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Abstract: Quality assurance through visual inspection plays a pivotal role in agriculture. In recent
years, deep learning techniques (DL) have demonstrated promising results in object recognition.
Despite this progress, few studies have focused on assessing human visual inspection and DL for
defect identification. This study aims to evaluate visual human inspection and the suitability of using
DL for defect identification in products of the floriculture industry. We used a sample of defective
and correct decorative wreaths to conduct an attribute agreement analysis between inspectors and
quality standards. Additionally, we computed the precision, accuracy, and Kappa statistics. For the
DL approach, a dataset of wreath images was curated for training and testing the performance of
YOLOv4-tiny, YOLOv5, YOLOv8, and ResNet50 models for defect identification. When assessing
five classes, inspectors showed an overall precision of 92.4% and an accuracy of 97%, just below
the precision of 93.8% obtained using YOLOv8 and YOLOv5 with accuracies of 99.9% and 99.8%,
respectively. With a Kappa value of 0.941, our findings reveal an adequate agreement between
inspectors and the standard. The results evidence that the models presented a similar performance to
humans in terms of precision and accuracy, highlighting the suitability of DL in assisting humans with
defect identification in artisanal-made products from floriculture. Therefore, by assisting humans
with digital technologies, organizations can embrace the full potential of Industry 4.0, making the
inspection process more intelligent and reliable.

Keywords: floriculture; deep learning; visual inspection; human inspection; defect detection

1. Introduction

Quality inspection in floriculture has been commonly conducted by humans; however,
with the advancement of Industry 4.0, DL models have the potential to conduct real-
time and remote inspection. Floriculture is a subdivision of horticulture that produces
ornamental plants, flowers, and greenery [1]. Over the years, floriculture has become one of
the most profitable in the agricultural sector; the global flower market is valued at around
44 billion US dollars annually [2,3]. As in other developing countries such as India [4,5],
Mexican floriculture is a crucial activity that generates over 250,000 direct jobs and nearly
one million indirect jobs, of which nearly 60% are female workers [2]. Handmade wreaths
of preserved greenery are a type of product mainly destined for exportation, with quality
and safety being prominent characteristics that must be revised during different production
stages. Wreath manufacturers rely on visual inspection during the manufacturing process,
aligning with traditional horticulture inspection to visually examine plants for signs of
disease, pests, and other characteristics. However, this manual approach is a tiring activity
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prone to human error [6] that can be time-consuming, subjective, and limited by the
knowledge and skills of the individual inspector. Studies in the manufacturing sector
reported an accuracy of 80% to 85% for correctly rejected precision-manufactured parts [7].
Inspection error rates vary depending on many factors [7], with values of 20% to 30%
commonly identified in the literature [8] and with variations depending on the inspection
activity; for example, the error rate in inspections of highway bridges ranges from 48% to
19% [9], while in metal casting inspection, it ranges from 17.8% to 29.8% [10], indicating
that the reliability and accuracy of visual inspection frequently prove insufficient [11].
Despite the importance of visual inspection in floriculture, particularly in floral wreath
manufacturing, there is scarce evidence regarding the accuracy level or error rates in this
sector, which leads us to the first research question.

RQ1. What is the precision and accuracy level of defect identification in floral wreath using
visual inspection?

The growing interest in recent years for utilizing digital technologies in horticulture
includes robots [12], digital twins [13], internet of things [14], artificial intelligence (AI) [15],
including machine learning [16], and DL [17]. Notably, the inherent dependence on visual
inspection has fostered the increasing use of DL techniques due to the positive effects and
promising contribution to improving visual inspections. Several cases of DL have been
deployed for a variety of purposes, including disease detection in fruits [18], healthy flower
detection [4], flower recognition [5], pest recognition [17], surface defect detection [19],
and fruit grading [20]. Despite these efforts, few studies on defect identification of floral
wreaths have been conducted, particularly in developing countries; therefore, we proposed
the following research question.

RQ2. What is the precision and accuracy level of defect identification in floral wreaths
using deep learning?

The increasing utilization of DL encompasses many possibilities to digitalize the floricul-
ture and horticulture sector, particularly in derived products such as floral wreaths. However,
most of the studies mainly focused on the advantages of DL and the computational efficiency
metrics of different architectures and less on the actual accuracy of visual inspection, suggest-
ing a research gap to be bridged. To the best of our knowledge, this research is the first to
investigate the suitability of DL techniques within the inspection process of artisanal-made
products, specifically those designed for ornamental purposes. This research marks a sig-
nificant departure from traditional manual inspection methods by leveraging the power of
AI, including quality control and human-dependence reduction, particularly in hand-made
products in developing countries. This novel contribution holds promise in enhancing the
efficiency and reliability of inspection procedures, ultimately benefiting the economic growth
and global competitiveness of these countries’ artisanal industries.

2. Related Work

The main challenging problem in computer vision is object detection [21] due to the com-
plexity of recognizing objects and localizing them within the image. With the continuous up-
dating of neural networks, different models are used to complete different situations. Table A1
(Appendix A) summarizes the most recurrent architectures for object detection in agriculture
and horticulture applications. For inspection purposes, object detection algorithms, such as
region-based classification, create a bounding box around the region of interest (ROI), such
as density and color, thus detecting a defect or not. Broadly, standard methods are classified
into single-stage and two-stage object detectors [21]. The latter group includes Region-based
Convolutional Neural Networks (R-CNNs), Fast R-CNN [22], Faster R-CNN [23], and Mask
R-CNN [24]. The former group includes YOLO (You Only Look Once) [25] and single-shot
multi-box detectors [26]. Although two-stage detectors have demonstrated ideal accuracy,
their detection is not very fast [27]. One-stage detectors overcome these limitations, with
YOLO and SSD being very popular due to being faster than two-stage deep-learning object
detectors and requiring less time for model training [28].
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Since its release, the YOLO network has been used in several cases, including grape
detection [29,30]; potted flower detection [31]; tomato, flower, and node detection [32];
pineapple surface defect detection [28]; sugarcane stem node recognition [33]; and tomato
growth period tracking [34]. The YOLO network has stood out in the average recognition
speeds and accuracy for occluded grapes compared to Resnet50 and SSD300 [29].

