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Abstract: Accurate localization of hedges in 3D space is a key step in automatic pruning. However,
due to the irregularity of the hedge shape, the localization accuracy based on traditional algorithms is
poor. In this paper, we propose a deep learning approach based on a bird’s-eye view to overcoming
this problem, which we call HeLoDL. Specifically, we first project the hedge point cloud top-down as
a single image and, then, augment the image with morphological operations and rotation. Finally, we
trained a convolutional neural network, HeLoDL, based on transfer learning, to regress the center
axis and radius of the hedge. In addition, we propose an evaluation metric OIoU that can respond
to the radius error, as well as the circle center error in an integrated way. In our test set, HeLoDL
achieved an accuracy of 90.44% within the error tolerance, which greatly exceeds the 61.74% of the
state-of-the-art algorithm. The average OIoU of HeLoDL is 92.65%; however, the average OIoU of
the best conventional algorithm is 83.69%. Extensive experiments demonstrated that HeLoDL shows
considerable accuracy in the 3D spatial localization of irregular models.

Keywords: green hedge; point cloud; model fitting; deep learning; CNN

1. Introduction

With the rise of the concept of “carbon peaking and carbon neutral”, the task of
achieving green development has become the mission of the times. Regular maintenance
of hedges is an important task in the green development process. However, due to the
increasing number of hedges, it has become increasingly difficult to rely on manual main-
tenance. Recently, automated hedge trimmers have been widely used, which can greatly
reduce labor costs and avoid some potential safety hazards caused by manual garden
maintenance. However, for hedges, it is difficult to locate them automatically because of
their extremely irregular shape. As mentioned in the AdaHC [1] proposed by Li et al.,
the key to automating hedge maintenance is the precise localization of its center axis and
radius. The precondition for the implementation of the AdaHC method is that the camera
must be above the hedge. However, at this point, it is not certain where the hedge is, so
the solution is not fully automated. Therefore, the 3D localization of hedges is the key to
automated trimming.

The shape of the hedges studied in this paper was mainly sphere-like hedges. The
hedge point cloud is used as the initial data. Thus, the problem was transformed into a
localization problem for irregular spherical shapes. The target was to obtain the central
axis of the hedge, as well as the height information. Previous methods for 3D object
localization [2–4] were based on traditional algorithms, which can show relatively good
results for regular models. However, because of the irregularity of the hedge, the fitting
results have more uncertainties. Therefore, the location methods based on these traditional
algorithms still have a big defect.

However, Krizhevsky et al. proposed the object classification algorithm AlexNet [5]
based on deep learning in the ImageNet [6] contest. As a result, the deep learning
algorithm [7–10] emerged, and its detection accuracy and speed far exceeded the effect
based on the traditional algorithm at that time. With the development of autonomous
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driving technology in recent years, some excellent point-cloud-based perception solutions
have been proposed [11–14]. These solutions have inspired us greatly, although they cannot
locate hedges directly.

In this paper, we propose a novel 3D hedge localization method based on deep learning.
Firstly, the height H of the hedge point cloud is quickly obtained by heap sorting. Secondly,
the hedgerow’s point cloud is projected onto a single-channel image with a resolution of
900× 900. Each pixel width corresponds to the actual distance of 0.5 cm, and the center of
the image is the centroid of the point cloud in the XOY plane. Thirdly, the two-dimensional
convolution neural network was used to extract the image features. Finally, the detection
head module was used to regress the hedge center axis (X, Y) and radius R. Moreover,
inspired by the intersection over union (IoU), we propose the intersection and union ratio
between circles as one of the evaluation indexes of the prediction results, which we call the
OIoU. The main contributions of this paper are as follows:

a. A method of extracting green hedge point cloud information from images is
proposed. This method uses pixel information to extract point cloud information by
associating pixels with point clouds.

b. A method based on deep learning is proposed for the 3D localization of hedges. Its
accuracy outperforms the state-of-the-art methods by a significant margin.

c. An evaluation index, the OIoU, is proposed. Combining center distance error and
radius error, this index can measure the coincidence degree between circles more effectively.

d. A data augmentation method of rotating the image around the center of the mark
is proposed. This method not only greatly improves the accuracy of the model, but also
accelerates the convergence of the model.

The rest of this paper is organized as follows. First, the related works are introduced
in Section 2. Section 3 introduces the dataset, as well as the details of the proposed
method. The experimental results are given and discussed in Section 4. Finally, we give the
conclusions of this study and the future work that needs to be carried out in Section 5.

2. Related Work

To solve the problem of hedge localization in a more intuitive way, we need 3D
localization of hedges. According to the recent literature, there are two main schemes that
can be used to achieve 3D hedge localization: (1) a hedge localization algorithm based
on conventional algorithms for circle fitting; (2) a hedge localization algorithm based on
conventional algorithms for sphere fitting.

