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Abstract: The accelerated growth of computer vision techniques (CVT) has allowed their application
in various disciplines, including horticulture, facilitating the work of producers, reducing costs, and
improving quality of life. These techniques have made it possible to contribute to the automation
of agro-industrial processes, avoiding excessive visual fatigue when undertaking repetitive tasks,
such as monitoring and selecting seedlings grown in trays. In this study, an object detection model
and a mobile application were developed that allowed seedlings to be counted from images and
the calculation of the number of seedlings per tray. This system was developed under a CRISP-DM
methodology to improve the capture of information, data processing, and the training of object
detection models using data from six crops and four types of trays. Subsequently, an experimental
test was carried out to verify the integration of both parts as a unified system, reaching an efficiency
between 57% and 96% in the counting process.

Keywords: digital agriculture; soilless culture; object detection; seedling; computer vision

1. Introduction

Food security is one of the most significant challenges for modern societies because the
world population is growing exponentially [1]. In 2050, it is projected that over 10 billion
individuals will live on the planet [2,3], with more than 70% residing in urban areas [4,5].
This global challenge will also be aggravated by water scarcity and changing weather
conditions, posing a significant threat to food security [6]. In this sense, new research
opportunities and the incorporation of new technologies that are able to improve agricul-
tural production are key to developing sustainable intensive horticultural systems [7–11].
In addition to this, it is important to consider that vegetables are essential for the global
population [12] and are among the most popular cultivated crops today. They are season-
ally grown [13], resulting in a discontinuous and intermittent supply, leading to highly
variable costs throughout the year. Because of this, it is important to employ diverse
growing techniques and incorporate greenhouse growing methods or vertical farming
to maintain continuous vegetable production and supply [14]. In this sense, producing
seedlings in nurseries is an alternative that could enable uniform and timely transplantation
in either soil or soilless (hydroponic or organic substrate) cultivation systems. However,
seedling cultivation is laborious and costly [15], as vegetable seedlings must be handled
individually in trays to assess optimal plant quality. To maximize profitability, producers
exhaustively monitor the crop before its commercialization, carrying out visual counts that
allow them to determine the effectiveness of applied management strategies and, thus,
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define the final sale price based on the number of plants. However, the process of counting
crops is both time-consuming and visually demanding, particularly when dealing with a
high volume of seedling trays [16]. In addition to this, counting is susceptible to human
errors caused by factors such as visual fatigue, distractions, and subjectivity. Such errors
can have adverse effects on the quality of the product and its overall profitability [17].
Therefore, there is a great need to develop a tool that can overcome these issues. In this
sense, recent advancements in computer vision in agriculture have led to the emergence of
innovative applications, ranging from experimental research to commercial applications,
offering promising solutions to enhance various aspects of horticultural activities. In this
regard, [16] this paper discusses the increasing use of artificial intelligence techniques and
robotic systems in agriculture, specifically focusing on machine learning (ML) and deep
learning (DL) algorithms. ML and DL have significantly improved agricultural tasks, such
as plant disease detection and classification, weed–crop discrimination, fruit counting, land
cover classification, and crop–plant recognition. Other tools, such as remote sensing, offer
scalability and are less labor-intensive, as described in [18,19] because they use satellite or
aerial imagery, drones, or specialized sensors to capture crop density and health data. There-
fore, leveraging machine learning and computer vision algorithms to count crops in images
or video feeds automatically is becoming more popular due to its automation capabilities.
Similarly, experimental robotic vehicles have emerged as key players, demonstrating their
ability to efficiently navigate through plantation lines by seamlessly integrating machine
vision with GPS information [20]. In addition to this, other platforms have been designed
for remote plant inspections, leveraging high-quality thermal imagery data to identify
potential issues and ensure optimal plant health [21]. For instance, [22] developed and built
an economic farming robot that had the capability to monitor vegetables throughout their
entire growth cycle, performing precise irrigation according to the growth stage of each
individual plant and enabling precision cultivation in limited spaces. Furthermore, the
integration of machine learning object detection through computer vision with Unmanned
Aerial Vehicle (UAV) RGB imagery has proven invaluable for rapid plant classification
based on the maturity level in broccoli heads [23], sugar content prediction in grapevines
with automated machine learning (AutoML) [24], automatic disease identification on wheat
plants using a deep convolutional neural network (DCNN) [25] and the early prediction of
wheat yield using ML methods with multi-sensor data fusion [26]. These cutting-edge tech-
nologies empower producers to make informed decisions based on data-driven insights.
Therefore, there are several tools that are currently applied in this field, with the potential
to generate substantial improvements in the productive process, especially in the growing
stages of crops or seedlings. However, it is important to consider that the applicability
of crop counting is a complex task that needs further efforts by researchers, given that
crop variability, overlapping plants, and adverse weather conditions can all impact the
accuracy of counts. Despite these challenges, the applications of crop counting are vast.
It contributes to precise yield predictions, which are crucial for pricing, marketing, and
resource allocation [27], also aiding in the efficient distribution of resources such as water,
fertilizers, and pesticides. Therefore, crop counting enables farmers to manage their fields
effectively and sustainably.

A way to overcome the limitations of crop counting could be the use of computer vision
techniques (CVT), which enables computers to interpret and understand visual data from
the world around them. One common approach corresponds to the use of image processing
algorithms that extract features from images and perform various analyses [28], such as
color space conversion (to identify and isolate specific colors of interest) [29], homography
(to correct any perspective distortion in the input image) [30,31], local and global descriptors
(to identify and classify objects) [32], and machine learning techniques [33]. Combining
these models allows a system to automatically detect seedlings, adding greater precision
and flexibility to the production process.

These algorithms can perform large counting processes consistently without fatigue or
distraction, incorporating objectivity when determining the individuals that complete the
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production process. Efforts have been made in the literature to combine these techniques
to apply CVT to agro-industrial processes. For example, in [34], a deep convolutional
neural network was used to automate counting tomato fruits even when occlusion oc-
curred (because of branches or foliage). Also, [35] used deep learning techniques to detect
highly occluded immature tomatoes. However, this process involved high computational
resources due to non-optimized object detection algorithms, making it difficult to apply in
real operating environments. Other authors, such as [36], have performed leaf counting by
applying Circular Hough Transform (CHT), focusing mainly on the phenotypic properties
of plants to predict their interaction with the environment. Another study focusing on
earlier estimations of rice yield carried out by [37] proposed an efficient method that used
computer vision to accurately count rice seedlings in a digital image, which involves using
UAVs equipped with RGB cameras to capture images of the rice field during the seedling
stage. These images were then processed using a regression network (Basic Network)
inspired by a deep, fully convolutional neural network. This network generates density
maps and estimates the number of rice seedlings in each UAV image, reaching an average
accuracy higher than 93%. Also, in rice, [38] were able to detect seedlings in paddy fields
using transfer learning from two machine learning models (EfficientDet-D0 and Faster
R-CNN), obtaining a mean average precision (mAP) of 95.5% and almost 100% in training
alongside 83.2% and 88.8% when EfficientDet and Faster R-CNN models were tested,
respectively. In [39], a computer vision-based peak detection algorithm was applied to
locate the crop rows and plant seedlings using high-resolution UAV images in two different
crop types: maize and sunflower. The proposed method obtained R-squared values of 0.76
for the maize dataset and 0.89 for the sunflower dataset. In another study, using a deep
learning algorithm, [40] developed a method for detecting and counting tree seedlings in
RGB images, including dragon spruce, black chokeberries, and Scots pine. The proposed
method utilized data augmentation techniques and a YOLOv5 object detection network to
achieve high accuracy in seedling detection, with an average accuracy of 95.1%. Although
previous methods have significant advantages, there is a need for further research on
object detection models applied to vegetable production at an industrial level. While some
systems are already in use, they are not widely available and can be costly. Despite the
significant advantages of using these methods, object detection models applied to vegetable
production are still scarce. Therefore, more research is needed to develop affordable and
scalable object detection models for vegetable production. For these reasons, this study
aims to develop a new method that is capable of reducing the time and error associated
with manual seedling counts under greenhouse conditions using object detection models
and a mobile application.