ResNet has been a recurrent model for multi-stage networks due to the resulting
accuracy and the obtained balance between accuracy and training cost [35]. ResNet is
based on stacked residual units consisting of convolution and pooling layers [36]. There
are different versions, including ResNet18, ResNet34, ResNet50, Resnet10, and ResNet152,
with the last three being reported as more accurate [36]. Particularly, ResNet50 stands out
as a popular version, achieving maximum validation accuracy among several pre-trained
models [37] as well as training accuracy [38], thus outperforming similar networks such as
ResNet101 [39] and other network architectures including AlexNet, GoogLeNet, Inception
v3, ResNet-101, and SqueezeNet [35]. In fact, among these architectures, ResNet-50 struck
the best balance between training cost and accuracy [35].

We used both one-stage and two-stage networks to identify the network suitable for
visual inspection purposes in horticulture contexts. Therefore, after conducting an eval-
uation of multiple object detection architectures and due to the good results of previous
studies [28–31,33,34], we used YOLO networks, particularly YOLOv4-tiny, YOLOv5, and
YOLOv8. YOLOv4-tiny is the compressed version of YOLOv4 designed to train on machines
with less computing power [40,41]. YOLOv4, an improved version of YOLOv3, generates
bounding-box coordinates and assigns probabilities to each category, converting the object
detection task into a regression problem [42]. Continuing with the YOLO family, Ultralytics
proposed the YOLOv5 algorithm [43], which is smaller and more convenient, enabling flexible
deployment and more accurate detection [44]. YOLOv8 represents the most recent iteration of
the YOLO object detection model [45,46]. It incorporates numerous enhancements, including
a novel neural network architecture that leverages both the Feature Pyramid Network (FPN)
and the Path Aggregation Network (PAN) [47], alongside the implementation of an improved
labeling tool designed to streamline the annotation process.

Moreover, to provide a comprehensive comparison with the YOLO networks and
due to the proven results in previous studies [35,37,39], we also used ResNET50. This
inclusion aims to enhance the validity and reliability of the findings, adding perspective to
the evaluation. Moreover, by considering multiple architectures, the evaluation aimed to
strike the right balance between accuracy, speed, and resource efficiency.

3. Materials and Methods
3.1. Decorative Wreaths

This study analyzed the visual inspection of wreaths produced by a Mexican company
and exported to the U.S.A. These wreaths are used as a base to embed flowers and other or-
namental elements. The process starts with branches of Ephedra Californica that operators
cut and assemble manually. The quality assurance of wreaths consists of visual inspections
to identify whether wreaths comply with the quality standard or have defects based on
predefined thresholds. To assess the suitability of the DL approach, we first assessed four
different models; then, we assessed inspectors using an attribute agreement analysis.

3.2. Deep Learning Approach
3.2.1. Tools

We assessed the one-stage architectures YOLOv4-Tiny, YOLOv5, and YOLOv8 to identify
five classes of wreaths, including correct wreaths and four types of defects on wreaths. In
addition, as a complementary analysis, we included ResNet50 to identify either correct or
defective wreaths. The evaluation aimed to balance precision, accuracy, speed, and resource
efficiency by considering multiple architectures. For this analysis, we used a computing
system consisting of an AMD Ryzen 5 4600H Radeon Graphics processor running at a clock
speed of 3.00 GHz, accompanied by 32 GB RAM. The operating system was the 64-bit
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version of Windows. An NVIDIA GeForce GTX1660 Ti graphics card was incorporated to
enhance computational performance. A Logitech C920 Pro HD Webcam captured images at
1920 × 1080 pixels. Furthermore, the analysis included the utilization of Google Colab to assess
its performance and suitability as a viable solution for small- and medium-sized enterprises
(SMEs) that may not have access to more sophisticated computing equipment or the necessary
resources. The setup of Google Colab Pro was configured to utilize the A100 GPU option,
with 20 GB of GPU RAM and 40 GB of CPU RAM.

3.2.2. Dataset

A total of 3408 images were used for the dataset. The number of wreath images
was balanced to represent correct and defective wreaths, corresponding to specific quality
criteria, including lack of material (empty), incorrect color (brown), low volume (Lvolume),
high volume (Hvolume), and correct wreath (Vok). Due to our relatively small dataset, we
used data augmentation as a way to reduce overfitting [48] and to increase the dataset [48].
Particularly, we used different data augmentation methods, including geometric and color
transformations [48], such as horizontal and vertical flip, rotation ±15◦, grayscale 10%,
magenta filter 36%, and brightness 0% to +25%. Similar to previous studies [49], the dataset
was partitioned, allocating close to 70% of the images for training the models (2556 images)
while reserving the remaining 30% for validation and testing purposes (852 images). This
ratio is also suggested to avoid overfitting [50] in relatively small datasets like ours. We
used different wreaths for training and testing images at a similar angle to the inspector
view angle. Regarding the background of the images, we intentionally imitated the actual
inspection conditions by utilizing different solid backgrounds. In addition, to encompass
different conditions, the images were captured using different filters on different days, at
various times throughout the day, thus introducing variability to ensure the robustness
of the models when presented with diverse environmental conditions (see Figure 1). This
intentional introduction of noise aimed to enhance the models’ ability to adapt to real-
world scenarios and improve performance by training on a more comprehensive and
representative dataset and mimicking the inspection conditions. The wreath dataset is
available at Kaggle [51].

