2021) [38]. The Online ScanProsite tool (https://prosite.expasy.org/
scanprosite/; accessed on 2 September 2020) was used to analyze the post-translational
modification sites of RsTCP proteins [39]. An un-rooted phylogenetic tree of 32 predicted
RsTCP proteins, 24 reported AtTCP proteins, and 26 reported OsTCP proteins were gen-
erated subsequently using MEGA X software with: 1000 bootstrap replicates (Test of
phylogeny), p-distance (Model/Method), and pairwise deletion (Gaps/Missing Data treat-
ment) [36,40]. Evolview (http://www.evolgenius.info/evolview/; accessed on 25 April
2022) was used to visualize the un-rooted phylogenetic tree [41].

2.4. Gene Structure, Conserved Motifs, and Cis-Element Analyses

According to the genome sequences and coding sequences (CDS) of the RsTCP gene
family, the structure of RsTCPs were analyzed using TBtools [42]. The conservative motif
analysis of RsTCP genes was performed using the MEME program. The maximum number
of motifs was set to 10 and the optimal motif width was set to 6–50 bp [43]. The on-
line software PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/;
accessed on 3 July 2020) was used to investigate the cis-elements of the RsTCP genes [44].

2.5. Synteny Analysis, Chromosomal Localization, and Prediction of rsa-miR319 Target Genes

Collinearity analysis was performed according to methods described in the PlantDGD
(http://pdgd.njau.edu.cn:8080/; accessed on 11 August 2020) [45]. The collinearity block
in RsTCP genes was identified based on duplication events using MCScanX [46], and then
Circos was used to integrate and plot the data [47]. Based on the distribution information of
the putative RsTCP genes from the radish genome, the location of RsTCPs on chromosomes
was identified using TBtools software [42]. Finally, psRNATarget (http://plantgrn.noble.
org/psRNATarget/; accessed on 27 August 2020) was used to identify rsa-miR319 target
genes.

2.6. Transcription Analysis of RsTCP Genes

Illumina RNA sequencing data of radish leaf, root tip, cambium, cortex, and xylem
tissues at six developmental stages (7, 14, 20, 40, 60, and 90 d) were downloaded from
the NODAI Genome [48]. Afterwards, the transcription levels of each RsTCP gene were
compared by calculating the reads per kilobase of transcript per million mapped reads
(RPKM) as described in Mitsui et al. [48] and the heat map was generated using TBtools [42].

http://pfam.xfam.org/family/PF03634
http://radish-genome.org/
http://smart.embl.de/
https://www.ebi.ac.uk/interpro/
https://www.arabidopsis.org/
http://rice.plantbiology.msu.edu/index.shtml
https://web.expasy.org/protparam/
https://prosite.expasy.org/scanprosite/
https://prosite.expasy.org/scanprosite/
http://www.evolgenius.info/evolview/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://pdgd.njau.edu.cn:8080/
http://plantgrn.noble.org/psRNATarget/
http://plantgrn.noble.org/psRNATarget/
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2.7. RNA Extraction and RT-qPCR Analysis

Total RNA of all samples was extracted using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) in accordance with the manufacturer’s instruction, and the isolated RNA was
subsequently treated with RNase-Free DNase I (Takara, Dalian, China). Total RNA was
reverse-transcribed into cDNA using a first-strand cDNA synthesis kit (Bioer, Hangzhou,
China). Specific primers (Table S1) for RsTCP genes were designed using Beacon Designer
7.7 (Premier Biosoft International, Palo Alto, CA, USA), and the SYBR Green RT-qPCR mix
(Bioer, Hangzhou, China) was used for RT-qPCR assays on a LightCycler 480 Instrument
(Roche, Mannheim, Germany). In addition, the RsActin gene was used as the internal
control. At least three biological replicates were tested for each treatment, and three
technical replicates were run for each reaction. The relative expression levels of each gene
were calculated using the 2−∆∆CT method [49]. The data used for expression profile analysis
comprised the mean of three biological replicates, and the standard errors of the mean were
calculated on the basis of the technical replicated data.