The hedge localization method based on conventional algorithms for circle fitting first
uses min-heap sorting [15] to obtain the height information of the hedge. Then, the point
cloud is projected top-down, after which the circle fitting [3,16,17] is performed on the
planar point cloud to obtain the center axis and radius of the hedge. The Hough transform
was first proposed by Hough [16] and later popularized by [18] Duda and Hart. It is one
of the basic methods to detect geometric shapes from images in image processing. The
Hough transform uses the transformation between two coordinate spaces to map a curve
or line with the same shape in one space to a point in another coordinate space to form a
peak, thus transforming the problem of detecting arbitrary shapes into a statistical peak
problem. A Hough circle detection algorithm of a cumulative array based on the voting
strategy [19] was proposed by Kimme et al.. When the radius of the circle to be detected is
known, the algorithm can accurately detect the circle of the corresponding size. However,
if the radius is unknown, the algorithm needs to occupy more parameter space; not only
is the calculation speed slow, but also the stability of the algorithm is poor, and it very
easily results in false detection. Fischler and Bolles proposed random consistent sampling
(Ransac) [3] for the first time. They used Ransac to solve the location determination problem.
Grbić et al. proposed an ellipse detection algorithm [20] based on Ransac and the least-
squares method, which has good practicability in medical image analysis and ultrasonic
image segmentation. The idea of the Ransac algorithm is to estimate the parameters of the
mathematical model iteratively from a group of observation datasets containing “external
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points”. It has a certain probability to obtain a reasonable result, and the number of
iterations must be increased to improve the probability. However, the hedge is not regular
and spherical, as it may be raised in some places and depressed in others. Therefore,
the Ransac-based method can be somewhat accurate, but there will always be some error.
Therefore, it is an uncertain algorithm. For the same reason, the minEnclosingCircle method
in OpenCV [17] has a rather good fit for regular circles, but the fit for the green hedge circle
contour is not as good as it could be.

The hedge localization method based on conventional algorithms for sphere fitting
directly fits the input hedge point cloud to the sphere [2,3,21] to obtain the sphere center
and radius of the hedge. The X and Y coordinates of the sphere center are then used to
determine the central axis of the hedge. The height of the hedge is still obtained by the
min-heap sorting method [15]. Schnabel et al. presented an automatic algorithm [22]
to detect elementary shapes in unorganized point clouds, which was used in PCL [21].
The method is based on random sampling to detect planes, spheres, cylinders, cones, and
tori. The algorithm is robust even in the presence of many outliers and a high degree of
noise. In addition, the algorithm is conceptually simple and easy to implement. However,
the algorithm is tuned according to the a priori knowledge of different primitive shapes
and parameters. Cao et al. proposed a spherical parameter detection method [2] based on
the hierarchical HT (HHT). The HHT can reduce the storage space and calculation time
significantly and is robust to noises and artifacts. However, the method fails completely
when the gradient of the object is weaker than its background gradient. Ogundana et al.
implemented the accumulator of the sparse 3D matrix model [4]. This method has the
advantages of memory saving, high computational efficiency, and good 3D feature detection
ability in sphere experimental shape data fitting. The method has proven to be fast and
accurate. However, the method only detects the sphere center coordinates because it
requires that the radius of the sphere is known. In fact, the hedge sphere to be fit is
unknown, so the method is not applicable to hedge sphere fitting. Wang et al. [23] proposed
an energy-based method for the automatic identification of multi-spheres, which is similar
to the processing flow of Ransac. The main difference is that an energy-based judgment
indicator is applied instead of the threshold-based indicator in Ransac. The results showed
that the method outperforms the Ransac- and Hough-based methods in terms of accuracy
and robustness. However, the experimental object of the method is its regular point cloud
model, while such a regular shape hardly exists in the point cloud of hedgerows, so it is
not applicable to the fitting of hedgerow spheres. Furthermore, the detection speed of the
method is slow and cannot achieve a real-time processing effect.

3. Materials and Methods
3.1. Materials

The hedge point cloud was collected with a Livox-Horizon LIDAR. Some parameters
of the solid-state LIDAR Livox-Horizon are as follows. The laser wavelength is 905 nm;
the distance random error is (1σ@20 m) < 2 cm; the angular random error is 1σ < 0.05◦;
the beam divergence is 0.28◦ (vertical) × 0.03◦ (horizontal); the field of view angle is 81.7◦

(horizontal) × 25.1◦ (vertical); the measuring range (@10 klx) is 90m@10% reflectivity;
the data rate is 240,000 points per second. We collected 564 green hedge point cloud data.
First, we fixed the Livox-Horizon LIDAR to the side of our unmanned car, as shown in
Figure 1.