3.2.3. Experimental Strategy

The models based on YOLOv4-Tiny, YOLOv5, and YOLOv8 were trained using the
five different classes utilizing bounding boxes to identify defects visually. In addition, we
focused on identifying either correct or defective wreaths; thus, all models, YOLOv4-Tiny,
YOLOv5, and YOLOv8, as well as ResNet50 were trained to identify these two classes.
ResNet50 was used when classifying two classes due to the requirement of ResNet50
for a large dataset of labeled images per class to achieve reasonable performance [52,53].
Moreover, we trained all architectures with varying epochs (10, 50, and 100) to identify
the optimal training epoch, which defines the saturation stage of the training process and
when the model begins to flatten out [54]. The inference speed of each architecture was also
considered to evaluate the trade-off between accuracy and computational efficiency.

3.2.4. Evaluation Indexes for the Deep Learning Models

The performance indexes of the object detection models employed in this study
encompassed accuracy, precision, recall, and mean average precision. The results were
assessed as true positive (TP), i.e., the number of correctly detected objects; true negative
(TN), i.e., samples that are correctly rejected from class; false positive (FP), i.e., the number
of falsely detected objects; and false negative (FN), i.e., the number of missed objects.
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Figure 1. Example of wreath images with different classes, backgrounds, and light conditions:
(a) correct wreath with white background and normal inspection light condition; (b) wreath with
incorrect color, lack of material with poor light condition, and brown background; (c) wreath with
low volume, black background, and normal inspection light condition; (d) wreath with high volume,
brown background, and normal inspection light condition; (e) wreath with lack of material, black
background, and light from a different angle; (f) wreath with lack of material, white background,
normal light condition, and magenta filter.

Accuracy indicates the rate of correctly classified images out of all the images in a
test set, showing the overall effectiveness of the classifier [49,55,56]; thus, accuracy shows
the level of a model to predict the class of a prelabeled image [57]. There are different
approaches to measuring accuracy, including those used in [20] or [35]. In this study, we
estimated accuracy as in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision, also known as per-class precision [58] or positive predictive value (PPV) [35],
represents the proportion of true positive images among all images predicted to be pos-
itive [29,34,37,55,56]. Precision is the probability, given a positive label, of how many of
them are actually positive [49], indicating the performance of a model to predict the positive
class [57]. Therefore, the higher the precision is, the fewer false positives are generated by
the model. Equation (2) shows the formula used in this study.

Precision =
TP

TP + FP
(2)

Recall represents the proportion of images predicted to be positive among the true
positive images [29,37,56]. Thus, recall or sensitivity is the accuracy of positively predicted
instances describing how many were labeled correctly [49], showing the degree of the
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model to predict the positive class when the actual class is positive [57]. In this study, we
computed recall as in Equation (3).

Recall =
TP

TP + FN
(3)

Mean average precision (mAP) measures in what percentage the algorithm predicted
the object from all individual classes correctly [50]. mAP is calculated using the averaged
AP of all classes [59]. Equation (4) presents the mathematical description of mAP, where
APk is the average precision of the classes and n is the number of classes [60].

mAP =
1
n

k=n

∑
k=1

APk (4)

3.3. Human Visual Inspection

Three quality inspectors conducted the quality inspection of wreaths. Due to the
nominal response and the number of inspectors, we conducted an attribute agreement
analysis focused on assessing whether inspectors are consistent with themselves, with one
another, and with known standards of defective and non-defective wreaths.

3.3.1. Visual Inspection Procedure

The quality inspectors (males averaging five years of experience) independently
inspected 50 wreaths three times in random order. The sample of wreaths was balanced to
represent correct and defective wreaths (including up to four types of defects) according
to the predefined quality criteria. Each inspector did not know the standard value for
each wreath. The inspection procedure followed standardized protocols and guidelines to
ensure consistency and reliability. The participants were provided clear instructions and a
checklist to facilitate the assessment process.

3.3.2. Evaluation Indexes for Visual Inspection

To obtain comparative metrics with those utilized for the DL approach, we computed
accuracy and precision as in Equations (1) and (2), respectively. In addition, we calculated
standard metrics related to attribute agreement analysis (AAA), including Kappa statistics,
which assesses the correctness of each inspector’s ratings vs. the standard, the consistency
of each inspector’s rating, and the consistency between the inspectors’ ratings. Due to the
number of inspectors, we could not compute Cohen’s kappa, which is utilized for two
raters [61]. Instead, we computed Fleiss’ kappa [62], a generalization of Cohen’s kappa.
Values of kappa range from 1 (perfect agreement) to −1 (perfect disagreement), with
0 representing a completely random agreement. Interpretive guidelines suggest a slight
agreement (0–0.20), fair agreement (0.21–0.40), moderate agreement (0.41–0.60), substantial
agreement (0.61–0.80), and almost perfect agreement (0.81–1.0) [63]. We used Minitab
software, version 18.1 (developed by Minitab LLC, State College, PA, USA), to compute
these statistics.

4. Results
4.1. Deep Learning Approach

Regarding the use of deep learning for visual inspection, Table 1 shows the results of
the evaluated models when assessing five classes, resulting in a performance that varied
across different epochs. Most of the higher results occurred with 100 epochs for all models.
Regarding YOLOv5, the model exhibited a precision of 93.8%, accuracy of 98.2%, recall of
95.9%, and mAP of 97% in 1.33 h. Similarly, YOLOv8 achieved a precision of 93.8%, recall
of 94.8%, and mAP of 95.7% in an execution time of 0.37 h. The more considerable accuracy
for YOLOv8 was 93.9% with 50 epochs. Following these models, YOLOv4 Tiny resulted in
a precision of 89%, accuracy of 88.7%, recall of 87%, and mAP of 95.5% in 0.48 h. Figure 2
depicts examples of the detection achieved with YOLOv8 using 100 epochs.
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Table 1. Results of architectures YOLOv4-Tiny, YOLOv5, and YOLOv8.