2. Materials and Methods
2.1. Seedling Growing Process and Traditional Seedling Counting Method

The nurseries purchase certified seeds from an external supplier to begin the seedling
process. Afterward, the local laboratory confirms the germination percentage with a simple
germination test before production. The initial output step involves determining the type
of trays on which the crop is established during sowing. To produce vegetable crops, trays
of 486, 260, 104, and 72 cells are currently used (where the number corresponds to the total
number of cells or seedlings they can contain). On trays 486 and 260, industrial tomato,
watermelon, broccoli, and lettuce are preferably produced. In contrast, trays 104 and 72
are mainly used to produce tomatoes, pepper, and cabbage. Next, the tray is covered with
the substrate, and it continues to the implanted machine, where respective holes are made
in each tray cell, and one or several seeds are deposited in each cavity. After the trays are
checked, the substrate covers the seeds again. Once this process is completed, the trays
are grouped on a pallet and transferred to a germination chamber where temperature and
humidity are regulated. In this chamber, the trays are kept for 1 to 3 days (depending on
the variety and species). Finally, the trays are placed into the corresponding greenhouses,
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recording information on (i) client ID, (ii) the type of tray, (iii) the total number of trays, (iv)
species, (v) variety, and (vi) planting date.

Once the nursery production stage is completed, the counting process begins, which
takes place 10 to 12 days after the planting date. This information is strategic for the
companies since it allows them to measure the impact of the productive management
defined at the field level and set the projected sale prices to the market. To achieve the
above, the farmers calculate how many trays must be counted to evaluate a complete batch.
For sample selection, trays are randomly selected to obtain a sample for visual counting,
excluding trays located on the edge of batches due to the border effect. For example, if
a consignment of 100 trays is considered, the assigned count percentage is 10. However,
traditional production systems contemplate the production of large quantities of seedlings
to supply the local market, so the simultaneous evaluation of batches is a complex task
for the industry. In this sense, a medium-sized company can sell up to 150 million plants
per season, producing 650,000 trays. Of this total, 10% must be visually evaluated by
the workers, which means that 65,000 trays must be individually assessed by specialized
workers (approximately 15 million seedlings). This task requires at least ten farm workers
dedicated to visual counting tasks (considering an average count capacity of 1.5 million
plants/worker/season).

2.2. Hardware Development

The initial phase of the system’s development involves systematically gathering in-
formation. This can be accomplished by incorporating a hardware–software system that
collects information automatically at the field level. Raspberry Pi 3 B+ hardware was
deployed with a Raspberry Cam V2 RGB and an autonomous power supply system. This
microcomputer can execute most typical computer tasks, facilitating integration with pe-
ripherals. Once these steps are completed, the integration of the Raspberry Cam V2 RGB
image capture device follows. The Raspberry Pi must be accessed using the sudo raspi-config
command for camera configuration. Once the command is set, a screen with the Raspberry
Pi configuration is displayed, where the user can access the interface options that allow
peripheral devices to be configured:

from picamera import PiCamera
from time import sleep
import datetime
now = datetime.datetime.now()
path = “/home/pi/Desktop/imagenes/”+str(now)+”.jpg”
camera = PiCamera()
camera.start_preview()
sleep(5)
camera.capture(path)
camera.stop_preview()

The first step was to create a folder on the Raspberry Pi. The command mkdir creates
a folder on the Raspberry Pi through the command line. Once the folder is created, the
libraries that allow control of the Raspberry Pi camera in Python are imported. The sleep
library delays the code execution while taking the picture. Additionally, the dateTime library
addresses the issue of file overwriting within the pre-existing folder, as the captured image
is always saved with the same name, leading to file overwriting.

This process started with a request to find out if there was an Internet connection,
and the folder was entered to read the images if there was an active connection. After the
image was stored in the local folder, the association was queried again to send the image
to the database server and then delete the image from the local folder. The execution of
this process is essential since, if the pictures are not downloaded to a remote server, the
memory of the local device could fill up, preventing the capture of new information.

It should be noted that It is necessary to periodically execute both codes to capture
and send images to the server’s database. To achieve the above, Cron.
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tab was used [41] with the following code:
x/5 * *x * * python /home/pi/Desktop/capture_images.py
x x/4 x x * python /home/pi/Desktop/send_images_to_server.py

2.3. Description of the Dataset, Initial Filters, and Increasing Dataset Quality

For the dataset’s construction, the device is mounted on a mobile platform (tripod)
and placed in a fixed position over the production trays. The camera configuration cap-
tures information using a resolution of 8 megapixels. The process of obtaining images is
automated with a temporal frequency of 5 minutes. It should be noted that the agricultural
work was carried out normally, which is why the dataset was later filtered to eliminate
images where obstructions, errors in the positioning of the device, duplicate data, and
blurred images occurred. Information was obtained using the seedlings of tomato, broccoli,
watermelon, pepper, lettuce, and cabbage grown in trays of 72, 104, 260, and 486 cells.
Details corresponding to the crop–tray combination are presented in Table 1.

Table 1. Tray type used for each crop.

Crop Tray Type

Tomato 72, 104, 260, 486
Broccoli 260

Watermelon 260
Pepper 104
Lettuce 260

Cabbage 104

Once the dataset was obtained, algorithms and transformations were applied to im-
prove the classification results. This process was divided into different steps, including
color segmentation (HSV), homography, morphological transformation, and global descrip-
tors. These techniques corrected the perspective, improved image quality, represented key
features, and separated objects of interest from the background. The workflow proposed
for image analysis is detailed in Figure 1, and each step is detailed below.
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2.4. Color Space

HSV is a model used in computer vision to map colors regarding their hue, saturation,
and brightness rather than RGB (red, green, blue) values [42–44]. The HSV color space is
beneficial for computer vision since it simplifies the visual information process. Moreover,
saturation and brightness in HSV can be employed to segment objects in the image based on
their texture and luminance. For example, saturation can be used to differentiate between
high and low saturation regions and the brightness value can be used to distinguish
between higher and lower brightness areas. In this sense, to implement HSV segmentation,
the edges of these images must be clearly identified. For this, markers corresponding to
red circles were manually inserted in each corner of the tray. Subsequently, HSV was used
to isolate the frequencies associated with the red color and segment the input vertices
(first processing—stage one, Figure 1). Any color equal to red was represented as a
white value (maximum possible), and any color different from red was plotted as black
(minimum value). However, colors similar to red were also segmented during the process,
which is why the processed image contained noise, which was removed to determine the
edges correctly. HSV segmentation was also applied in the third processing—stage two
(Figure 1)—to change the image color space by increasing the saturation of the green to
highlight this color and facilitate the identification of pixels corresponding to the seedling.

2.5. Morphological Transformation

A morphological transformation technique was applied to analyze the shape and
structure of objects in an image [45,46]. These techniques include dilation, erosion, open-
ing, and closing [47,48]. In this sense, erosion is commonly used to denoise or separate
connected objects in an image. All additional elements that did not correspond to the tray
vertices were removed, leaving only 4 points on the image (First processing—stage two,
Figure 1). In the vertex detection and points sorting block, the corresponding moments
were calculated, from which the (x, y) coordinates of the vertex were derived. These coordi-
nates were stored in two separate arrays. Subsequently, once the coordinates of all objects
had been obtained, they were sorted in the following format: (x1, y1) for the upper-right
vertex, (x2, y2) for the lower-right vertex, (x3, y3) for the upper-left vertex, and (x4, y4)
for the lower-left vertex. Once the points were sorted according to this criterion, an image
was generated.

2.6. Canny Technique to Detect Tray Borders

To obtain the edges of each vertex, the exact spatial coordinates of the centers must
be determined. To achieve this, the Canny edge detection algorithm was applied (first
processing—stage three, Figure 1) using a multi-stage sub-process [49]. The first step was to
apply Gaussian smoothing to the image. This was performed to reduce noise and prepare
the image for gradient calculation. Finally, thresholding was applied to the image’s high
and low values, and then these thresholds were set to delimit the edges of the four vertices
of the cuttings tray.

2.7. Local and Global Descriptors

Afterward, the central points of each figure identified in the previous stage were
determined. For this, descriptors were used. In this sense, local descriptors are a feature
extraction technique that focuses on extracting data from specific regions of an image,
such as the edges, points of interest, and texture patterns. These local features provide
a detailed description of the visual characteristics of an image. SIFT [50,51], SURF [52],
ORB [53,54], and other techniques are commonly used as local descriptors. By contrast,
global descriptors extract features from the entire image, such as the color histogram
or the spatial distribution of textures. One typical example of a global descriptor corre-
sponds to Hu moments [55–57]. Local and global descriptors are necessary for computer
vision because they allow the extraction and representation of different types of visual
features from an image, which is essential for many CVT applications. For the second
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processing—stage one (Figure 1)—Hu moments were used to determine the x-y coordinates
of each vertex’s centroid, allowing the exact spatial coordinates of the centers to be obtained.