In the process of collecting data, we also noticed that the reflection intensity of the
point cloud was higher when the Livox-Horizon collected at a close distance, which could
not normally show the shape of the hedge at this time. Therefore, in the process of data
collection, we avoided this phenomenon. The closest distance between the LIDAR and
hedge was about 1 m, and the farthest distance was about 5 m. We walked along a straight
line at different distances from the hedgerow to the car and recorded the point cloud bag
based on the Robot Operating System [24]. It is necessary to be aware that the hedge is on
the side of the car and not in front of it. In addition, due to the nature of the near-dense
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and far-sparse hedge point clouds, different acquisition distances were used to enrich
the diversity of the samples and, thus, improve the robustness of the network model. We
sampled the data at intervals of 10 frames. The traveling speed of the acquisition equipment
was about 1 m/s, and the overlap rate of point clouds between two adjacent sampling
points was between 27% and 79%. In addition, the distance between each hedge was about
1 m. Because the collection equipment was moving forward, we could extract the point
cloud of the same hedge at different angles, which can also enrich the diversity of the
data. Then, using the point cloud processing software CloudCompare [25], a total of 564
hedge point clouds were extracted from all frames of the data. In addition, we performed
the dilation and erosion operations on the data, which were used to increase the amount
of points in the dataset. We also rotated the data to expand the dataset. The workflow
followed in the process of the morphological operation and image rotation will be described
in detail in Sections 3.3.3 and 3.3.4. The dataset is divided as shown in Table 1.

Figure 1. Data acquisition equipment and scene. In order to ensure that the LIDAR can acquire the
height of the hedge from bottom to top, the installation height of the LIDAR in this study was about
0.8 m. In other working scenarios, the height of the LIDAR needs to be adjusted according to the
height of the hedge.

Table 1. The details of the dataset.

Dataset Hedge’s Point Cloud Projected Image Augmented Data

Training set 334 334 12,024
Validation set 115 115 4140

Testing set 115 115 \

Then, we circled the maximum outer circle of the point cloud contour in the original
image without morphological operations based on the Labelme [26] software as the an-
notation information of the image. We invited three skilled and experienced gardeners
to participate in our image annotation. Skilled gardeners were asked because it is more
informative to use their experience as a criterion to determine the circles to be trimmed.
Then, two rules were established that need to be followed during the annotation process.
First, the annotated circle should coincide with the point cloud outline of the hedge as much
as possible. Second, if it was difficult to identify the circles represented by the point cloud
wheel outline, the labeling should strictly follow the actual boundary of the hedge. After
the three gardeners were labeled separately, the average of the three labeling results was
obtained and used as the final labeling result. Thus, the mean value of the measurements
was the final labeling result for each sample. Finally, each labeled circle consisted of two
key points, one of which was the center of the circle and the other a point on the boundary
of the circle. The distance between these two key points was the radius. Additionally, we
specifically counted the circle center coordinates X, circle center coordinates Y, and radius R
for each sample and converted these coordinates to values in the LIDAR coordinate system



Horticulturae 2023, 9, 227 5 of 18

to find their standard deviations. The respective maximum values of the three standard
deviations were 0.0208, 0.0221, and 0.0242, respectively. On the other hand, the height
information of the hedge was measured by three experienced gardeners using the Cloud-
Compare software, based on the original point cloud of the hedge. As before, we averaged
the measurements of the three people and used them as height annotation information for
the hedge point cloud.

3.2. Problem Formulation

In the operation of the automatic trimmer, the trimmer needs to be placed directly
above the hedge, so the height information at the top of the hedge and the center axis of the
hedge need to be known. In addition, the hedge radius was used to determine whether the
hedge needs to be trimmed because there are always some hedges that are not well grown
and are too small to be trimmed. It is worth mentioning that if the LIDAR is mounted
low, there may be a lack of information on the top of the hedge. This problem can be
improved in two ways. Firstly, the hedge was localized at different measurement distances
l. The localization results were converted to the world coordinate system, and their average
value was taken as the final localization result. The other is to adjust the height h of the
LIDAR mounting position to ensure that the LIDAR can detect the top of the hedge. Both l
and h in the above two options need to be calibrated to the actual scene. In our experiments,
the LIDAR was installed at a height of 0.8 m, and the data collected ranged from 1 m to
5 m.

In this paper, given a point cloud X ∈ RN×3 of a hedgerow, we aimed to obtain its
center axis (X, Y), radius R, and height H. The center axis (X, Y) and height H were used
to adjust the position of the trimming tool, and the radius R was used to determine the
working range of the trimming tool. The overall framework of our approach is shown in
Figure 2.

Figure 2. The pipeline of our HeLoDL. The solid arrows represent the inference process, and the
dashed arrows represent the training process.

3.3. Pipeline of HeLoDL

The overall framework of our approach is shown in Figure 2, and the main steps are
shown as follows:

(0) Input: Hedge’s point cloud.
(1) Extract hedge’s height: We used min-heap sorting to extract the hedge’s height

according to the Z coordinate of the point cloud.
(2) Transform the point cloud information into image information: The X coordinate

and Y coordinate of all point clouds were averaged, respectively, to obtain X̄ and Ȳ. Then,
the center pixel of the image corresponds to (X̄, Ȳ). At the same time, the actual distance
0.5 cm is represented by each pixel width. Then, all point clouds within 2.25 m from
front to back and left to right were projected onto the image relative to (X̄, Ȳ). Finally,
if the point in the point cloud was projected onto a pixel, the pixel value was set to 255;
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otherwise, the pixel value was set to 0. Then, a binary image with a resolution of 900× 900
was obtained.