Architecture Epochs Accuracy Precision Recall mAP Time (h)

YOLOv4-Tiny 10 0% 2.0% 0% 0.9% 0.10
YOLOv4-Tiny 50 75.4% 74.0% 76.0% 86.4% 0.23
YOLOv4-Tiny 100 88.7% 89.0% 87.0% 95.5% 0.48

YOLOv5 10 92.9% 85.7% 86.1% 90.6% 0.15
YOLOv5 50 94.9% 93.1% 93.2% 95.4% 0.67
YOLOv5 100 98.2% 93.8% 95.9% 97.0% 1.33
YOLOv8 10 88.1% 82.3% 86.3% 89.4% 0.12
YOLOv8 50 93.9% 93.6% 99.6% 94.8% 0.37
YOLOv8 100 92.8% 93.8% 94.8% 95.7% 0.37
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Figure 2. Example of the detection with YOLOv8 with 100 epochs.

Regarding classes, Table 2 depicts the results where both YOLOv8 and YOLOv4 Tiny
achieved slightly higher precision values than YOLOv5; particularly for the Ok class, the
precision was 100% with both models. For the high-volume class, YOLOv4 exhibited a
precision of 99.9%, while for the low-volume class, YOLOv8 was the model with a higher
precision of 99.5%. For brown and empty, YOLOv4 presented a precision of 99.9% and
85.1%, respectively—the highest results. Concerning accuracy, YOLOv4 exhibited a value
of 89.5%, while YOLOv5 showed values of 99.6%, 99.3%, and 99.5% for brown, low volume,
and high volume, respectively. The highest accuracy result for the Ok class was 99.3%
obtained using YOLOv8. Recall presented higher results in three classes (brown, low
volume, and Ok) with YOLOv5, one class (high volume) with YOLOv8, and one class
(empty) with YOLO-v4. mAP showed similar values in all classes when using YOLOv8
and YOLOv5. The execution time for YOLOv4 (0.483 h) was consistently lower than those
of YOLOv5 (1.331 h) and YOLOv8 (1.152 h).

The loss curve for YOLOv4-tiny for five classes is shown in Figure 3. The training
loss decreases steadily, while the validation loss remains relatively stable. The mAP curve
shows that the training and validation sets increase over time.
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Table 2. Comparative table of architectures: YOLOv4-tiny, YOLOv5, and YOLOv8 with classes.

Architecture Class Epochs Accuracy Precision Recall mAP Time (h)

YOLOv4-Tiny Empty 100 89.5% 85.1% 90% 86.5% 0.483
YOLOv4-Tiny Brown 100 90.1% 99.9% 89.1% 98.5% 0.483
YOLOv4-Tiny Lvolume 100 79.8% 92.5% 79.6% 91.4% 0.483
YOLOv4-Tiny Hvolume 100 90.4% 99.9% 88.5% 99.5% 0.483
YOLOv4-Tiny Vok 100 95.4% 100.0% 84.5% 99.5% 0.483

YOLOv5 Empty 100 78.4% 80.1% 80.9% 87.9% 1.331
YOLOv5 Brown 100 99.6% 94.2% 100% 98.5% 1.331
YOLOv5 Lvolume 100 99.3% 99.0% 100% 99.5% 1.331
YOLOv5 Hvolume 100 99.5% 95.7% 98.4% 99.4% 1.331
YOLOv5 Vok 100 99.1% 99.9% 100% 99.5% 1.331
YOLOv8 Empty 100 76.7% 75.9% 75.3% 80.8% 1.152
YOLOv8 Brown 100 99.1% 98.1% 99.8% 99.0% 1.152
YOLOv8 Lvolume 100 99.2% 99.5% 99.4% 99.5% 1.152
YOLOv8 Hvolume 100 98.7% 95.4% 99.6% 99.5% 1.152
YOLOv8 Vok 100 99.3% 100.0% 99.8% 99.5% 1.152
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The training and validation loss curves for YOLOv5 are depicted in Figure 4. Training
losses decrease rapidly in the first few epochs and more slowly thereafter, indicating the
model’s ability to learn the basic features of the dataset quickly. However, it takes more
time to learn the finer details. The precision and recall on the training set are both high,
while the validation losses are slightly higher than the training losses; thus, the model is
not overfitting the training data.
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Figure 4. Training and validation loss graphs of YOLOv5 for 5 classes.

The training and validation loss curves for YOLOv8 are depicted in Figure 5. Similarly
to YOLOv5, the model is able to learn the basic features of the dataset quickly, but it takes
more time to learn the finer details. The precision and recall on the training set are both
high. At the same time, the validation losses are slightly higher than the training losses,
indicating that the model is not overfitting the training data. The mAP on the validation set
is high, which suggests that the model is able to generalize well to unseen data. Overall,
the graphs suggest that the YOLOv8 model has trained successfully on the Wreath dataset.
The model is able to detect objects in the dataset with reasonable accuracy, and it is likely
to generalize well to new data.
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Finally, all models exhibited adequate performance with 100 epochs evaluating two
classes (Ok and Not ok), as shown in Table 3. All three one-stage models exhibited a higher
accuracy and precision than the two-stage model did (ResNet50). YOLOv8 achieved a
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precision of 99.8%, accuracy of 99.9%, recall of 100%, and mAP of 99.5% in 1.576 h. YOLOv5
achieved a precision of 99.7%, accuracy of 99.8%, recall of 99.9%, and mAP of 99.5% in
1.379 h. In turn, YOLOv4-Tiny achieved a precision of 99%, accuracy of 99.6%, recall of
100%, and mAP of 100% in an execution time of 0.55 h. Lastly, ResNet achieved a precision
of 96.4%, accuracy of 96.9%, recall of 97.1%, and mAP of 96.4% in 1 h.

Table 3. Comparative table of architectures YOLOv4-Tiny, YOLOv5, YOLOv8, and ResNet50.