3. Results
3.1. Identification and Classification of RsTCP Members in Radish

In order to obtain the candidate TCP members in radish, the TCP domain (PF03634)
was used to search against protein sequences of the radish genome. A total of 32 RsTCP
members were identified from the radish genome and were named from RsTCP01 to
RsTCP32 based on their positions on the chromosomes. Each RsTCP protein contained
109 to 460 amino acids, and their molecular weight ranged from 12.25 to 44.47 kDa. The
theoretical pI ranged from 5.85 to 9.99, with a mean of 7.71, suggesting that most of RsTCPs
were weakly alkaline (Table S2). The instability index of each protein ranged from 37.56
to 71.34. Among them, only one RsTCP showed an instability index less than 40.00, and
thus this protein was predicted as a stable protein. The other 31 RsTCPs were structurally
unstable. The aliphatic index ranged from 50.93 to 69.82, indicating that most RsTCPs
contain a large number of aliphatic amino acids. The grand average of the hydropathy
(GRAVY) value ranged from −1.043 to −0.204, indicating that all RsTCPs were hydrophilic
(Table S2).

3.2. Phylogenetic Analysis of RsTCP Proteins

To better clarify the phylogenetic relationships among the predicted RsTCPs, the 32,
25, and 24 TCP proteins identified from radish, rice, and Arabidopsis were aligned using
the ClustalW program, and then an un-rooted phylogenetic tree was constructed using
MEGA X (Figure 1). The result showed that these 81 TCP proteins could be clustered into
two categories (Class I and Class II) and three groups (PCFs, CINs, and CYCs). The Class I
(PCF) subgroup contained 44 members (54.32%), including 17 RsTCPs, 14 OsTCPs, and 13
AtTCPs, respectively. Class II included CIN and CYC/TB1 types. Among them, 13 RsTCPs,
8 OsTCPs, and 8 AtTCPs belonged to the CIN subgroup, while 2 RsTCPs, 3 OsTCPs, and
3 AtTCPs were categorized into the CYC/TB1 type, accounting for 9.88% of the total. In
addition, the result also showed that the relationship of TCPs between radish and the dicot
Arabidopsis was closer to that of the monocot rice.
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Figure 1. Phylogenetic tree of the predicted TCP proteins from radish, rice, and Arabidopsis.

3.3. Motif and Gene Structure Analyses

In total, 10 conserved motifs were identified from 32 RsTCP proteins using the online
software MEME motif search tool [50,51]. Subsequently, each of these 10 identified motifs
containing 6–50aa was submitted to the InterProScan and SMART for further identification.
Among them, motifs 1 and 2 were the typical characteristic domains of the plant TCP
family and were present in all RsTCP members. However, the motif 3 exclusively existed
in all Class II RsTCP members but not in Class I, suggesting that motif 3 may play an
important role in the structural differences of RsTCP proteins (Figure 2b). Based on the
phylogenetic analysis, most RsTCP proteins in the same evolutionary branch had a similar
motif distribution. These results indicated that RsTCP proteins from the same evolutionary
branch may have similar biological functions.

Exon–intron analysis of RsTCP genes indicated that the gene structure of the RsTCP
gene family was relatively simple, and 28 out of the 32 RsTCP genes did not have any
introns while RsTCP32, RsTCP06, RsTCP20, and RsTCP30 contained 1–3 introns (Figure 2c).
In addition, except for RsTCP11, RsTCP14, RsTCP23, and RsTCP24, the remaining 28 RsTCP
genes all had untranslated region (UTR) annotations in the radish genome.
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Figure 2. Distribution of conserved motif and gene structure of RsTCP genes. (a) Phylogenetic tree
of 32 RsTCP proteins; (b) distribution of the conserved motif for RsTCP proteins; (c) exon–intron
structure of TCP genes in radish.