2.8. Perspective Transformation and Homography

Once the four vertices were obtained, the homographic transformation [58,59] was
performed to fix irregularities in the image that could affect the counting process (third
processing—stage one, Figure 1). Occasionally, when taking a photograph, the perspective
of the tray resulted in a rhomboidal shape, which could create difficulties when counting
seedlings. This is why the perspective transformation rectified this by changing the plane
containing the image into a frontal plane. Using the homography transformation, the four
pairs of points corresponding to the image’s vertices were used to calculate the H matrix
values and perform perspective transformation.

2.9. Machine Learning Processing

Machine learning or automatic learning is a branch of artificial intelligence that fo-
cuses on developing algorithms and models that allow machines to learn and improve
their performance in specific tasks through experience and data [60,61]. The open-source
software library TensorFlow [62] was used to deploy models and classify pre-processed
images. For this research, convolutional neural networks (CNNs) were used. CNNs are a
type of neural network that is particularly well-suited to image recognition and classifica-
tion tasks [63,64]. When working with RGB images in TensorFlow, convolutional neural
networks (CNNs) typically take input data as 3D tensors with dimensions (height, width,
channels), where the channels correspond to the following three colors: red, green, and blue.
The input tensor is passed through several layers of convolutional and pooling operations,
which allow the model to learn features from the images, followed by one or more fully
connected layers for classification or regression tasks. The TensorFlow library provides
a comprehensive set of tools and functions to build and train CNNs with RGB images,
making it a popular choice for image recognition and computer vision tasks. This study
used a labeled image dataset to update the CNN model weights through backpropagation
and stochastic gradient descent. The selection of a suitable classification model involved
the use of pre-trained TensorFlow models capable of handling 640 × 640 images, such as
ResNet, SSD MobileNet, and EfficientNet. Due to this limitation, the 8-megapixel image
resolution could be reduced when using the model. Moreover, several factors must be
considered, as highlighted in the following items.

(a) Choosing Tensorflow models: TensorFlow has several pre-trained models for
classification tasks. The architecture of each model varies, with differences in the number
of layers within the convolutional model. A model with more layers tends to produce a
higher accuracy but at the cost of slower processing times. Conversely, models with fewer
layers run faster but can compromise the algorithm’s accuracy.

(b) Training and validation TFRecord files: TFRecord files are a binary format used by
TensorFlow to detect labeled survey objects in the Roboflow platform (https://roboflow.
com/). This tool enables image tagging for object detection models by specifying the
classification requirements. Once labeling is complete, the images are downloaded with
a CSV file containing the filename, width, height, class, xmin, ymin, xmax, and ymax.
These coordinates indicate the position of labeled objects in the respective images. The
TensorFlow documentation provides a code for the conversion process to convert the
training and validation images’ corresponding CSV files into TFRecord files.

(c) LabelMap file: LabelMap is a file that allows the classes the object detection model
identifies to be written. It is important to note that LabelMap files work slightly differently from
one library to another. The structure used for the detection of the seedlings is shown below:

Item: {
name: ‘crop
id: 1
}

https://roboflow.com/
https://roboflow.com/
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Since only a single object needs to be detected, the file only contains one item. However,
if the user wants to add more objects to the detection, other items must be incorporated
into the file by adding the name of the study object with a different ID.

(d) Configuration file pipeline.config: The pipeline.config file contains the entire archi-
tecture of the convolutional neural network. Each detection model has a pipeline.config
file that must be configured before training the model and is available when download-
ing the model from Google Colab. Within the file, there are several different hyperpa-
rameters (HP) that can be optimized to favor detection. HP values correspond to the
following attributes: (i) the number of classes, (ii) batch size, (iii) checkpoint, (iv) LabelMap,
(v) training TFRecord, and (vi) validation TFRecord. In this research, these hyperparameters
were not optimized to compare each model with its initial configuration.

Finally, the object detection model was trained once the file was configured according
to the data science methodology. Once this training was finished, it was necessary to save
the model to perform the inferences on new images loaded in the model inference code.

2.10. Data Science Methodology Applied

The CRISP-DM (Cross-Industry Standard Process for Data Mining) is a widely used
methodology for implementing data mining projects [65]. Implementing the CRISP-DM
methodology involves several steps, including business understanding, data understand-
ing, data preparation, modeling, evaluation, and deployment. First, the business of the
understanding stage defines the problem and the project objectives. Next, the data un-
derstanding stage involves gathering and exploring data to understand their quality and
characteristics better. This stage includes data collection, description, exploration, and
quality assessment. The goal of this stage is to identify any issues within the data and
determine whether the data are suitable for the project. The data preparation stage involves
cleaning, transforming, and integrating data for the modeling stage. This stage aims to
create a high-quality dataset that can be used to develop a model. The modeling stage
involves building and testing a predictive model based on the prepared dataset. This
stage includes model selection, model training, and model testing. The evaluation stage
comprises assessing the model’s performance and determining whether it meets the project
objectives, identifying any issues, and deciding if it can be deployed in the production
environment. Finally, the deployment stage involves implementing the model in the
production environment.

2.11. Model Evaluation

According to the CRISP-DM methodology, one of the most used evaluation metrics in
computer vision and machine learning when evaluating the performance of object detection
models is mean average precision (mAP). This value can be used to measure how well
the model identifies objects of interest in an image and is useful when there are multiple
objects of interest present. The mAP score is computed by first calculating the average
precision (AP) for each object class in the dataset. The average precision for a given class
measures how well the model can detect objects of that class at various levels of precision
and recall. The model’s output was sorted by confidence score to calculate AP, and then a
precision–recall curve was generated by varying the detection threshold. The AP was then
calculated as the area under this curve. Once the AP was computed for each object class (in
this case, only one class corresponded to the seedling), the mAP score was calculated as the
average of the AP scores across all classes. This measured the model’s overall performance
across all object classes. In practice, mAP is often used as a primary metric to evaluate object
detection models as it provides a simple and effective way to compare the performance of
different models on a given dataset.

2.12. Tools and Frameworks

Afterward, the next step is to execute the model, which counts the seedling images
continuously and accurately. This research used the Google Cloud Platform, specifically uti-
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lizing two primary services: Cloud Storage and AI Platform. Within the Google Cloud Plat-
form, the Cloud Storage service allows the trained model to be saved with the “LabelMap”
file. Once the files are stored, the AI platform can be used to run artificial intelligence model
inference. For this, a TensorFlow “notebook” was created to write all the inference codes
(which are available at https://github.com/ffuentesp7/Counting-seedlings). In addition,
to develop the mobile application, the Flutter framework was used for the user views or
Frontend, and Node js was used to build the logic or Backend. The Backend is an API REST
with several endpoints that aid in obtaining specific information needed by the Frontend,
collecting this information from the database manager. Inside the API, all the project logic
that allows responses to be made to the client according to the data entered is contained.

3. Results
3.1. Hardware Mounting and Field Deployment

With new CVT methods, RGB images have gained value in developing new cost-
effective strategies or technologies for crop management and monitoring [66]. In this
sense, RGB images are particularly valuable in agricultural environments since they easily
differentiate vegetation from other surrounding objects [67–70]. Considering the above, a
replicable, scalable, and interoperable device was used for this research to capture RGB
data. However, it must be considered that these devices are not adapted to the operational
ranges commonly found in commercial greenhouses. Due to this fact, the proposed device
was specially adapted, including a case to optimize information collection. During the
development of the experiments, it was observed that relative humidity varied between
31% and 99% and temperature between 10 ◦C and 41 ◦C. Humidity control was particularly
problematic due to moisture condensation inside the case. In this study, humidity was
successfully controlled by installing silica bags inside the device. Afterward, to guarantee
the device’s operation, an autonomous power supply system was installed in the device.
Additionally, the device was connected to the local power grid to avoid data loss.

For the near real-time transmission of information, a local Wi-Fi network was used.
To achieve this, a conventional antenna was installed to provide connectivity inside the
greenhouse. The signal’s intensity and the connection’s stability were also evaluated,
demonstrating that factors such as machinery operation and other IoT devices’ connection
to the network did not allow a stable connection to regularly send information to the server.
For this reason, a Wi-Fi repeater had to be installed in each greenhouse. Finally, a mobile
metallic tripod was designed to facilitate agricultural operators’ use of the device. This
structure allowed easy positioning and movement for each evaluation. It should be noted
that the total cost of the device was 75 USD, which considers the microcomputer, camera,
cables, wheels, and metal structure.