Architecture Epochs Accuracy Precision Recall mAP Time (h)

YOLOv4-Tiny 10 0.0% 0.3% 0.0% 4.7% 0.067
YOLOv4-Tiny 50 97.5% 90.0% 98.0% 98.8% 0.267
YOLOv4-Tiny 100 99.6% 99.0% 100.0% 100.0% 0.550

YOLOv5 10 99.5% 98.8% 98.8% 99.3% 0.138
YOLOv5 50 99.4% 99.6% 99.8% 99.4% 0.700
YOLOv5 100 99.8% 99.7% 99.9% 99.5% 1.379
YOLOv8 10 99.7% 99.5% 99.7% 99.4% 0.158
YOLOv8 50 99.8% 99.7% 99.9% 99.4% 0.799
YOLOv8 100 99.9% 99.8% 100.0% 99.5% 1.576
ResNet50 10 91.4% 94.3% 96.4% 94.3% 0.117
ResNet50 50 95.9% 94.9% 96.3% 94.9% 0.600
ResNet50 100 96.9% 96.4% 97.1% 96.4% 1.000

Regarding the results for each class (Ok and Not ok), YOLOv4-tiny, YOLOv5, and
YOLOv8 presented a consistent precision and accuracy, as seen in Table 4. However,
YOLOv4-tiny exhibited 100% for both precision and accuracy for Not ok and Ok classes.
ResNet50 followed with a precision of 95.1% and 95.4% for Not ok and Ok, respectively,
while the accuracy for Not ok and Ok classes was 97% and 96.6%, respectively. Recall and
mAP were similar for YOLOv4-tiny, YOLOv5, and YOLO v8, followed by ResNet50.

Table 4. Architectures assessing two classes.

Architecture Class Epochs Accuracy Precision Recall mAP

YOLOv4-Tiny Not ok 100 100.0% 100.0% 100.0% 100.0
YOLOv4-Tiny Ok 100 100.0% 100.0% 100.0% 100.0

YOLOv5 Not ok 100 99.9% 99.7% 100.0% 99.5
YOLOv5 Ok 100 99.9% 99.8% 99.8% 99.4
YOLOv8 Not ok 100 99.7% 99.8% 100.0% 99.5
YOLOv8 Ok 100 99.9% 99.8% 99.9% 99.5
ResNet50 Not ok 100 97.0% 95.1% 95.1% 94.9
ResNet50 Ok 100 96.6% 95.4% 95.4% 96.3

4.2. Human Visual Inspection

The human visual inspection analysis resulted in an overall precision of 92.4%. Re-
garding each inspector, inspectors B and C exhibited a precision of 95.3%, while inspector
A showed a precision of 86.7%, as seen in Table 5. Similarly, the overall accuracy was 97%,
while for inspectors, it ranged from 94.7% for inspector A to 98.1% for B and C. The recall
was similar for inspectors B and C, while A presented lower values.

Regarding the classes, inspectors exhibited a precision of 100% for both low-volume
wreaths and Ok wreaths and 98.7% for the empty class (see Table 6). The precision for
brown and high-volume classes was 81.4% and 86.3%, respectively. Regarding accuracy, all
five classes presented values from 94.2% to 100%.
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Table 5. Total scores obtained by the inspectors.

Inspector Precision Accuracy Recall

A 86.7% 94.7% 86.7%
B 95.3% 98.1% 95.3%
C 95.3% 98.1% 95.3%

Overall 92.4% 97.0% 92.4%

Table 6. Scores per class obtained by all the inspectors.

Class Precision Accuracy Recall

Empty 98.7% 96.2% 82.2%
Brown 81.4% 94.2% 92.2%

Lvolume 100% 98.0% 90%
Hvolume 86.3% 96.4% 97.8%

Vok 100% 100% 100%

When assessing two classes (defective wreath and correct wreath), the inspectors exhibited
an inspection precision and accuracy value of 100% for both defective and correct wreaths.

Attribute Agreement Analysis

For the attribute agreement analysis, the percentage of matches of each inspector vs.
the standard ranged from 70% to 94%; for all inspectors vs. the standard, the percentage
was 68% (with a 95% CI of 53.3% to 84.48%), as seen in Table 7. Fleiss’ Kappa statistics for
each inspector vs. the standard are depicted in Table 8, highlighting values ranging from
0.582 to 1, resulting in an overall Kappa value of 0.941 (p-value of 0.000).

Table 7. Assessment agreement between the inspectors and the standard.

Inspector Inspected
Number

Matched
Number Percentage 95% CI

A 50 35 70% (55.4%, 82.1%)
B 50 47 94% (83.4%, 98.7%)
C 50 45 90% (78.2%, 96.7%)

Overall 50 34 68% (53.3%, 80.4%)

Table 8. Fleiss’ Kappa statistics of each inspector vs. the standard.

Inspector Class Kappa SE Kappa Z p-Value

A Brown 0.737 0.081 9.031 0.000
Empty 0.582 0.081 7.129 0.000

High volume 0.848 0.081 10.393 0.000
Low volume 0.911 0.081 11.163 0.000

Ok 1.000 0.081 12.247 0.000
Overall 0.830 0.041 20.121 0.000

B Brown 0.883 0.081 10.820 0.000
Empty 0.935 0.081 11.451 0.000

High volume 0.979 0.081 12.001 0.000
Low volume 0.911 0.081 11.163 0.000

Ok 1.000 0.081 12.247 0.000
Overall 0.941 0.040 23.033 0.000

C Brown 0.883 0.081 10.826 0.000
Empty 0.978 0.081 11.982 0.000

High volume 0.867 0.081 10.630 0.000
Low volume 0.978 0.081 11.982 0.000

Ok 1.000 0.081 12.247 0.000
Overall 0.941 0.040 23.012 0.000
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Regarding the all-inspectors vs. standard, the overall Fleiss Kappa statistic was 0.904
(p-value of 0.000), indicating a good level of absolute agreement of the assessments between
all inspectors and the standard, as seen in Table 9. Notably, all inspectors showed adequate
Kappa values for each class; the lower value was 0.834 for the brown and empty class, while
the Ok class obtained a value of 1.0. Table 10 depicts the results regarding the agreement
between inspectors, highlighting an overall Kappa value of 0.86 (p-value of 0.000).