3.4. Cis-Element Analysis of RsTCP Genes

It is commonly accepted that the cis-elements play a critical role in regulation of gene
transcription. In this study, the promoter sequences of all 32 RsTCP genes (within 2 kb
upstream of the start codon) were analyzed using PlantCARE, and a total of 692 cis-elements
were detected. In addition to some basic elements such as TATA-box and CAAT-box, nine
important cis-elements potentially related to plant development and responses to various
stresses were identified (Figure 3). The light responsive elements were observed in the
promoter regions of all RsTCP genes. The drought responsive elements were detected in
RsTCP25, RsTCP05, RsTCP21, RsTCP31, RsTCP03, RsTCP11, RsTCP29, RsTCP19, RsTCP06,
RsTCP14, and RsTCP16. In addition, ABA, GA3 salicylic acid (SA), auxin (AUX), and
low-temperature responsive elements presented in promoter regions of some RsTCP genes.
These findings suggested that RsTCP genes might respond to changes in light, temperature,
water supply, and be regulated by ABA, GA3, SA, and AUX.
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Figure 3. Cis-acting elements on promoters of RsTCP genes.

3.5. Chromosomal Localization and Gene Distribution Analysis

All these 32 RsTCP genes identified in this study were mapped to the nine chromo-
somes (from R1 to R9) in radish (Figure 4). The results showed that R2 and R6 contained
the most RsTCP genes with seven RsTCPs (21.86%) on each chromosome, followed by R9
with six RsTCPs (18.75%). R5, R4, and R1 contained four, three, and two RsTCPs (12.5%,
9.38%, and 6.25%), respectively. In addition, each of R3, R7, and R8 contained only one
RsTCP gene.

Genome duplication events have been proven to promote the expansion of plant
gene families, including whole-genome duplication (WGD)/segmental duplication (SD),
transposed duplication (TRD), dispersed duplication (DD), proximal duplication (PD), and
tandem duplication (TD) [52]. In this study, MCScanX analysis revealed that a total of 15
pairs of RsTCP genes were collinear, and 18 (56.25%) RsTCP genes were duplicated and
retained in the WGD/SD (Figure 4). These results suggested that the WGD/SD event might
play an important role in the extension of the RsTCP gene family.
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Figure 4. The chromosomal location and synteny analysis of the RsTCP family. Red lines indicate the
collinear relation.

3.6. Evolution Analysis of the RsTCP Genes and Target Site Analysis of rsa-miR319

In order to explore the evolutionary history and the origin of TCP genes, syntenic
regions were compared between radish and A. thaliana (Figure 5). The result demonstrated
that 34 pairs of collinear genes were obtained, including 26 RsTCP genes and 18 AtTCP
genes. Among them, six pairs of orthologous genes (one to one) were identified, including
RsTCP06 and AtTCP01, RsTCP09 and AtTCP02, RsTCP23 and AtTCP09, RsTCP22 and
AtTCP10, RsTCP21 and AtTCP14, as well as RsTCP32 and AtTCP08, suggesting that these
genes might have the same common ancestors between A. thaliana and radish. In addi-
tion, one RsTCP gene may correspond to multiple A. thaliana TCP genes, for example,
RsTCP11 and AtTCP21/07, RsTCP18 and AtTCP03/04. Similarly, multiple radish genes may
correspond to one A. thaliana gene, such as AtTCP03 and RsTCP14/16/18, AtTCP15 and
RsTCP05/25/27 (Figure 5, Table S3). These synchronous events revealed that some TCP
genes evolved before the divergence of the A. thaliana and radish lineages.

Figure 5. Synteny analysis of TCP genes between radish and Arabidopsis. Colored lines connecting
two chromosomal regions indicate syntenic regions between radish (R1–9) and Arabidopsis (Chr1–5)
chromosomes.
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The target sites of rsa-miR319 in the RsTCP genes were predicted by psRNATarget on-
line software, and it was found that eight putative genes contained rsa-miR319 recognition
site, namely RsTCP02, RsTCP08, RsTCP09, RsTCP14, RsTCP16, RsTCP18, RsTCP22, and
RsTCP26 (Figure 6), while the other RsTCP genes did not contain a putative rsa-miR319
recognition site. This result suggested that these eight putative genes may play more critical
roles in the growth and development of radish than other RsTCP members.

Figure 6. Alignment of putative target sites for rsa-miR319. Mismatches are represented in yellow.