3.2. Initial Dataset

The device captured a total of 10,000 images. However, since this dataset consisted
of images systematically captured every 5 minutes, initial filters were applied before pre-
processing to ensure the quality of information. The first filter removed 3000 images
captured between 7 p.m. and 7 a.m. when there was insufficient light to differentiate
objects in these images. Subsequently, duplicate pictures were eliminated, ensuring that
the model avoided overfitting and that the evaluation metrics were both reliable and
robust. Considering this, 2880 images were eliminated due to their similarity caused by the
temporal frequency of 5 minutes, which was established because of the rapid growth of the
crop in its early stages of development. Another 3420 images were removed due to noise,
such as workers, agricultural tasks, machinery movement, and strange objects within the
images. Finally, 700 images were selected for pre-processing after applying the filters. Of
this total, 80% of the total dataset was destined for the training set, which served as the
foundation for the machine learning model to learn underlying patterns. An additional
15% was reserved for the validation set, used for hyperparameter tuning and providing

https://github.com/ffuentesp7/Counting-seedlings
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an unbiased evaluation of the model during its training phase. The remaining 5% was
designated as the test set to assess the model’s final performance.

3.3. Data Pre-Processing

One of the main drawbacks when applying different algorithms and object detection
models is the image’s processing complexity. Often, there are multiple trays in the pictures,
and there is no clear pattern to segment the central tray, as seen in Figure 2.
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Figure 2. Mounting the device that captures RGB images under real operating conditions, including
conventional connection to the power grid.

As described before (in Figure 1), a workflow was applied to improve the image
quality and address these issues. In the first place, four red vertices needed to be manually
inserted into each image to delimit the tray. This process was successfully carried out for
all 700 images. Afterward, images were subjected to the HSV, erosion, and border detection
(Canny) transformations to isolate these objects and determine the images’ centroids. To
achieve the above, a second process had to be carried out where Hu moments were used to
determine the exact coordinates corresponding to the vertices of the trays (Figure 3).
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Another factor to consider is the image perspective. As seen in Figure 4a, the plane
containing the tray was much broader at the bottom and decreased at the top of the
image. Using the homography transformation, the four pairs of points corresponding to
the image’s vertices were used to calculate the values of the H matrix and change the image
to a frontal perspective. After this change was applied, each pixel of plane A (Figure 4a)
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was depicted in plane B (Figure 4b). This allowed everything outside the tray’s contour
to be eliminated, generating a frontal image that helped visualize, in a better way, all its
contents. Finally, to differentiate the green of the leaves from other colors, the image’s color
space was changed, increasing the saturation of the green color to the maximum so that it
could stand out from others in the image.
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To create the necessary files to train an object detection model, individual seedlings
were labeled in each of the original 700 images from the dataset (Figure 5). The 486-cell
trays had a high occlusion of seedlings and were removed from the dataset to increase
quality and reduce noise. Therefore, 550 images were labeled and categorized into 260, 104,
and 72 cell formats. Finally, the number of labels for these formats reached approximately
80,000 individual labels.
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Figure 5. Different tray formats used for seedling labeling, where (a) corresponds to 260 broccoli
trays and (b) corresponds to 104 tomato trays.

3.4. Detection Model Evaluation

EfficientNet, SSD MobileNet, and ResNet are well-known computer vision algorithms
that are widely used for image classification and object detection tasks [71]. EfficientNet
is an object detection algorithm with higher accuracy and fewer parameters and compu-
tational resources than other methods [72]. In contrast, SSD MobileNet is a lightweight
neural network architecture that is designed to run efficiently on mobile devices with
limited computational resources. Finally, ResNet is a deep neural network with variable
parameters requiring significant computational resources [73]. EfficientNet generally out-
performs SSD MobileNet and ResNet in object detection tasks regarding accuracy. SSD
MobileNet, however, is often used for image classification and localization tasks where
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there is a need to balance accuracy and processing speed. In this sense, to evaluate the
pre-processed data used for RGB images, a dataset of 180 images featuring tomato crops in
trays, each with 260 cells, was selected to test the performance of these three models. The
SSD MobileNet achieved an accuracy of about 91% for the images in the trays. However, the
SSD MobileNet’s effectiveness was slightly reduced for other crops, such as peppers, with
an accuracy ranging between 78 and 81%. Figure 6 shows the classification and localization
loss metrics observed during the execution of the SSD MobileNet convolutional model
with training and validation sets tested for over 24,000 epochs.
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Figure 6. (a) Loss classification and (b) Loss localization for SSD MobileNet.

Therefore, the model performance was tested by training all the images in the dataset
and showing the results of loss classification, loss localization, and mean average precision
(mAP). Table 2 displays the metric values generated using the three object detection models.

Table 2. Benchmark of object detection models.

Metrics EfficientNet SSD MobileNet ResNet

Loss Classification 0.10 0.08 0.13
Loss Localization 0.13 0.05 0.07

Mean Average Precision (mAP) 0.617 0.567 0.554

The SSD MobileNet showed a balanced performance, accuracy, and processing time
according to Figure 6 and the official documentation (https://github.com/tensorflow/
models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md). It should
be noted that there are more sophisticated models in the repository, but their implementa-
tion requires considerable computing power to perform the training. To make the model’s
crop detections visible, bounding boxes were generated around each crop, as shown in
Figure 7. Once the object detection model was selected, it was deployed in a production
environment to count the seedling images.
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3.5. Development of A Mobile Application

The application development process used the P × P methodology [74], as mentioned
earlier. This application meets the requirements and is compatible with Android and iOS
platforms. The primary functions of this application are (a) user registration and login,
(b) crop counting, and (c) chatting with other company members and obtaining assistance.
Figure 8 shows some of the main views of this application.
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Figure 8. Views of the mobile application developed, where (a) shows the user login section,
(b) shows the initial interface, and (c) is the initial counting step process.

The application login is on the left, and the most important functionalities are shown
in the center and to the right. The application was designed to be as simple and clean as
possible to favor user experience and not make capturing images and obtaining results more
complex. The primary objective was to deploy the proposed plant detection model through
a faster and more user-friendly interface. The app’s workflow involves user registration
and the beginning of a new count. After filling out the form, the user must upload the
images captured by the mobile device. The server-side processing counts the seedlings in
each image and sends the total number to the user. The application sums up the count as
the user loads the images, and at the end of the count, the app displays the percentage,
allowing the user to estimate the average number of seedlings per tray. Figure 9 shows the
different results of the proposed application when counting multiple crops. As seen in the
case of tomatoes, the results had a precision of over 90%.

3.6. Deployment and Final Field Testing

This section evaluates the developed product when integrated with the proposed
model described to corroborate the general objective’s achievement level. For the experi-
mental test, a case was tested to count a batch from a small business client. Figure 10 shows
the batch information required to start the operational test, calculating the number of trays
to be counted since this was necessary for manual counting and the use of this application.

The results obtained by the worker for the test shown in Figure 11 were as follows:
Table 3 shows an experiment that is designed to assess the performance of the counting

application in contrast to manual counting conducted by an employee of the company. To
carry out this comparison, 30 trays were randomly selected in the initial phase, which served
as the study sample for the experiment. The company employee manually counted the
seedlings in each tray and recorded these counts in a notebook. In addition to conducting
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the counting, the employee also had to consider the time to summarize the obtained
information. On the other hand, the application analyzed the same set of trays, taking
photographs of them and loading them into the application. The results in Table 3 show that
the proposal outperformed the manual counting performed by the company employees in
terms of accuracy and efficiency. Our application achieved an accuracy percentage of 91.3%,
compared to the 85.5% obtained through manual counting. Additionally, the application
reduced the time required to count the seedlings.

Horticulturae 2023, 9, x FOR PEER REVIEW 14 of 21 
 

 

 
  

(a) (b) (c) 

Figure 8. Views of the mobile application developed, where (a) shows the user login section, (b) 

shows the initial interface, and (c) is the initial counting step process. 