Table 9. Fleiss’ Kappa statistics of the inspectors vs. the standard.

Class Kappa SE Kappa Z p-Value

Brown 0.834 0.047 17.711 0.0000
Empty 0.831 0.047 17.645 0.0000

High volume 0.898 0.047 19.066 0.0000
Low volume 0.933 0.047 19.808 0.0000

Ok 1.000 0.047 21.213 0.0000
Overall 0.904 0.023 38.190 0.0000

Table 10. Fleiss’ Kappa statistics between inspectors.

Class Kappa SE Kappa Z p-Value

Brown 0.755 0.023 32.072 0.0000
Empty 0.792 0.023 33.601 0.0000

High volume 0.838 0.023 35.568 0.0000
Low volume 0.924 0.023 39.232 0.0000

Ok 1.000 0.023 42.426 0.0000
Overall 0.860 0.011 72.618 0.0000

5. Discussion

This study assessed visual human inspection and deep learning models to detect
objects and classify defects in decorative wreaths. The results indicated a similar perfor-
mance between inspectors and models. When assessing five classes, inspectors showed an
overall precision of 92.4%, just below the precision of 93.8% obtained with both YOLOv8
and YOLOv5. The accuracy obtained by the inspectors was 97%, while YOLOv5 exhib-
ited an accuracy of 98.2% with 100 epochs, YOLOv8 obtained 93.9% with 50 epochs, and
YOLOv4-tiny obtained 88.7% with 100 epochs. Concerning each class, both inspectors and
algorithms presented mixed results. The inspectors obtained a larger precision than the
algorithms did when assessing empty and low-volume wreaths; however, YOLOv4-tiny
showed a greater precision than the inspectors did for brown and high-volume wreaths.
Finally, for Ok wreaths, both inspectors and algorithms achieved a precision of 100%.

Regarding accuracy, the inspectors exhibited higher values than the algorithms did
for empty, low-volume, and Ok classes. However, for classes brown and high volume,
YOLOv5 presented higher accuracy values.

When assessing two classes, the inspectors exhibited a high precision, similar to all
three YOLO models, while ResNet50 showed slightly inferior values. Regarding accuracy, the
inspectors achieved an overall inspection accuracy value of 100% for both defective and correct
wreaths, while the algorithms showed an overall accuracy of 94.5% and 97.1%, respectively.

5.1. Deep Learning Models

The findings highlight the potential of YOLOv4-tiny, YOLOv5, and YOLOv8 in ac-
curately detecting and categorizing specific quality criteria associated with decorative
wreaths. These three models were trained with five classes, allowing for a more compre-
hensive assessment of the wreaths’ quality. YOLOv8 and YOLOv4-tiny achieved high
precision across different classes. While YOLOv5 demonstrated a slightly lower precision
when identifying all five classes, it presented higher accuracy and recall results. Thus, all
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three one-stage models are adequate options, indicating their ability to precisely and accu-
rately identify the different quality criteria of wreaths beyond a binary classification, thus
representing a potential advantage in agricultural inspection, where multiple parameters
contribute to overall product quality. Regarding assessing two classes, all one-stage models
exhibited a larger precision and accuracy than ResNet50, thus confirming that YOLOs
performed meaningly better than two-stage object detectors in inference time and detection
accuracy [21], due to the condition for a large dataset of labeled images per class to achieve
reasonable performance [52,53].

All three single-stage models exhibited numerous precision, accuracy, or recall values
greater than 99% when assessing five or two classes. Such metrics can suggest potential
overfitting risks; however, these results are in line with previous studies that also prevented
overfitting when using YOLOv4 [64,65], YOLOv5 [66–68], or YOLOv8 [69]. Overfitting
is a fundamental issue in supervised machine learning, which prevents generalizing the
models to fit observed data on training data, as well as unseen data on testing sets [70].
Frequent problems for overfitting are the lack of sufficient training data or uneven class
balance within the datasets [71]; thus, overfitting is particularly common for models
using small datasets [48]. Therefore, similar to previous studies [72,73], we conducted
different measures to prevent overfitting, including data augmentation [48] and a 70%-30%
training/testing ratio [50]. In addition, to increase the robustness of the models, the images
were captured using different wreaths for training and testing at different times and days
and using different filters and light conditions.

Although different deep learning models were utilized to detect defects in different
sectors [74,75], a few challenges persist due to the dependency of the performance on
datasets [76]. Despite utilizing a small dataset, our findings showed an adequate perfor-
mance when using one-stage models (YOLOv4-tiny, YOLOv5, and YOLOv8). For cases
where large datasets are unattainable, pre-training [77] and transfer learning [78] are practical
options when using small datasets. Additionally, with multi-scale training, YOLO detects
better on objects of different sizes and with an easy trade-off between the performance and
inferences [21]. Moreover, one-stage object detection models can work in real-time [79], thus
being an advantage over two-stage models. YOLO is designed for real-time object detection,
representing an adequate option for inspection in real-time in the agricultural sector [5,54].
Among six different YOLO versions, YOLOv4-tiny presented the best combination of accuracy
and speed, being considered for real-time in a previous study [80]. We used Google Colab,
obtaining adequate results and being effective in enabling deep learning architectures on
resource-constrained computers. Researchers and small enterprises can effectively train their
models with minimum investment by leveraging the available resources, including powerful
GPUs and ample memory. The Pay-as-You-Go approach (including Watson Studio, Kaggle
Kernels, Microsoft Azure Notebooks, and Codeanywhere) presents an accessible avenue for
companies seeking to harness the potential of deep learning architectures without the need
for expensive hardware upgrades.