3.7. Characterization of Deduced RsTCP Proteins

Multiple post-translational modification sites were identified in the RsTCP protein
using ScanProsite. Except RsTCP03, several putative phosphorylation sites were identified
in other RsTCP proteins in the form of cAMP-cGMP kinase (cAMP-cGMP), protein kinase
C (PKC), and casein kinase II (CK II). Additionally, N-Glycosylation (N-Glyc) and N-
Myristoylation (N-Myr) were also found in deduced RsTCP protein sequences (Table 1).
Interestingly, RsTCP proteins in the same evolutionary branch showed similar composition
and number of post-translational modification sites. For example, both RsTCP23 and
RsTCP24 in Class I contained nine PKC, three cAMP-cGMP, five CK II, five N-Myr, and
one N-Glyc modification site. Both RsTCP08 and RsTCP09 had four PKC, seven CK II, and
four N-Glyc modification sites. Similar results were also found in Class II members. These
modification sites should be important for the regulation of protein activity and cell signal
transduction.

Table 1. Predicted RsTCP protein sequence features.

Name PKC CK II cAMP-cGMP N-Myr N-Glyc

RsTCP01 3 1 0 0 3
RsTCP02 11 8 0 20 6
RsTCP03 0 0 0 0 0
RsTCP04 5 3 1 14 5
RsTCP05 3 5 1 12 2
RsTCP06 6 7 0 3 1
RsTCP07 2 1 0 7 0
RsTCP08 4 7 0 10 4
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Table 1. Cont.

Name PKC CK II cAMP-cGMP N-Myr N-Glyc

RsTCP09 4 7 0 11 4
RsTCP10 6 3 0 2 4
RsTCP11 3 4 0 6 2
RsTCP12 5 5 1 16 2
RsTCP13 3 4 1 6 2
RsTCP14 6 4 0 3 1
RsTCP15 5 4 0 3 5
RsTCP16 6 6 1 7 4
RsTCP17 8 4 0 6 4
RsTCP18 5 7 0 2 0
RsTCP19 4 7 3 3 4
RsTCP20 5 3 0 3 3
RsTCP21 3 7 1 14 3
RsTCP22 4 5 0 5 4
RsTCP23 9 5 3 5 1
RsTCP24 9 5 3 5 1
RsTCP25 4 6 1 15 3
RsTCP26 7 9 0 7 2
RsTCP27 5 6 1 17 5
RsTCP28 5 7 1 23 3
RsTCP29 2 2 0 4 1
RsTCP30 4 2 0 4 5
RsTCP31 4 7 1 12 1
RsTCP32 8 9 0 16 4

The post-translational modifications were predicted using ScanProsite (http://ca.expasy.org/tools/scanprosite/;
accessed on 2 September 2020).

3.8. Transcription Profiling of RsTCP Genes in Radish

From the published database, RPKM of RsTCP genes in leaf, root tip, cambium, cor-
tical, and xylem at different developmental stages were obtained and further analyzed
(Figure 7, Table S4). Overall, the transcript levels of Class I members were significantly
higher than those of Class II members in different growth periods and tissues. In the Class
I, the expression of RsTCP31 was lower in all samples, while the other 16 members showed
higher levels in some samples, especially RsTCP03, RsTCP04, RsTCP07, RsTCP11, and
RsTCP28. The expression profiles of these RsTCP genes varied greatly among developmen-
tal stages, suggesting their potential roles in radish development. In contrast, significantly
higher expression levels of RsTCP02, RsTCP08, RsTCP09, RsTCP14, RsTCP16, RsTCP18,
RsTCP22, and RsTCP26 were observed in leaves at different stages, suggesting that these
eight members may play crucial roles in the development of radish leaves. However, the
expression profiles of other Class II members were extremely low in all samples, especially
the two CYC/TB1 members in Class II, which were barely detected in all tissues at all stages.
In addition, the expression of RsTCP03, RsTCP04, and RsTCP28 showed significant upreg-
ulation in cortical at 40- and 60-day-old stages and root tip at 60- and 90-day-old stages,
demonstrating that these three RsTCP genes might be specifically involved in regulating
specific stages of radish development. Overall, these results suggested that transcription of
RsTCP genes was spatial- and temporal-specific, indicating that they may play different
functions in the growth and development process.

http://ca.expasy.org/tools/scanprosite/
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Figure 7. Expression profile of RsTCP genes in different stages and tissues.