(3) Morphological operation: The aerial view obtained by Step 2 was dilated and
eroded by the image morphology to fill the gap in the image and filter out some noise
points on the edge.

(4) Rotation operation: All the images obtained from Step 3 were rotated around the
center of the marked circle and then used as the dataset of the experiment.

(5) Using the CNN to regress center axis (u, v) and radius r: The image obtained in
the fourth step was directly used as the input to the convolutional neural network. The
features of the image were first extracted by the mainstream backbone, and then, the size
and channels of the feature layers were further compressed by the convolution neural
network. The final output feature sizes of the network were 2× 1× 1 and 1× 1× 1, which
represent the center axis (u, v) and radius r of the hedge, respectively.

(6) Coordinate transformation: Transform u, v, and r in the pixel coordinate system to
the corresponding point cloud coordinate system to obtain X, Y, and R.

(7) Output: Center axis (X, Y), height H, and radius R.
In the later subsection, we provided a detailed description of the main content of the

above process.

3.3.1. Extract the Height Information of Hedge

This paper focused on how to obtain localization information for a given hedge point
cloud. The point cloud data preprocessing, however, involves our earlier work. The earlier
work mainly included joint LIDAR and camera calibration, hedge detection, frustum
generation, ground filtering, direct-pass filtering, and point cloud clustering. Therefore,
the work on point cloud data pre-processing was performed in the early stage and is not
shown in the paper. Therefore, we can assume that the hedge point cloud objects in this
paper are already the point cloud after filtering out the outliers. For the extraction of hedge
height, we sorted the point cloud Z value from large to small, and the average value of the
point cloud with the first 5% of the Z value represents the actual height of the hedge. We
used the small root heap sorting algorithm to set the data capacity of the heap to 5% of
the number of all point clouds, pressed the Z value of 5% of the point cloud into the heap,
traversed the remaining 95% of the point cloud, and compared the Z value with the value
of the top element of the heap. If it is greater than the top element of the heap, remove the
top element of the heap, and put it into the heap according to the sorting rule of the small
root heap; otherwise, skip the point. It is important to note that the value of 5% is based on
the data we currently used for testing. This parameter was not fixed. It was obtained by
calibrating the number of point clouds for different sizes of hedges and LIDAR according
to the actual situation. {

H = 1
n ∑n

i=k Zi
k = 0.95n

(1)

where H represents the height of the top of the hedge in the LIDAR coordinate system, n
represents the number of points in the point cloud, and k represents 95% times the total
number of points. The time complexity of the algorithm is O(n log m), and m represents 5%
of the number of point clouds.

3.3.2. Transform Point Cloud Information into Image Information

After the height of the hedge was obtained, we transformed the point cloud informa-
tion into image information. The process of transformation is shown in Figure 3. Firstly,
these point clouds were projected on the plane to obtain point clouds in the XOY plane in
the LIDAR coordinate system. Secondly, the average values of the X axis and Y axis of the
plane point cloud in the LIDAR coordinate system X̄ and Ȳ were obtained, respectively,
and then, a pixel matrix with a 900× 900 resolution was created. This corresponds to the
(X̄, Ȳ) coordinates of the plane point cloud to the pixel at (450, 450) in the pixel coordinates.
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The positive direction of the X axis in the LIDAR coordinate system is inthe negative
direction of the v axis in the pixel coordinate system, and the positive direction of the Y
axis in the LIDAR coordinate system is inthe negative direction of the u axis in the pixel
coordinate system. Then, a binary image containing the actual location information of the
point cloud was generated. The correspondence between the coordinates of the planar
point cloud in the LIDAR coordinate system and the pixel coordinates is shown as follows:{

u0 = Ȳ−Y
0.5 ∗ 100 + 450 Ȳ− 2.25 ≤ Y ≤ Ȳ + 2.25

v0 = X̄−X
0.5 ∗ 100 + 450 X̄− 2.25 ≤ X ≤ X̄ + 2.25

(2)

where (u0,v0) represents the coordinates of each pixel on the generated image. It should
be noted that the range of 2.25 m from the center of mass was chosen based on the actual
situation. The first thing was to make sure that the point cloud of the hedge did not exceed
this range. Secondly, it was considered that no hedge point cloud would be outside this
boundary when we rotate the image around the center of the label.

Figure 3. The transformation from spatial point cloud to planar image. To clearly show the position
relationship between (b) and (c), we swapped the pixel values of 0 and 255 in (c).