The application login is on the left, and the most important functionalities are shown 

in the center and to the right. The application was designed to be as simple and clean as 

possible to favor user experience and not make capturing images and obtaining results 

more complex. The primary objective was to deploy the proposed plant detection model 

through a faster and more user-friendly interface. The app’s workflow involves user reg-

istration and the beginning of a new count. After filling out the form, the user must upload 

the images captured by the mobile device. The server-side processing counts the seedlings 

in each image and sends the total number to the user. The application sums up the count 

as the user loads the images, and at the end of the count, the app displays the percentage, 

allowing the user to estimate the average number of seedlings per tray. Figure 9 shows 

the different results of the proposed application when counting multiple crops. As seen in 

the case of tomatoes, the results had a precision of over 90%. 

  

(a) (b) 

Figure 9. Results obtained using the proposed application over different crops, where (a) is the test 

carried out on processing tomato and (b) is the test carried out on watermelon. 

Figure 9. Results obtained using the proposed application over different crops, where (a) is the test
carried out on processing tomato and (b) is the test carried out on watermelon.
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Figure 11. The application under real test conditions was (a) A raw image of pepper in tray 104, (b)
A pre-processed image, and (c) The crop count value determined by its application.

Table 3. Comparison between the worker and this proposal.

Test Average Time Number of Trays Counted Number of Seedlings
per Tray Percentage Obtained

Industrial worker 12 min 40 s 30 trays 89 85.5%
Our proposal 9 min 35 s 30 trays 89 91.3%

4. Discussion

Greenhouses are closed environments where plants are grown under controlled or
semi-controlled conditions [75]. They provide a suitable environment for the growth of
plants, but they also pose unique challenges when capturing images for CVT [76]. The
main challenges observed in this study regarding the implementation of CTV over a
greenhouse were:

1. Lighting conditions [77,78]. Greenhouses typically have complex lighting conditions
due to the presence of natural and artificial light sources. Natural light can cause shadows,
reflections, and variations in color and intensity [79,80]. Artificial light creates glare and
interferes with image quality [81]. The light spectrum used in greenhouses also differs
from the natural light spectrum [82,83], which can cause difficulties when capturing images
accurately. Other research has also faced lighting problems when using various computer
vision techniques; for example, [84] implemented a method based on image analysis to
identify weeds in cabbage and carrots under open-field experiments. This was performed
using a device that provided controlled lighting (avoiding natural issues), which could
classify objects with a precision between 51% and 95%. In [85], computer vision techniques
were used to develop an automatic phenotyping system combining the automatic procedure
with a high-performance segmentation algorithm in greenhouse tomatoes. In this case, the
developers reported that during day-time measurements, data collection faced different
illumination conditions because of the influence of external light (clouds, daily and seasonal
variations in the intensity of the sunlight), indicating significant impacts on data quality
acquisition. Therefore, for this study, the selection of images was indeed subject to light
conditions, and the images of the initial dataset that were subject to insufficient light had to
be discarded (2880 images).

2. The need for high-quality and labeled training data. Collecting and annotating
such data can be time-consuming and require expert knowledge, as plant species can be
highly diverse and require careful identification and classification. As demonstrated in this
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paper, it is necessary to use a dataset that is representative of the plant species in order to
be classified and correctly labeled. However, our research took a different approach by
evaluating several crops in a greenhouse, unlike previous studies that have assessed only
one species or type of fruit.

3. The design of the devices used over the crop to be monitored was also an issue
identified in this study. For this case, the images had to be taken in a lateral position due
to the crop conduction system, for which light had to be supplemented with a led bar
to maintain homogeneous data-capturing conditions. In addition to this, consideration
had to be given to the image perspective, given that an image taken from an inclined
perspective could generate errors in the counting process; in this sense, the application of
pre-processing the image dataset was successful and allowed the precise implementation
of the counting algorithm.

4. Environmental factors in greenhouses. High humidity levels can fog up camera
lenses and reduce image clarity. Additionally, dust, dirt, and other particles can obscure
the image and cause a loss of image quality.

5. The crop’s growth conditions. This research faced a significant challenge, particu-
larly when growth was advanced, compared to other studies with lower occlusion [86].

Addressing these challenges allowed us to optimize the seedling counting process,
for which the use of computer vision models (CVT) was fundamental. In this sense,
using CVT to detect objects in images has found broad applications in recent years. In
the case of greenhouses, CVT has the potential to reduce labor costs and worker fatigue.
This is because monitoring plant growth and health in greenhouses requires significant
manual labor. However, automating this process can reduce the number of workers needed
to monitor plants. According to the literature, computer vision techniques combined
with machine learning models have been used to solve complex problems regarding the
classification and identification of crops in greenhouses. In addition to this, object detection
models also play an important role in image detection, where models such as EfficientNet,
SSD MobileNet, and ResNet have different performances that can be compared regarding
two crucial computer vision tasks: classification and localization. For this study, tomato
detection using SSD MobileNet performed better than those presented in the study by [87],
where segmentation of the CVT space was also conducted. Nonetheless, the need for a
sufficiently complete machine learning model and the limited quality of the dataset in
terms of balanced images negatively impacted these segmentation results. Regarding the
mean average precision, which is used to test the performance on object detection tasks,
which in this case was labeling objects, EfficientNet generally outperforms SSD MobileNet
and ResNet due to its compound scaling approach and advanced regularization techniques
such as stochastic depth and mixup. In localization and classification tasks, the aim is to
minimize this loss, which measures the model’s performance. Therefore, SSD MobileNet is
best suited to this task.

In terms of the performance of the model, the comparison made to assess the precision
when counting between the proposed method and a greenhouse worker indicated that a
higher precision in counting was achieved by the proposal developed in this work, with
over 90% precision when counting seedlings, saving time by over three minutes. Lastly,
as demonstrated in this paper, it is necessary to use a dataset that is representative of the
plant species to be classified and correctly labeled. However, our research took a different
approach by evaluating several crops in a greenhouse, unlike previous studies, which have
assessed only one species or type of fruit. Finally, these experiments can be replicated
through our repository and reproduced as open-source code.

5. Conclusions

In this work, a deep-learning mobile application with SSD MobileNet was applied
to detect crops in seedling trays. Our proposal demonstrates that while there have been
notable advancements in different components of automatic plant detection, implementing
such a system within a greenhouse has significant challenges. Addressing them requires
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more than simply improving individual components and demands particular attention to
the experimental arrangement and automatic classification technology. When testing our
model with the generality of greenhouse crops, the detection accuracy results ranged from
57 to 96% according to the type of crop and the tray in which it was located. Thus, the size
and variability of the dataset and the surface where the plant was located were the elements
that had the most decisive impact on our classification results. Hence, the objectives set
in this study were accomplished. Nevertheless, several paths for further research could
enhance the existing system’s performance. For instance, future research could focus on
detecting pests and diseases early or establishing a control mechanism before significant
losses occur in crop yields, in addition to examining the machine learning model and its
integration with computer vision subsystems. This application focused on object detection
and counting rather than recent classification research. However, it is worth noting that the
functionality and user interface of the mobile application could be extended or enhanced in
the future to include additional features, such as the classification of seedlings based on
certain criteria if deemed necessary for specific agricultural applications.

Author Contributions: F.F.-P.: Supervision, Conceptualization, Formal analysis, Writing—original
draft. G.C.S.: Writing—review and editing, Validation, Visualization. R.P.G.: Conceptualization,
Investigation, Writing—original draft, Software development. I.B.: Investigation, Formal analysis,
Methodology, Data curation. F.E.: Resources, Writing—review and editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was supported by the Chilean government through the projects; CORFO (PI-
3291), Nodo CTCI MCS-ANID-NODO220006, ANID (REDES-FOVI220031), FIC (No. BIP 40.036.334-0)
and International Initiative for Digitalization in Agriculture IIDA.

Data Availability Statement: Data is unavailable due to privacy.

Acknowledgments: The authors of this research thank the company Masterplant Sur S.p.A. for
providing the experimental unit to develop this study. In the same way, they thank the company
Biovisión Ingeniería for providing the necessary software and hardware infrastructure for data analysis.
Finally, the authors of this research thank the Consorcio Sur-Subantártico Ciencia 2030.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, M.M.; Akram, M.T.; Janke, R.; Qadri, R.W.K.; Al-Sadi, A.M.; Farooque, A.A. Urban Horticulture for Food Secure Cities

through and beyond COVID-19. Sustainability 2020, 12, 9592. [CrossRef]
2. Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [CrossRef]
3. Woolston, C. Healthy People, Healthy Planet: The Search for a Sustainable Global Diet. Nature 2020, 588, S54. [CrossRef]

[PubMed]
4. Huang, K.; Li, X.; Liu, X.; Seto, K.C. Projecting Global Urban Land Expansion and Heat Island Intensification through 2050.