3.9. Transcription of RsTCP Genes in Response to Environmental Shocks and Phytohormones

Based on the results of transcriptome data, nine RsTCP genes were selected for further
investigation of the expression patterns of RsTCP genes after 4 ◦C, 250 mM NaCl, 15%
w/v PEG6000, 100 µM ABA, and 100 µM GA3 treatments. In response to low temperature,
except for RsTCP11 and RsTCP27, which showed slight downregulation, and RsTCP21
showed slight upregulation, the remaining six RsTCP genes were significantly upregulated
compared with the control (Figure 8a). After NaCl treatment for 24 h, only RsTCP11,
RsTCP16, and RsTCP28 showed significant upregulation, and RsTCP21 and RsTCP22
showed significant downregulation, the expression levels of the remaining four genes only
showed slight changes (Figure 8b). Under drought shock, RsTCP32 exhibited a unique and
significant downregulation, whereas the expression of the remaining eight RsTCP genes
all showed upregulation to varying degrees (Figure 8c). Moreover, a slight increase in the
transcript abundance of RsTCP03 was observed, while the expression level of the others
showed significant upregulation under 100 µM ABA treatment for 24 h (Figure 8d). In
addition, RsTCP genes were all highly sensitive to GA3 exposure, and all RsTCP genes
were significantly upregulated after 24 h treatment of 100 µM GA3 solution (Figure 8e). The
expression level of RsTCP16 showed significant upregulation under the five treatments,
especially under 44 ◦C, NaCl and GA3. In summary, the transcript levels of RsTCP genes
were differentially regulated under various treatments, indicating that the RsTCP genes
might play an important role in response to abiotic stresses and phytohormones in radish.
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Figure 8. The expression of RsTCP genes after 24 h treatment in response to environmental shocks
and phytohormones. (a) Low temperature treatment (44 ◦C); (b) NaCl (250 mM); (c) PEG6000 (15%
w/v); (d) ABA (100 µM); (e) GA3 (100 µM). The RsActin gene was used as the internal control, and
three biological and technical replicates were conducted. The relative expression levels of each gene
were calculated using the 2−∆∆CT method. Each bar shows the mean ± SE of the triplicate assay, and
* indicates significant difference at p < 0.05 according to Duncan’s multiple range test.

4. Discussion

Based on whole-genome sequences, the TCP gene family has been identified in many
species [8–15]. Although previous studies have shown that some TCP genes in radish could
not only participate in anthocyanin biosynthesis, but also respond to Pb, Cr, and heat stress,
the members of the TCP gene family in radish have not been identified yet, and the structure,
evolution, and expression patterns of these members have not been analyzed [53–56]. In
this study, 32 TCP genes were identified in the radish genome according to the conserved
domain of TCP proteins.

TCP genes are generally conserved in different plant species. In this study, the phylo-
genetic tree showed that a total of 32 RsTCP genes were divided into two major groups and
three subgroups (Figure 1), consistent with the previous studies in other species [15,57,58].
As shown in Figure 1, the phylogenetic analysis showed 13 AtTCPs in Class I and 11 AtTCPs
in Class II, which was consistent with Navaud et al. [8], demonstrating the reliability of
the phylogenetic tree. Moreover, the expansion of the gene family was mainly caused by
gene replication [59], and duplicated genes could obtain new functions to improve plant
adaptability to the environment in the process of plant evolution [60]. In this study, a
total of 34 pairs of collinear genes were obtained based on evolution analysis, including 26
RsTCP genes and 18 AtTCP genes (Figure 5, Table S3), while a total of 32 RsTCP genes were
identified in this study, exactly 8 more than the 24 AtTCP genes identified in a previous
study [8], indicating that TCP family members may have been replicated or expanded in
the radish genome. In addition, similar to other plants, genes in the evolutionary branch
shared similar gene structure and motif distribution [61,62], and a duplicated gene pair
tended to be clustered into one branch. For examples, the pairs of RsTCP03-RsTCP04 and
AtTCP15-RsTCP05/25/27 were clustered into Class I (PCF), the pairs of RsTCP02-RsTCP26
and AtTCP03-RsTCP14/16/18 were clustered into Class II (CIN) (Figures 1, 4 and 5). Overall,
these results provided a reliable and informative basis of the TCP gene family in radish,
which may be useful for further investigation of the regulatory functions of TCP genes in
radish.