3.3.3. Morphological Operation

There is a problem with the images obtained from the above steps. Due to the sparsity
of the point cloud, the percentage of pixels of the point cloud on the image was very
small, and the distribution was relatively discrete. Intuitively, the point clouds occupied a
small number of pixels after projection onto the image. From the statistics in our dataset,
the largest cluster of point clouds had 8000 points, and the resolution of the image was
900 × 900. The number of pixels in the point cloud after projection was less than 1% of the
pixels on the image, so we believe that it is a relatively small percentage. Therefore, we
performed morphological operations on the image to make its features more obvious and
to filter out some noise at the same time. There are corrosion and dilation operations in
image morphological processing. The corrosion operation takes the minimum value in a
neighborhood of each location as the output pixel value of that location, while the dilation
operation is on the contrary. Therefore, for the sparse point cloud projection map, we used
the operation of dilating and then eroding to increase its features and filter out the excess
noise, as shown in Figure 4.

The principle to dilate the original image is as follows:

A⊕ B =
{
(x, y)|(B)xy ∩ A 6= φ

}
(3)

where A⊕ B means to dilate Image A with Structural Element B. In the above formula,
(B)x,y means that the origin of the structural element B is translated to (x, y). If the element
in B intersecting with A is not empty, then the pixel value at (x, y) is 0; otherwise, it is 255.

The principle to erode the original image is as follows:

A	 B =
{
(x, y)|(B)xy ⊆ A

}
(4)
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where A	 B means to erode Image A with Structural Element B. If all the elements in B
belong to A, then the pixel value at (x, y) is 255; otherwise, it is 0.

Figure 4. Image morphological operation.

3.3.4. Rotation Operation

After the previous steps, we obtained the image from point cloud projection and
processed by dilation and erosion, but the images we input were only irregular figures,
similar to a crescent moon. Because the point cloud of the hedge scanned by LIDAR is only
single-sided and the orientation of the point cloud shape on the image is also single after
conversion to a picture, we conjectured that, by the rotation of the image, the neural network
can learn more features of the circle to achieve better prediction. Although the input data are
only one-sided in practice, this does not impact enhancing the learning of circular features
by rotating the initial dataset. Additionally, since the center of rotation is the center of the
labeled circle, it does not change the central axis of the hedge point cloud, nor the radius,
even after rotation. Therefore, we rotated the point cloud image around the center point of
our label according to a series of angles. The corresponding relationship of pixel coordinates
before and after image rotation is shown in the following formula:[

u1
v1

]
=

[
cos θ − sin θ
sin θ cos θ

][
u0 − Center[0]
v0 − Center[1]

]
+

[
Center[0]
Center[1]

]
(5)

where Center represents the center of the labeled circle, θ represents the angle of counter-
clockwise rotation, and (u1, v1) represents the coordinates of each pixel after rotation.

The details of the rotation and the working criteria can be described as follows. First,
the center of rotation is the center of the labeled circle. Second, the object of rotation is the
pixel with the pixel value of 255 in the original image. Third, the rotation angle interval is
10°. The purpose of the third step is to train the neural network to learn richer features, so
the rotation angle interval was set relatively small. The image data after rotation is shown
in Figure 5.
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Figure 5. Image rotation operation. It should be noted that all of our annotations were made in the
original image, as shown in Figure 4. However, due to the poor visualization of the original images,
we put the annotation results on the morphologically processed images.

3.3.5. Using CNN to Regress Center Axis (u, v) and Radius r

As shown in Figure 6, the input of the neural network is a single-channel image
with a resolution of 900× 900, while the input images of the more popular backbone are
three-channel RGB images. To be able to use transfer learning to accelerate the convergence
of the network model, we first expanded the image to three channels by a layer of 3× 3 con-
volution. At this point, the backbone and its pre-trained model, which are the mainstream
in academia, were used to extract the features of the images. The output of the backbone is
the feature layer of 512× 29× 29, and the visualization of some of its channels is shown
in Figure 7. The maximum pool and convolution layer were used to further compress
the feature layers, and the number and size of channels were compressed to the size of
128× 7× 7.

Figure 6. CNN was used to extract key information from the hedges.

Figure 7. Partial feature maps extracted from backbone network.
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The head part of the model is mainly divided into two branches, namely CTHead and
RHead. In order to improve the overall performance of the network, we added batch nor-
malization [27] and ReLU activation functions [28] in each layer. Among them, the output
of CTHead is a 1× 1-sized feature layer of two channels, and the two channels represent the
X value and Y value of the center axis of the hedge, respectively. The output of RHead is a
1× 1-sized feature layer of a single channel, which was used to represent the radius R of
the hedge. The structure of the head module is shown in Figure 8.

Since there is only one hedge to be fit in each image, no classification operation was
performed in our scheme. Instead, the radius R and the center axis (X, Y) of the hedge
to be fitted were regressed directly, which is a typical regression problem. It is inevitable
that there will be some noises after the point cloud is projected to the image, and the L1
loss function is robust against the outliers in the data, so we used the L1 loss function to
measure the prediction of the model.