5.2. Human Inspection

Our results indicated an overall human inspection accuracy of 97% (five classes) and
100% (two classes), which is greater than reported values in the manufacturing sector,
where the accuracy ranges from 80% to 85% [7], or even more critical industries such as
the inspection of aircraft engine blades, where the average appraiser agreement with the
ground truth was reported to be 67.69% [81], and 84% when operators were allowed to
use their hands and apply their tactile sense [82]. In this regard, high values of accuracy
and precision are related to different factors, including the complexity of the inspection
process, the training level, and the experience of inspectors. In this study, wreaths are not
considered a critical product, the inspection process is relatively simple, and inspectors
averaged five years of experience, thus not presenting common problems in the agricultural
context, such as object size and occlusion [83]. Particularly, training is critical since a human
inspector’s accuracy usually lies between 70 and 80% after a training period [84]. Moreover,



Horticulturae 2023, 9, 1213 14 of 21

depending on the product, the inspection process might include pure visual inspection,
another sensorial inspection such as tactile inspection, or a combination. Evidence from
various industries suggested that a combination of visual and tactile inspection improved
respondent detection [82,85].

For the attribute agreement analysis, we computed Kappa, which is a common statistic
used to assess the effectiveness of attribute-based inspections [86], allowing us to assess
the reliability of agreement between a fixed number of assessors and being more robust
than the percent agreement of the AAA [87]. The overall kappa value of 0.9046 indicated a
good level of absolute agreement of the assessments between inspectors with the standard.
Compared with other industries, this measure is adequate since the agreement acceptance
limits for the aerospace industry indicate unacceptable values lower than 80% [88].

5.3. Inspection Challenges

The comparison of the performance between visual human inspection and inspec-
tion using AI tools has shown different results depending on several factors, including
the complexity of the inspection, context, data availability, and inspectors’ experience,
among others. Despite the common finding of DL algorithms outperforming human visual
inspection [89,90], this is not always the case. Some studies reported mixed and similar
results [83,91] or a lower model performance compared with human inspectors [92]. This
variety of results indicates a gap in fully automated inspection and a prevalence of human
intervention, including cases where algorithms initiate the inspection and inspectors in-
tervene for dubious items or items below a predefined threshold [93,94]. In all cases, DL
models assist inspection activities by reducing human intervention, thus reducing physical
and mental fatigue.

Time for processing and inspecting is another critical factor when comparing human
visual inspection and AI-assisted inspection. In this study, the average human inspection
time was 9.26 s per wreath, while models averaged less than 1 s per wreath; this is in
line with previous studies where inspectors and algorithms exhibited similar performance
except in detection speed, where algorithms are superior [89,91].

Visual and tactile inspection might enhance the inspection performance, particularly
for cases with restricted views or where surface inspection is required. However, visual
and sensorial inspections might be complex for agricultural and floricultural applications.
Detection in agriculture settings has particular features and, frequently, is more challenging
than standard detection benchmarks [95]. Images of the field might comprise several
objects with high-scale variance, occlusion of objects, and similarity to the background
structures [83].

In our study, wreath images present minimum scale variance. However, for inspections
that require detecting objects at different scales and handling small objects effectively,
feature extraction techniques, including Feature Pyramid Network (FPN) [96], might be
used, which has been successfully utilized in other object detection models, such as Faster
R-CNN and RetinaNet. Additionally, the quantity of objects to inspect is critical. In datasets
with several objects (dozens or hundreds), algorithms outperformed humans, while this is
the opposite in datasets with the prominence of occlusion [83].

5.4. Limitations and Future Work

The limitations of this study are various. The results are based on a specific and small
dataset and, thus, may not generalize to inspections of other ornamental products or other
floricultural and agricultural contexts. Regarding visual inspection, we utilized a small
sample size of inspectors; therefore, subjectivity might affect the result. In addition, we
did not control environmental conditions (e.g., temperature and humidity), which might
affect the inspection process. This study focused on assessing visual inspection and DL
inspection when detecting five classes of wreaths, thus not focusing on modifying the
network, with this being a limitation of this study. The dataset was adequately balanced
for five classes; however, for the complementary analysis using two classes, an adequate
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balance was not possible, due to limitations on the material. Thus, balancing the two classes
for further analysis remains for future research. In addition, this research did not explore
sociotechnical factors that might have an impact on the results. Therefore, further analysis is
necessary, including refinement of the models and modifications of the networks to improve
their performance. Moreover, expanding the dataset to include complex backgrounds is
also recommended for future research. In addition, more research is required to validate
these results in various agricultural settings, including exploring additional datasets and
environmental conditions, as well as employing advanced techniques to advance the
utilization of deep learning models in agricultural inspection and quality assurance.

6. Conclusions

This study compared human visual inspection with deep learning models for in-
specting decorative wreaths. The results indicated that the models presented similar
performance to humans in terms of precision and accuracy, highlighting the DL suitability
in enhancing quality inspection by leveraging the models’ ability to capture subtle details
and quality flaws that the human eye might miss. Notably, one-stage models such as
YOLOv4-tiny, YOLOv5, and YOLOv8 resulted in a similar or slightly superior performance
than inspectors in detecting quality flaws. Also, they outperformed a two-stage model such
as ResNet50, providing evidence of adequate performance with small datasets and being
suitable for real-time inspection. These findings have practical implications for quality con-
trol processes in floriculture and agriculture, aiding in identifying and mitigating material
absence/excess and color-related issues.

Shifting the paradigm from predominant human-driven inspections to automated,
human-supported inspections requires careful consideration. Implementation strategies
should encompass a phased approach involving technology integration, training programs
for human operators to transition into supportive roles, and validation of the automated
systems’ performance against established benchmarks. Furthermore, ethical implications
related to potential effects on labor should be thoughtfully addressed.