Environ. Res. Lett. 2019, 14, 114037. [CrossRef]
5. Dixon, T.J.; Tewdwr-Jones, M. Urban Futures: Planning for City Foresight and City Visions. In Urban Futures; Policy Press: Bristol,

UK, 2021; pp. 1–16.
6. Perkins-Kirkpatrick, S.E.; Stone, D.A.; Mitchell, D.M.; Rosier, S.; King, A.D.; Lo, Y.T.E.; Pastor-Paz, J.; Frame, D.; Wehner, M. On

the Attribution of the Impacts of Extreme Weather Events to Anthropogenic Climate Change. Environ. Res. Lett. 2022, 17, 024009.
[CrossRef]

7. Beacham, A.M.; Vickers, L.H.; Monaghan, J.M. Vertical Farming: A Summary of Approaches to Growing Skywards. J. Hortic. Sci.
Biotechnol. 2019, 94, 277–283. [CrossRef]

8. Gómez, C.; Currey, C.J.; Dickson, R.W.; Kim, H.-J.; Hernández, R.; Sabeh, N.C.; Raudales, R.E.; Brumfield, R.G.; Laury-Shaw, A.;
Wilke, A.K.; et al. Controlled Environment Food Production for Urban Agriculture. HortScience 2019, 54, 1448–1458. [CrossRef]

9. O’Sullivan, C.A.; Bonnett, G.D.; McIntyre, C.L.; Hochman, Z.; Wasson, A.P. Strategies to Improve the Productivity, Product
Diversity and Profitability of Urban Agriculture. Agric. Syst. 2019, 174, 133–144. [CrossRef]

10. Durmus, D. Real-Time Sensing and Control of Integrative Horticultural Lighting Systems. J. Multidiscip. Sci. J. 2020, 3, 266–274.
[CrossRef]

11. Halgamuge, M.N.; Bojovschi, A.; Fisher, P.M.J.; Le, T.C.; Adeloju, S.; Murphy, S. Internet of Things and Autonomous Control for
Vertical Cultivation Walls towards Smart Food Growing: A Review. Urban For. Urban Green. 2021, 61, 127094. [CrossRef]

https://doi.org/10.3390/su12229592
https://doi.org/10.1038/s41545-019-0039-9
https://doi.org/10.1038/d41586-020-03443-6
https://www.ncbi.nlm.nih.gov/pubmed/33299205
https://doi.org/10.1088/1748-9326/ab4b71
https://doi.org/10.1088/1748-9326/ac44c8
https://doi.org/10.1080/14620316.2019.1574214
https://doi.org/10.21273/HORTSCI14073-19
https://doi.org/10.1016/j.agsy.2019.05.007
https://doi.org/10.3390/j3030020
https://doi.org/10.1016/j.ufug.2021.127094


Horticulturae 2023, 9, 1134 18 of 20

12. Cusworth, S.J.; Davies, W.J.; McAinsh, M.R.; Stevens, C.J. Sustainable Production of Healthy, Affordable Food in the UK: The Pros
and Cons of Plasticulture. Food Energy Secur. 2022, 11, e404. [CrossRef]

13. Wunderlich, S.M.; Feldman, C.; Kane, S.; Hazhin, T. Nutritional Quality of Organic, Conventional, and Seasonally Grown Broccoli
Using Vitamin C as a Marker. Int. J. Food Sci. Nutr. 2008, 59, 34–45. [CrossRef]

14. Carrasco, G.; Fuentes-Penailillo, F.; Perez, R.; Rebolledo, P.; Manriquez, P. An Approach to a Vertical Farming Low-Cost to Reach
Sustainable Vegetable Crops. In Proceedings of the 2022 IEEE International Conference on Automation/XXV Congress of the
Chilean Association of Automatic Control (ICA-ACCA), Curico, Chile, 24–28 October 2022; IEEE: Piscataway, NJ, USA; pp. 1–6.

15. Haase, D.L.; Bouzza, K.; Emerton, L.; Friday, J.B.; Lieberg, B.; Aldrete, A.; Davis, A.S. The High Cost of the Low-Cost Polybag
System: A Review of Nursery Seedling Production Systems. Land 2021, 10, 826. [CrossRef]

16. Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent
Developments. Precis. Agric. 2021, 22, 2053–2091. [CrossRef]

17. Zhou, C.; Ye, H.; Hu, J.; Shi, X.; Hua, S.; Yue, J.; Xu, Z.; Yang, G. Automated Counting of Rice Panicle by Applying Deep Learning
Model to Images from Unmanned Aerial Vehicle Platform. Sensors 2019, 19, 3106. [CrossRef]

18. Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote
Sensing Images. Remote Sens. 2017, 9, 22. [CrossRef]

19. Mekhalfi, M.L.; Nicolò, C.; Bazi, Y.; Al Rahhal, M.M.; Alsharif, N.A.; Maghayreh, E. Al Contrasting YOLOv5, Transformer, and
EfficientDet Detectors for Crop Circle Detection in Desert. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3003205. [CrossRef]

20. Loukatos, D.; Kondoyanni, M.; Kyrtopoulos, I.-V.; Arvanitis, K.G. Enhanced Robots as Tools for Assisting Agricultural Engineering
Students’ Development. Electronics 2022, 11, 755. [CrossRef]

21. Loukatos, D.; Templalexis, C.; Lentzou, D.; Xanthopoulos, G.; Arvanitis, K.G. Enhancing a Flexible Robotic Spraying Platform for
Distant Plant Inspection via High-Quality Thermal Imagery Data. Comput. Electron. Agric. 2021, 190, 106462. [CrossRef]

22. Moraitis, M.; Vaiopoulos, K.; Balafoutis, A.T. Design and Implementation of an Urban Farming Robot. Micromachines 2022,
13, 250. [CrossRef]

23. Psiroukis, V.; Espejo-Garcia, B.; Chitos, A.; Dedousis, A.; Karantzalos, K.; Fountas, S. Assessment of Different Object Detectors for
the Maturity Level Classification of Broccoli Crops Using UAV Imagery. Remote Sens. 2022, 14, 731. [CrossRef]

24. Kasimati, A.; Espejo-García, B.; Darra, N.; Fountas, S. Predicting Grape Sugar Content under Quality Attributes Using Normalized
Difference Vegetation Index Data and Automated Machine Learning. Sensors 2022, 22, 3249. [CrossRef] [PubMed]

25. Singh, A.; Arora, M. CNN Based Detection of Healthy and Unhealthy Wheat Crop. In Proceedings of the 2020 International
Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12 September 2020; pp. 121–125.

26. Fei, S.; Hassan, M.A.; Xiao, Y.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.; Chen, R.; Ma, Y. UAV-Based Multi-Sensor Data Fusion and
Machine Learning Algorithm for Yield Prediction in Wheat. Precis. Agric. 2023, 24, 187–212. [CrossRef]

27. Darwin, B.; Dharmaraj, P.; Prince, S.; Popescu, D.E.; Hemanth, D.J. Recognition of Bloom/Yield in Crop Images Using Deep
Learning Models for Smart Agriculture: A Review. Agronomy 2021, 11, 646. [CrossRef]

28. Wiley, V.; Lucas, T. Computer Vision and Image Processing: A Paper Review. Int. J. Artif. Intell. Res. 2018, 2, 22. [CrossRef]
29. Bhargava, A.; Bansal, A. Fruits and Vegetables Quality Evaluation Using Computer Vision: A Review. J. King Saud Univ. Comput.

Inf. Sci. 2021, 33, 243–257. [CrossRef]
30. Dubrofsky, E. Homography Estimation. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, 2009.
31. Finlayson, G.; Gong, H.; Fisher, R.B. Color Homography: Theory and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2019,

41, 20–33. [CrossRef]
32. Li, J.; Allinson, N.M. A Comprehensive Review of Current Local Features for Computer Vision. Neurocomputing 2008, 71,

1771–1787. [CrossRef]
33. Khan, A.; Laghari, A.; Awan, S. Machine Learning in Computer Vision: A Review. ICST Trans. Scalable Inf. Syst. 2018, 8, 169418.