Loss = λCT
1
n

n

∑
i=1

(|ui − ûi|+ |v− v̂i|) + λR
1
n

n

∑
i=1

(|ri − r̂i|) (6)

where (ûi, v̂i) denotes the coordinates of the circle center of the i-th labeled circle in the pixel
coordinate system and r̂i is the radius of the labeled circle; (ui, vi) denotes the coordinates
of the circle center of the i-th predicted circle in the pixel coordinate system, and ri is the
radius of the predicted circle. λCT is the weight of the center axis error, and λR is the weight
of the radius prediction error. As the trimming radius of our trimming tool was already
determined, the accuracy of the central axis of the hedge was more important than the
accuracy of the radius. Therefore, we set λCT to 1 and λR to 0.5 as a way to make the
training process more focused on the task for central axis prediction.

Figure 8. The structure of the prediction head.

3.3.6. Training and Inference

After we transformed the point cloud into a picture with actual distance information,
we obtained a single-channel image with a resolution of 900× 900. We used the Adam
optimizer to adjust the parameters of the model. The initial learning rate of the optimizer
was set to 0.01, and the learning rate was adjusted dynamically according to the change of
the loss function during the training process. In addition, we used the backbone network
of ResNet [29] and Shu f f leNet [30], respectively; meanwhile, we used transfer learning in
the training process. At the initial stage of training, we first froze the weight parameters
of the backbone network to prevent them from being modified prematurely. Later in the



Horticulturae 2023, 9, 227 11 of 18

training process, we unfroze the weight parameters of the backbone network and trained
them together with the whole convolutional neural network.

The inference process is different from the training process, and the rotation operation
is dropped in inference. The neural network directly regresses the pixel coordinates of the
center axis of the hedge point cloud (u, v) and the pixel radius r. Using the formula 7, we
can transform the pixel coordinate center point (u, v) to the center axis (X, Y) in the LIDAR
coordinate system; at the same time, the pixel radius r is transformed to the radius R in the
LIDAR coordinate system. 

R = r∗0.5
100

XCT = X̄− 0.5 ∗ v−450
100

YCT = Ȳ− 0.5 ∗ u−450
100

(7)

4. Results

The convolutional neural network was trained on a server equipped with an NVIDIA
TITAN RTX GPU with 24GB of memory. The inference process of the HeLoDL model and
the various comparison methods were performed on a Lenovo laptop with an AMD R7
5800H CPU, 16GB RAM, and an Nvidia RTX 3060 GPU with 6GB of memory.

4.1. Evaluation Index
4.1.1. Evaluation Index Related to Center Axis and Radius

To fairly evaluate the performance of different algorithms, we considered the accuracy
of the position of the center axis of the hedge (X, Y) and the radius R, respectively. In
our evaluation index, we stipulated that the offset of the center axis of the hedge cannot
exceed 5 cm, which is a rigid index. Since each pixel grid represents the actual distance of
0.5 cm, the distance between the location of our predicted center axis and the labeled center
axis cannot exceed 10 pixels. Then, the evaluation index of circle center accuracy CTACC is
defined as follows:

f (i) =

{
1 i f

√
(ui − ûi)

2 + (vi − v̂i)
2 ≤ 10

0 otherwise
(8)

CTACC =
1
n

n

∑
i=1

f (i) (9)

CTACC cannot specifically express the accuracy of the algorithm. Therefore, we de-
signed two other indicators, the average error of the radius RERR and the center distance
error CTERR, to represent the error of the algorithm in the center point and radius, respec-
tively, which are defined as follows:

RERR =
1
n

n

∑
i=1

(|ri − r̂i|) (10)

CTERR =
1
n

n

∑
i=1

√
(ui − ûi)

2 + (vi − v̂i)
2 (11)

4.1.2. OIoU

For a single prediction circle, the distance error CTERR of the center of the circle can
effectively evaluate the accuracy of the center prediction, while the radius error REER of the
circle can effectively evaluate the accuracy of the radius prediction. However, the center
error CTERR and radius error REER cannot directly reflect the degree of overlap of the two
circles. Inspired by the classical IoU, we propose the OIoU. As shown in Figure 9, the OIoU
is the ratio of the area of the intersection of two circles to the union of the areas of two
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circles. The OIoU can intuitively reflect the coincidence of the predicted circle with the
ground truth circle, which is defined as follows:

OIoU =
Intersection

Union
(12)

if R1 + R2 < L12,
Intersection = 0, Union = π

(
R2

1 + R2
2

)
(13)

if R1 ≥ R2 + L12,
Intersection = πR2

2, Union = πR2
1 (14)

if R2 ≥ R1 + L12,
Intersection = πR2

1, Union = πR2
2 (15)

other cases,

Intersection = θO1R1
2 + θO2R2

2 − R1L12 sin∠AO1O2 − R2L12 sin∠AO2O1

Union = π
(

R1
2 + R2

2
)
− Intersection

(16)

where θO1 = arccos
(

L12
2+R1

2−R2
2

2L12R1

)
, θO2 = arccos

(
L12

2+R2
2−R1

2

2L12R2

)
.

Figure 9. Several situations of the OIoU.