TCP transcription factors could affect plant growth, development and multiple phys-
iological processes [63], including gametophyte development, seed germination, floral
organ and leaf development [3,4,21,64,65]. Moreover, it is well known that microRNA



Horticulturae 2022, 8, 656 13 of 17

(miRNA) control key biological processes in plants [66–70]. Among them, miR319 has
been extensively studied for its roles in regulating leaf shape development due to its close
relationship with TCP genes. For example, a previous study showed that BrTCP4, as an
miR319 target gene, could regulate the round shape of leafy heads of Chinese cabbage [71].
Recent research revealed that AtTCP2 could play multiple roles through miR319, including
regulating leaf morphogenesis and leaf senescence in A. thaliana [72]. In this study, eight
putative rsa-miR319-targeted genes were identified (Figure 6). Interestingly, the phyloge-
netic tree showed that all these eight putative rsa-miR319-target genes belonged to the
Class II (CIN) subfamily, which was similar to the result in cucumber [15]. Moreover, the
expression profile analysis showed that these eight genes had relatively high expression
levels in leaves at various developmental stages (Figure 7), indicating that these eight genes
might play a key role in leaf development in radish. In addition, sequence characterization
and phylogenetic analysis suggest that RsTCP16 is a homologue to AtTCP4 in A. thaliana
(Figures 1 and 5, Table S3), which not only regulates leaf growth but also inhibits cell
proliferation [73,74]. Therefore, we speculated that the RsTCP16 gene might similarly
regulate leaf development in radish.

Increasing evidence indicated that TCP genes could not only participate in the biosyn-
thesis of phytohormones, but also play a key role in the regulation of phytohormone-
mediated development and growth [26,75]. In this study, multiple phytohormone-related
cis-acting elements were identified in the promoter regions of RsTCP genes (Figure 3),
consistent with the results in cucumber [15]. Post-translational modification is also crucial
for plant growth and stress tolerance [76]. In this study, multiple post-translational modi-
fication sites were predicted in RsTCPs (Table 1), indicating that the RsTCP gene family
may participate in a variety of biological processes. The results of RT-qPCR suggested that
only some of these nine RsTCP genes were sensitive to low temperature shock, salt shock
and drought shock, and almost all RsTCP genes were significantly upregulated in response
to ABA and GA3 treatments. In addition, the transcription of RsTCP16 was significantly
upregulated under the five treatments, suggesting that RsTCP16 could play an important
role in response to abiotic stresses and phytohormones (Figure 8). In conclusion, our results
suggested that RsTCP16 might play key roles in the growth and development of radish and
lay the foundation for further investigation on the mechanism underlying the abiotic stress
and phytohormones response in radish.

5. Conclusions

In summary, we undertook the first identification of a total of 32 RsTCP genes from
the radish genome, which localized on nine radish chromosomes. Meanwhile, several
cis-elements involved in plant development and abiotic stress response were detected in
the promoter regions. Moreover, post-translational modification sites were found in the
RsTCP proteins and evolution analysis suggested that some TCP genes were evolved before
the divergence of the radish and A. thaliana lineages. In addition, the results of this study
also showed that RsTCP genes exhibited tissue-specific expression patterns and revealed
that RsTCP16 might play a key role in response to abiotic stresses and phytohormones.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae8070656/s1, Table S1: Primer sequences for RT-
qPCR of RsActin and RsTCP genes; Table S2: The information of the TCP gene family in radish; Table
S3: Synteny blocks of TCP genes between radish and Arabidopsis genomes; Table S4: Tissue-specific
expression of RsTCP genes.
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