[CrossRef]
34. Rahnemoonfar, M.; Sheppard, C. Deep Count: Fruit Counting Based on Deep Simulated Learning. Sensors 2017, 17, 905. [CrossRef]
35. Mu, Y.; Chen, T.-S.; Ninomiya, S.; Guo, W. Intact Detection of Highly Occluded Immature Tomatoes on Plants Using Deep

Learning Techniques. Sensors 2020, 20, 2984. [CrossRef]
36. Praveen Kumar, J.; Domnic, S. Image Based Leaf Segmentation and Counting in Rosette Plants. Inf. Process. Agric. 2019, 6,

233–246. [CrossRef]
37. Wu, J.; Yang, G.; Yang, X.; Xu, B.; Han, L.; Zhu, Y. Automatic Counting of in Situ Rice Seedlings from UAV Images Based on a

Deep Fully Convolutional Neural Network. Remote Sens. 2019, 11, 691. [CrossRef]
38. Tseng, H.-H.; Yang, M.-D.; Saminathan, R.; Hsu, Y.-C.; Yang, C.-Y.; Wu, D.-H. Rice Seedling Detection in UAV Images Using

Transfer Learning and Machine Learning. Remote Sens. 2022, 14, 2837. [CrossRef]
39. Bai, Y.; Nie, C.; Wang, H.; Cheng, M.; Liu, S.; Yu, X.; Shao, M.; Wang, Z.; Wang, S.; Tuohuti, N.; et al. A Fast and Robust Method

for Plant Count in Sunflower and Maize at Different Seedling Stages Using High-Resolution UAV RGB Imagery. Precis. Agric.
2022, 23, 1720–1742. [CrossRef]

40. Moharram, D.; Yuan, X.; Li, D. Tree Seedlings Detection and Counting Using a Deep Learning Algorithm. Appl. Sci. 2023, 13, 895.
[CrossRef]

41. Cron. Expert Shell Scripting; Apress: Berkeley, CA, USA, 2009; pp. 81–85.

https://doi.org/10.1002/fes3.404
https://doi.org/10.1080/09637480701453637
https://doi.org/10.3390/land10080826
https://doi.org/10.1007/s11119-021-09806-x
https://doi.org/10.3390/s19143106
https://doi.org/10.3390/rs9010022
https://doi.org/10.1109/LGRS.2021.3085139
https://doi.org/10.3390/electronics11050755
https://doi.org/10.1016/j.compag.2021.106462
https://doi.org/10.3390/mi13020250
https://doi.org/10.3390/rs14030731
https://doi.org/10.3390/s22093249
https://www.ncbi.nlm.nih.gov/pubmed/35590939
https://doi.org/10.1007/s11119-022-09938-8
https://doi.org/10.3390/agronomy11040646
https://doi.org/10.29099/ijair.v2i1.42
https://doi.org/10.1016/j.jksuci.2018.06.002
https://doi.org/10.1109/TPAMI.2017.2760833
https://doi.org/10.1016/j.neucom.2007.11.032
https://doi.org/10.4108/eai.21-4-2021.169418
https://doi.org/10.3390/s17040905
https://doi.org/10.3390/s20102984
https://doi.org/10.1016/j.inpa.2018.09.005
https://doi.org/10.3390/rs11060691
https://doi.org/10.3390/rs14122837
https://doi.org/10.1007/s11119-022-09907-1
https://doi.org/10.3390/app13020895


Horticulturae 2023, 9, 1134 19 of 20

42. Auliasari, R.N.; Novamizanti, L.; Ibrahim, N. Identifikasi Kematangan Daun Teh Berbasis Fitur Warna Hue Saturation Intensity
(HSI) Dan Hue Saturation Value (HSV). JUITA J. Inform. 2020, 8, 217. [CrossRef]

43. Lesiangi, F.S.; Mauko, A.Y.; Djahi, B.S. Feature Extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix
(GLCM) for Identification of Woven Fabric Motifs in South Central Timor Regency. J. Phys. Conf. Ser. 2021, 2017, 012010.
[CrossRef]

44. Wu, Y.; Wang, J.; Wang, Y.; Zhao, Y.; Zhang, S. Field Crop Extraction Based on Machine Vision. In Proceedings of the 2021 IEEE
International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021; IEEE: Piscataway, NJ,
USA; pp. 1–5.

45. Wilson, J.N.; Ritter, G.X. Handbook of Computer Vision Algorithms in Image Algebra; CRC Press: Boca Raton, FL, USA, 2000;
ISBN 9780429115059.

46. Vizilter, Y.v.; Pyt’Ev, Y.P.; Chulichkov, A.I.; Mestetskiy, L.M. Morphological Image Analysis for Computer Vision Applications.
Intell. Syst. Ref. Libr. 2015, 73, 9–58. [CrossRef]

47. Soille, P. Erosion and Dilation. In Morphological Image Analysis; Springer: Berlin/Heidelberg, Germany, 2004; pp. 63–103.
48. Chen, S.; Haralick, R.M. Recursive Erosion, Dilation, Opening, and Closing Transforms. IEEE Trans. Image Process. 1995, 4,

335–345. [CrossRef]
49. Mokrzycki, W.; Samko, M. Canny Edge Detection Algorithm Modification. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Int. Conf. Comput. Vis. Graph. 2012, 7594,
533–540. [CrossRef]

50. Patrício, D.I.; Rieder, R. Computer Vision and Artificial Intelligence in Precision Agriculture for Grain Crops: A Systematic
Review. Comput. Electron. Agric. 2018, 153, 69–81. [CrossRef]

51. Tripathi, M.K.; Maktedar, D.D. A Role of Computer Vision in Fruits and Vegetables among Various Horticulture Products of
Agriculture Fields: A Survey. Inf. Process. Agric. 2020, 7, 183–203. [CrossRef]

52. Zhang, W.; Li, X.; Yu, J.; Kumar, M.; Mao, Y. Remote Sensing Image Mosaic Technology Based on SURF Algorithm in Agriculture.
EURASIP J. Image Video Process. 2018, 2018, 85. [CrossRef]

53. Stanhope, T.P.; Adamchuk, V.I. Feature-Based Visual Tracking for Agricultural Implements. IFAC-PapersOnLine 2016, 49, 359–364.
[CrossRef]

54. Nagar, H.; Sharma, R.S. Pest Detection on Leaf Using Image Processing. In Proceedings of the 2021 International Conference on
Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; IEEE: Piscataway, NJ, USA; pp. 1–5.

55. Hu, M.K. Visual Pattern Recognition by Moment Invariants. IRE Trans. Inf. Theory 1962, 8, 179–187. [CrossRef]
56. Alam, M.; Alam, M.S.; Roman, M.; Tufail, M.; Khan, M.U.; Khan, M.T. Real-Time Machine-Learning Based Crop/Weed Detection

and Classification for Variable-Rate Spraying in Precision Agriculture. In Proceedings of the 2020 7th International Conference on
Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020; IEEE: Piscataway, NJ, USA; pp. 273–280.

57. Ramirez-Paredes, J.-P.; Hernandez-Belmonte, U.-H. Visual Quality Assessment of Malting Barley Using Color, Shape and Texture
Descriptors. Comput. Electron. Agric. 2020, 168, 105110. [CrossRef]

58. Gómez-Reyes, J.K.; Benítez-Rangel, J.P.; Morales-Hernández, L.A.; Resendiz-Ochoa, E.; Camarillo-Gomez, K.A. Image Mosaicing
Applied on UAVs Survey. Appl. Sci. 2022, 12, 2729. [CrossRef]

59. Kharismawati, D.E.; Akbarpour, H.A.; Aktar, R.; Bunyak, F.; Palaniappan, K.; Kazic, T. CorNet: Unsupervised Deep Homography
Estimation for Agricultural Aerial Imagery. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.)
2020, 12540, 400–417. [CrossRef]

60. Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [CrossRef]
61. Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A Guide to Machine Learning for Biologists. Nat. Rev. Mol. Cell Biol. 2021, 23,

40–55. [CrossRef] [PubMed]
62. Joseph, F.J.J.; Nonsiri, S.; Monsakul, A. Keras and TensorFlow: A Hands-On Experience. EAI/Springer Innov. Commun. Comput.

2021, 85–111. [CrossRef]
63. Ajit, A.; Acharya, K.; Samanta, A. A Review of Convolutional Neural Networks. In Proceedings of the International Conference

on Emerging Trends in Information Technology and Engineering, ic-ETITE, Vellore, India, 24–25 February 2020. [CrossRef]
64. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.

IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [CrossRef]
65. Schröer, C.; Kruse, F.; Gómez, J.M. A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Comput. Sci.