4.2. Experimental Results

We performed experiments with other baseline methods in the test set. The baseline
methods to obtain the three-dimensional information of hedges through point clouds are
presented in Figure 10. In the first method, the Ransac sphere fitting algorithm was directly
used to fit the original point cloud of the hedge. In the second method, the original green
hedge point cloud was projected onto the XOY plane to obtain the plane point cloud, then
the boundary points of the plane point cloud were obtained based on the normal estimation,
and the circle was estimated by the Ransac circle fitting algorithm based on the boundary
points. In the third method, firstly, the original point cloud was projected in the top view
and transformed into an image. Next, the image was dilated and eroded. Then, the contour
with the most boundary points was extracted. Finally, the outer circle of the contour was
extracted using the minEnclosingCircle function in OpenCV.
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Figure 10. The pipeline of several baseline methods.

In our method, considering the accuracy and complexity of the model, we chose
a ResNet34-based network model and compared it with the other three solutions. It
can be seen from Figure 11 that our method is obviously better than the other solutions
in predicting the center and radius of the circle. As shown in Table 2, our method is
significantly better than the two traditional methods in terms of center accuracy. The
average center distance error in our method was 2.67 cm, which fully meets the accuracy
requirements of 5 cm. The importance of the prediction radius task is second only to
the central point prediction task, and the radius error of our method was 1.61 cm, also
showing strong stability and accuracy. Of course, we can see that the time consumption of
our method is very short, and we can achieve real-time processing. The OIoU metric we
designed also showed a high level at the same time. The results of the predicted radius and
circle center tasks can also prove the reasonableness and comprehensiveness of the OIoU.

Figure 11. Visualization of the prediction of different methods. The red circle represents the predicted
circle, and the green circle represents the ground truth. It is worth noting that the small green
circle indicates the allowable error range, and if the center of the red circle can fall inside that circle,
the prediction result meets the error requirement.

Table 2. Comparison with the state-of-the-art algorithm.

Method CTACC (%) RERR (cm) CTERR (cm) OIoUmean (%) Timemean (ms)

Ransac Sphere Fitting 36.522 7.091 6.935 73.775 16.603
Ransac Circle Fitting 61.739 4.398 5.458 83.689 13.132
minEnclosingCircle 28.696 2.430 9.265 80.914 13.509

HeLoDL 90.435 1.635 2.712 92.654 12.727
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It is also necessary to note that since the same height information acquisition scheme
is used in several algorithms. Therefore, we will not compare the height information in the
experimental results. Of course, the process of height information extraction is included
in the inference process of each algorithm, so the time consumption of several algorithms
regarding the inference process is fair.

4.3. Comparative Experiment
4.3.1. The Effect of Different Backbones

In this section, we tried different backbones, such as ResNet [29] and Shu f f leNetV2 [30].
ResNet adopts the structure of the skip connection, which greatly increases the depth of
the network and can extract more deep features. In addition, the ResNet backbone network
suppresses the problems of gradient explosion and gradient disappearance. Shu f f leNetV2
is a lightweight backbone network in terms of speed and accuracy. In addition, in order
to fit the lightweight network on embedded devices, we also tested the model based on
Shu f f leNetV2. The results are shown in Table 3. It can be seen that the lightweight network
model has lower complexity, less computational time, and faster training speed, but the
detection accuracy is not as good as that of the backbone network with a greater depth.

Table 3. The effect of applying different backbone networks to the model.

Backbone CTACC
(%)

RERR
(cm)

CTERR
(cm)

OIoU
(%)

In f erTime
(ms)

TrainTime
(hours) Gflops Parameters

(millions)
Memory

(M)

ResNet18 83.482 1.865 3.314 91.045 11.384 16.255 30.115 11.794 445.205
ResNet34 90.435 1.635 2.712 92.654 12.727 26.352 60.732 21.893 641.014
ResNet50 90.435 1.565 2.694 92.465 16.493 43.164 68.115 25.893 1818.297

ShuffleNet_v2_x0_5 65.224 2.573 5.559 87.364 15.103 8.261 0.792 1.543 212.841
ShuffleNet_v2_x1_0 79.132 2.114 3.691 90.062 14.844 11.943 2.583 2.455 370.992
ShuffleNet_v2_x1_5 76.527 2.452 3.687 89.674 15.213 15.697 5.132 3.684 510.53

4.3.2. Ablation Study

In this section, we validated the performance of different combinations of transfer
learning, the rotation operation, and the morphological operation. The pre-training weight
of the model is generally based on the rich dataset, but the color of the image dataset in
this paper is relatively simple. Therefore, we hoped to study whether the transfer learning
works well for the model proposed in this paper. At the same time, we also wanted to
know the effect of image rotation and the morphological operation on the accuracy of the
model. Based on this, we designed eight groups of experiments, as shown in Table 4. We
trained the model according to the requirements of the eight groups of experiments. This
experiment was based on ResNet34.

Table 4. The design of the ablation experiment.