By assisting humans with digital technologies and automation for inspection purposes,
organizations can embrace the full potential of Industry 4.0, making the inspection process
more intelligent and reliable.
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Appendix A

Table A1. Summary of studies using different deep learning architectures in agricultural contexts.

Authors Dataset Feature Architecture Accuracy Precision

Ismail and Malik (2022)
[20]

Apples and
bananas

Color

ResNet50 +
DenseNet-121 +
MobileNetV2

97.2% NR

DenseNet-121 +
NASNet-A +
EfficientNetB0

98.6% NR

EfficientNetB0 + B1 +
DenseNet-121 98.9% NR

EfficientNetB0 + B1 + B2 99.5% NR

Tan et al. (2022)
[56] Rice Volume or density

EfficientnetB4 99.47% 99.53%
Densenet121 99.06% 98.79%
ResNet50 98.97% 98.74%
VGG16 94.84% 94.55%

Ponce et al. (2019) [39] Olive-Fruit Shape

AlexNet 89.9% NR
Inception-ResNetV2 91.81% NR
InceptionV1 94.86% NR
InceptionV3 95.33% NR
ResNet50 94% NR
ResNet101 95.91% NR

Momeny et al. (2022) [18] Orange infected Color

ResNet18 NR 100%
GoogleNet NR 100%
ShuffleNet NR 100%
ResNet50 NR 100%
MobileNetv2 NR 100%
DenseNet201 NR 100%

Li et al. (2021) [29] Grape test set Color and quantity

Faster-RCNN(Resnet50) NR 90.69%
SSD300 NR 89.82%
YOLOv4 NR 92.98%
YOLOv4-tiny NR 85.56%
YOLO-Grape NR 92.21%

Razfar et al. (2022) [97] Weed in soybean Texture

MobileNetv2 30.37% NR
ResNet50 82% NR
Custom 1 (4-layer CNN) 90.33% NR
Custom 1 (5-layer CNN) 97.7% NR
Custom 1 (8-layer CNN) 97.17% NR

Cruz et al. (2019) [35]
Grapevine

yellows Color

AlexNet 97.63% 89.62%
GoogleNet 96.36% 92.8%
Inceptionv3 98.43% 96.92%
ResNet50 99.18% 96.69%
ResNet101 99.33% 97.09%
Squeeze Net 93.77% 90.82%
Human 75.69% 73.35%

Veeragandham and Santhi
(2022) [37] Corn weed Shape

ResNet101 98.33% 98.35%
ResNet50 99.16% 99.17%
VGG19 94.5% 94.6%
VGG16 96.83% 96.93%
AlexNet 99% 99.01%

Zhang et al. (2021) [98] Rice Color RTR-CPS model 97.76% NR
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Table A1. Cont.

Authors Dataset Feature Architecture Accuracy Precision

Zhu et al. (2023) [99] Apples leaf Color and shape

SSD NR 86.2%
Faster-RCNN NR 82.1%
YOLOv4 NR 84.5%
YOLOv5 NR 87.6%
Apple-Net NR 93.1%

Giefer et al. (2020) [100] Fruits Shape
3D pose model 82.48% NR
Xception 90.69% NR
InceptionResNetV2 92.68% NR

Chen et al. (2022) [28] Pineapple Color and shape
Faster RCNN 65.45% NR
SSD512 46.4% NR
YOLOv4 82.49% NR

Ge et al. (2022) [34] Tomato Color and shape

YOLOv5 s NR 99.5%
YOLOv5 m NR 99.5%
YOLOv5 1 NR 99.5%
YOLO-deepsort NR 99.5%

Gonzalez-Huitron et al.
(2021) [49] Tomato leaves Color

MobileNetv2 75% 89%
NasNetMobile 84% 88%
Xception 100% 100%
MobileNetv3 98% 98%
AlexNet 98% 98%
GoogleNet 99% 99%
ResNet18 99% 98%

Mohapatra et al. (2021)
[101]

Banana, apple
and orange Color

CNN 99% NR
R-CNN 97.86% NR

Anh et al. (2022) [57] Garlic Color and shape
modified multi-class
model 82.9% 79.4–98.5%

multi-label 95.2% 79.4–98.5%

Nasiri et al. (2019) [55] Date Shape VGG16 98.49% 96.63%

Piedad et al. (2018) [102] Banana Color and shape
ANN 90.03% NR
SVC 85.68% NR
Random Forest 93.18% NR

Alipour et al. (2021) [103] Flowers Classes

SVM 91.36% NR
KNN 100% NR
Random Forest 100% NR
DNN 31.53% NR
VGG16 91.36% NR
VGG19 100% NR
InceptionV3 100% NR
Resnet50 100% NR

NR denotes not reported; NASNet-A, Neural Architecture Search Network Type A; EfficientNetB0, Efficient Network
Type B0; “B1, B2, B4”, different variants of Efficient-Net; VGG16, a deep neural network with 16 layers from the VGG
(Visual Geometry Group) architecture; Faster-RCNN, a variant of the R-CNN for fast object detection; SSD300 and
SSD512, Single-Shot MultiBox Detectors with different input sizes; YOLOv4 and YOLOv5, You Only Look Once
versions 4 and 5; YOLO-Grape, a specific variant of YOLO; Custom 1 (4-layer CNN), Custom 1 (5-layer CNN), and
Custom 1 (8-layer CNN) are custom models with different numbers of convolutional layers; CNN, Convolutional
Neural Network; R-CNN, Region-based Convolutional Neural Network; ANN, Artificial Neural Network; SVC,
Support Vector Classifier; Random Forest, ensemble learning algorithm; SVM, Support Vector Machine; KNN,
K-Nearest Neighbors; DNN, Deep Neural Network; and Multi-label, model for multi-label classification.
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