2021, 181, 526–534. [CrossRef]
66. Fuentes-Penailillo, F.; Ortega-Farias, S.; de la Fuente-Saiz, D.; Rivera, M. Digital Count of Sunflower Plants at Emergence from Very

Low Altitude Using UAV Images. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering,
Information and Communication Technologies (CHILECON), Valparaíso, Chile, 13–27 November 2019; IEEE: Piscataway, NJ,
USA; pp. 1–5.

67. Yang, B.; Xu, Y. Applications of Deep-Learning Approaches in Horticultural Research: A Review. Hortic. Res. 2021, 8, 123.
[CrossRef] [PubMed]

68. Fukuda, M.; Okuno, T.; Yuki, S. Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through
RGB Images. Sensors 2021, 21, 6999. [CrossRef]

https://doi.org/10.30595/juita.v8i2.7387
https://doi.org/10.1088/1742-6596/2017/1/012010
https://doi.org/10.1007/978-3-319-10653-3_2
https://doi.org/10.1109/83.366481
https://doi.org/10.1007/978-3-642-33564-8_64
https://doi.org/10.1016/j.compag.2018.08.001
https://doi.org/10.1016/j.inpa.2019.07.003
https://doi.org/10.1186/s13640-018-0323-5
https://doi.org/10.1016/j.ifacol.2016.10.066
https://doi.org/10.1109/TIT.1962.1057692
https://doi.org/10.1016/j.compag.2019.105110
https://doi.org/10.3390/app12052729
https://doi.org/10.1007/978-3-030-65414-6_28
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1038/s41580-021-00407-0
https://www.ncbi.nlm.nih.gov/pubmed/34518686
https://doi.org/10.1007/978-3-030-66519-7_4
https://doi.org/10.1109/IC-ETITE47903.2020.049
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1016/j.procs.2021.01.199
https://doi.org/10.1038/s41438-021-00560-9
https://www.ncbi.nlm.nih.gov/pubmed/34059657
https://doi.org/10.3390/s21216999


Horticulturae 2023, 9, 1134 20 of 20

69. Saedi, S.I.; Khosravi, H. A Deep Neural Network Approach towards Real-Time on-Branch Fruit Recognition for Precision
Horticulture. Expert Syst. Appl. 2020, 159, 113594. [CrossRef]

70. Behera, S.K.; Jena, J.J.; Rath, A.K.; Sethy, P.K. Horticultural Approach for Detection, Categorization and Enumeration of on Plant
Oval Shaped Fruits. Adv. Intell. Syst. Comput. 2019, 813, 71–84. [CrossRef]

71. Yin, H.; Yang, C.; Lu, J. Research on Remote Sensing Image Classification Algorithm Based on EfficientNet. In Proceedings of the
2022 7th International Conference on Intelligent Computing and Signal Processing, ICSP, Virtual, 15–17 April 2022; pp. 1757–1761.
[CrossRef]

72. Koonce, B. EfficientNet. In Convolutional Neural Networks with Swift for Tensorflow; Apress: Berkeley, CA, USA, 2021; pp. 109–123.
[CrossRef]

73. Abedi, A.; Khan, S.S. Improving State-of-the-Art in Detecting Student Engagement with Resnet and TCN Hybrid Network.
In Proceedings of the 2021 18th Conference on Robots and Vision, CRV, Burnaby, BC, Canada, 26–28 May 2021; pp. 151–157.
[CrossRef]

74. Dzhurov, Y.; Krasteva, I.; Ilieva, S. Personal Extreme Programming–An Agile Process for Autonomous Developers. In Proceedings
of the International Conference on Software, Services & Semantic Technologies, Sofia, Bulgaria, 28–29 October 2009; pp. 252–259.

75. Hanan, J.J. Greenhouses: Advanced Technology for Protected Horticulture; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–684. [CrossRef]
76. Lin, K.; Chen, J.; Si, H.; Wu, J. A Review on Computer Vision Technologies Applied in Greenhouse Plant Stress Detection.

Commun. Comput. Inf. Sci. 2013, 363, 192–200. [CrossRef]
77. Tian, Z.; Ma, W.; Yang, Q.; Duan, F. Application Status and Challenges of Machine Vision in Plant Factory—A Review. Inf. Process.

Agric. 2022, 9, 195–211. [CrossRef]
78. Xu, T.; Qi, X.; Lin, S.; Zhang, Y.; Ge, Y.; Li, Z.; Dong, J.; Yang, X. A Neural Network Structure with Attention Mechanism and

Additional Feature Fusion Layer for Tomato Flowering Phase Detection in Pollination Robots. Machines 2022, 10, 1076. [CrossRef]
79. Zhou, C.; Hu, J.; Xu, Z.; Yue, J.; Ye, H.; Yang, G. A Novel Greenhouse-Based System for the Detection and Plumpness Assessment

of Strawberry Using an Improved Deep Learning Technique. Front. Plant Sci. 2020, 11, 559. [CrossRef] [PubMed]
80. Wang, X.; Liu, J.; Liu, G. Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning. Front. Plant

Sci. 2021, 12, 2812. [CrossRef]
81. Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer Vision Syndrome: A Review. Surv. Ophthalmol. 2005, 50, 253–262.

[CrossRef]
82. Kaiser, E.; Ouzounis, T.; Giday, H.; Schipper, R.; Heuvelink, E.; Marcelis, L.F.M. Adding Blue to Red Supplemental Light Increases

Biomass and Yield of Greenhouse-Grown Tomatoes, but Only to an Optimum. Front. Plant Sci. 2019, 9, 2002. [CrossRef]
83. Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticul-

ture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [CrossRef]
84. Hemming, J.; Rath, T. PA—Precision Agriculture. J. Agric. Eng. Res. 2001, 78, 233–243. [CrossRef]
85. Fonteijn, H.; Afonso, M.; Lensink, D.; Mooij, M.; Faber, N.; Vroegop, A.; Polder, G.; Wehrens, R. Automatic Phenotyping of

Tomatoes in Production Greenhouses Using Robotics and Computer Vision: From Theory to Practice. Agronomy 2021, 11, 1599.
[CrossRef]

86. Afonso, M.; Fonteijn, H.; Fiorentin, F.S.; Lensink, D.; Mooij, M.; Faber, N.; Polder, G.; Wehrens, R. Tomato Fruit Detection and
Counting in Greenhouses Using Deep Learning. Front. Plant Sci. 2020, 11, 1759. [CrossRef] [PubMed]

87. Benavides, M.; Cantón-Garbín, M.; Sánchez-Molina, J.A.; Rodríguez, F. Automatic Tomato and Peduncle Location System Based
on Computer Vision for Use in Robotized Harvesting. Appl. Sci. 2020, 10, 5887. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2020.113594
https://doi.org/10.1007/978-981-13-1498-8_7
https://doi.org/10.1109/ICSP54964.2022.9778437
https://doi.org/10.1007/978-1-4842-6168-2_10
https://doi.org/10.1109/CRV52889.2021.00028
https://doi.org/10.1201/9780203719824
https://doi.org/10.1007/978-3-642-37149-3_23
https://doi.org/10.1016/j.inpa.2021.06.003
https://doi.org/10.3390/machines10111076
https://doi.org/10.3389/fpls.2020.00559
https://www.ncbi.nlm.nih.gov/pubmed/32582225
https://doi.org/10.3389/fpls.2021.792244
https://doi.org/10.1016/j.survophthal.2005.02.008
https://doi.org/10.3389/fpls.2018.02002
https://doi.org/10.1007/s00344-021-10337-y
https://doi.org/10.1006/jaer.2000.0639
https://doi.org/10.3390/agronomy11081599
https://doi.org/10.3389/fpls.2020.571299
https://www.ncbi.nlm.nih.gov/pubmed/33329628
https://doi.org/10.3390/app10175887

	Introduction 
	Materials and Methods 
	Seedling Growing Process and Traditional Seedling Counting Method 
	Hardware Development 
	Description of the Dataset, Initial Filters, and Increasing Dataset Quality 
	Color Space 
	Morphological Transformation 
	Canny Technique to Detect Tray Borders 
	Local and Global Descriptors 
	Perspective Transformation and Homography 
	Machine Learning Processing 
	Data Science Methodology Applied 
	Model Evaluation 
	Tools and Frameworks 

	Results 
	Hardware Mounting and Field Deployment 
	Initial Dataset 
	Data Pre-Processing 
	Detection Model Evaluation 
	Development of A Mobile Application 
	Deployment and Final Field Testing 

	Discussion 
	Conclusions 
	References