Experimental Serial Number 0 1 2 3 4 5 6 7

Transfer Learning 8 4 8 8 4 8 4 4
Rotation operation 8 8 4 8 4 4 8 4

Morphological operation 8 8 8 4 8 4 4 4

To analyze the influence of several operations on the model training process and model
accuracy, we visualize the accuracy and loss of the model on the validation set during
the training in Figure 12. In addition, in order to directly show the performance of center
prediction on the validation set in each group of experiments, we used the area S of the
val_ct_acc curve and the X axis of the coordinate system, which is defined as:
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S =
200

∑
i=1

val_ct_acc(Epochi) (17)

where val_ct_acc denotes the CTACC of the model on the validation set at the time of
training in each epoch. Epochi denotes the i-th time the neural network completes the
forward computation and backward propagation. Moreover, in order to verify the real
effects of the models in each experiment, we tested the models of each experiment using
115 sets of experimental data in the test set, respectively, and the experimental data are
shown in Table 5.

Figure 12. Ablation study of loss and CTACC on the validation set during model training, where S
denotes the area enclosed by the curve val_ct_acc and the X-axis.

Comparing the results of Experiments 0 and 1, 2 and 4, 3 and 6, and 5 and 7, we
can observe from Table 5 that transfer learning plays a critical role in improving CTACC.
Comparing the results of Experiments 0 and 2, 1 and 4, 3 and 5, and 6 and 7, in Table 5, we
can estimate that the rotation operation improves the CTACC of the model on the test set by
an average of 14%. Furthermore, it can also be clearly seen from Figure 12 that the rotation
enhancement operation of the training set not only accelerates the convergence speed of
the model training, but also greatly improves the accuracy of the model. Comparing the
results of Experiments 0 and 3, 1 and 6, 2 and 5, and 4 and 7, as we can see in Table 5,
the morphological operation of the image also improves the CTACC.

Table 5. Ablation study results for the test set.

Experimental Serial Number 0 1 2 3 4 5 6 7

RERR (cm) 2.980 2.494 1.849 2.688 1.816 1.720 2.196 1.635
CTERR (cm) 4.696 5.060 2.959 4.941 2.815 2.785 4.237 2.712
OIoU (%) 88.022 88.084 91.767 88.311 91.699 92.200 89.815 92.654

CTACC (%) 71.304 72.174 86.957 74.783 87.826 88.696 76.522 90.435

Comparing the results of Experiments 0 and 1, 2 and 4, 3 and 6, and 5 and 7, we
can observe from Table 5 that transfer learning plays a critical role in improving CTACC.
Comparing the results of Experiments 0 and 2, 1 and 4, 3 and 5, and 6 and 7, in Table 5, we
can estimate that the rotation operation improves the CTACC of the model on the test set by
an average of 14%. Furthermore, it can also be clearly seen from Figure 12 that the rotation
enhancement operation of the training set not only accelerates the convergence speed of
the model training, but also greatly improves the accuracy of the model. Comparing the
results of Experiments 0 and 3, 1 and 6, 2 and 5, and 4 and 7, as we can see in Table 5,
the morphological operation of the image also improves CTACC.
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As shown in Figure 12 and Table 5, Experiment No. 7 showed the best results compared
with the other groups due to the simultaneous use of transfer learning, the image rotation,
and the morphological operation of the image. This strongly proves the necessity of the
method of our data pre-processing and transfer learning.

4.4. Visualization

In order to demonstrate the working principle of the method in this paper more clearly,
we selected a set of experiments from the actual test set data and visualize the process
in Figure 13. The first three subfigures of Figure 13 show the scene acquisition, hedge
point cloud extraction, and center axis localization, respectively. Finally, we used the
localization results as the input for the robot arm planning control, and the last subfigure
shows the final localization effect of the robot arm. It is necessary to note that the point
cloud data in Figure 13 were intercepted by setting the point cloud range, because the
focus of this paper was on how to obtain the accurate position information from the hedge
point cloud. The experimental data in the previous section and the final robot localization
position can prove that the localization accuracy of the proposed method can fully meet
the practical requirements.

Figure 13. Visualization of the process of an experimental case in the testing set.

5. Conclusions

We investigated the 3D localization problem of hedges in a garden environment.
In order to solve this problem, a novel algorithm HeLoDL for the 3D localization of hedges
via deep learning was proposed for the first time. We also proposed an evaluation metric,
the OIoU, to evaluate the effectiveness of the localization algorithm. Additionally, we
provide two networks with different model sizes so that the model can run on different
devices. Extensive experiments validated that the HeLoDL outperformed strong baselines
by a large margin. There were some limitations in this study. First, the ground for the
work should be flat. Additionally, the mounting height of the LIDAR needs to be adjusted
according to the height of the hedge in the working scenario. Therefore, in order for
the system to show high working performance in practical applications, the following
requirements can be made for the environment. Firstly, the ground on which the device
runs should be as flat as possible. Secondly, the trimmed hedges should be near the flat road
surface and the hedges of different large and low heights should be arranged separately
as much as possible. Additionally, the data acquisition solution of HeLoDL we currently
provide is still not automated enough. In the future, we will consider using the point
cloud segmentation scheme [31,32] to simplify the process of generating hedge point cloud
datasets to some extent.
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