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Abstract: Saline water is used in floriculture as an alternative to freshwater in arid regions such
as Saudi Arabia (SA). However, salt stress considerably accelerates serious physio-biochemical
changes associated with a decline in plant establishment. Recently, humic acid (HA) foliar spraying
has induced plant stress tolerance in the era of climate change; however, its precise roles in the
floriculture industry within saline conditions are not yet well documented. A factorial pot experiment
throughout the 2022/2023 season was conducted in the Nursery of Sustainability and Environmental
Developmental Department, King Saud University, Riyadh, SA, to evaluate the potential effects
of HA (0, 500, 1000 and 2000 mg/L) on growth, flowering and some physiological characteristics
of Ivy geranium (Pelargoniumpeltatum) plants irrigated with saline water (230 “control”, 2000 and
4000 mg/L NaCl). Irrigation with saline water markedly inhibited plant growth, flowering attributes,
the chlorophyll index, as well as macro and micro-nutrient levels, but increased the content of iron,
sodium and proline in plant shoots relative to plants irrigated with non-salinized water. However, HA
mainly at 1000 mg/L significantly improved plant growth, flowering capacity, nutrient status, proline
accumulation and chlorophyll index under salinized or non-salinized irrigation water. Additionally,
spraying of HA concentrations (500, 1000 and 2000 mg/L) under normal or salinity conditions
significantly increased shoot sodium content relative to non-treated plants under such salinity levels.
Our findings highlight the significance of HA concentrations (500, 1000 and 2000 mg/L) in improving
the salt tolerance of Ivy geranium. Within the scarcity of irrigation water, it is recommended to irrigate
Ivy geranium with saline water up to 4000 mg/L NaCl associated with spraying HA concentrations
in special 1000 mg/L.
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1. Introduction

Ornamental and flowering plants (OFP) take an imperative place in the horticultural
business as they are utilized in gardening, roads, landscaping and as cut flowers [1,2].
Growing OFP is a dynamically developing and profitable sector of plant production. The
global market of OFP moves 250 to 400 billion dollars annually in the European Union, USA
and Japan [3,4]. Due to the variety of temperatures, soil and flora in Saudi Arabia (SA), the
OFP agribusiness has the potential to expand, resulting in a rise in the production of native
and foreign species. Pelargonium is a genus of 400 species widely distributed worldwide. It
comes in the third rank within potted OFP with USD 2.5 billion yearly production [5,6]. In
addition to the bioremediation capacity, they may also be grown in harsh environments,
such as saline and calcareous soil [7]. Recently, the study of exploiting saline water on Ivy
geranium (P. peltatum (L.) L’Hér. ex Aiton) plant development and flowering has been very
scarce and needs more investigation.

Water consumptionis the main constraint to OFP production (each one kg plant dry
mass needs 100–350 kg of water) [8]. So, the utilization of marginal water resources in
irrigation ranging between 1000–6000 mg/L NaCl [9], such as recycled or salinized water,
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has been encouraged by the growth in population and agricultural production along with
the decline of high-quality water sources, particularly in arid areas like SA [10,11]. Irrigation
with saline water has a drastic impact on soil–water–plant relations, i.e., intermittently
deteriorating soil resources, strictly hampering the regular physio-biochemical pathways,
alongside plant retardation, and initiating salty soil [12–14]. Crop development, flowering,
productivity and primary carbon metabolism are all adversely impacted by high salt levels
due to osmotic effects, nutritional imbalances and oxidative stress [14–16]. Additionally,
salinity induces ion toxicity and nutritional imbalance due to the excessive uptake of
sodium [11,12]. This makes it urgent to improve salt tolerance through spraying with
attenuating substances like ions, plant growth substances and biostimulants [16–21].

Humic acid (HA) represents the prime component of organic humus [22,23], and its
structure is still a matter of discussion [24,25]. HA is assumed to be complex aromatic
macromolecules with amino acids, amino sugars, peptides and aliphatic complexes elabo-
rate in connections among the aromatic groups. The hypothetical structure for HA contains
free and bound phenolic OH groups, quinone structures, nitrogen and oxygen as bridge
units, and COOH groups variously located on aromatic rings [26]. HA application directly
or indirectly improved OFP establishment due to its positive role in accelerating several
plant metabolic pathways and mitigating the drastic impact of environmental stresses;
meanwhile, its precise mechanisms in lessening stress injury have not been well docu-
mented [27]. Amir and Hani [28] indicate that foliar spraying with HA increased biological
yield, chlorophyll and carotenoid content, as well as essential oil yield of Dracocephalum
moldavica L. plants, and the highest positive effect was observed under 400 mg/L HA. Nofal
et al. [29] found that the spraying of HA significantly increased Erantheumum pilchellum
plant height, leaf number per plant, fresh and dry weight, flower diameter and chlorophyll
content. Hammam et al. [30] revealed that spraying geranium plants with HA significantly
increased plant height, shoot fresh and dry weight, proline concentration and water use ef-
ficiency. Previous research has suggested that the beneficial effects of HA can be attributed
to the activation of several metabolic enzymes, improving plant water status, maintaining
ion and redox homeostasis and promoting secondary metabolite assimilation [31]. HA
also helps plants absorb nutrients, and it is particularly crucial for the movement and
availability of micronutrients [32]. Recently, Ennab et al. [33] recorded that the use of HA
as soil addition and/or foliar spraying increased significantly macro and micro-nutrient
contents as well as chlorophyll and proline concentration associated with improving plant
growth trials.

Little is understood about the potential role of HA foliar spraying in alleviating salt
injury in Ivy geranium plants. Subsequently, the existing study’s goal was to assess the
influence of HA concentration on growth, flowering and some other physiological attributes
of salt-affected Ivy geranium plants. In addition, the opportunity to investigate the possible
application of saline water to Ivy geranium plants is expected to open new avenues for the
development of the ornamental plant industry in SA.

2. Materials and Methods
2.1. Experimental Layout

The two factorial pot trials were carried out in an automated greenhouse of the
Nursery of Sustainability and Environmental Developmental Department, King Saud
University, Riyadh, SA from 15 December 2022 to 25 April 2023 for assessing the effect of
irrigation with saline water (230 ‘tap water control’, 2000 and 4000 mg/L NaCl), HA foliar
application (0, 500, 1000 and 2000 mg/L) and their interactions (3 saline water levels x 4 HA
concentration) on Ivy geranium plant growth, flowering and some other physiological
trials. The experiment had 12 treatments with 6 replicates (pots, one plant per pot). The
garden soil was sandy in texture (88.22% silt, 8.78% clay and 3% sand), with pH 7.64,
EC 1.47 dSm−1, bulk density 1.40 g/cm3, cation exchange capacity 35.94 meq/100 g
soil, organic matter 1.82%, available N 57.20 mg/kg soil, available P 7.93 mg/kg soil and
available potassium 120.16 mg/kg soil.



Horticulturae 2023, 9, 1012 3 of 14

Terminal cuttings of Ivy geranium were taken from the F1 seed mother plants (Kim
variety, Blocompic, Holland, MI, USA) on 15 December 2022 and then their bases were
dipped in rooting hormone (Rhizopona, 0.8%, Schutz Company, Briogeton, NJ, USA) and
consequently planted in 10 cm plastic pots containing peat moss and perlite for rooting.
The 35 days of homogenous rooted cuttings were planted in 25 cm plastic pots with 5 kg
garden soil. The seedlings were endorsed to establish for 14 days under irrigation with a
nutrient solution (Sangral NPK 20:20:20, SQM Europe, Antwerp, NV, Belgium) before the
initiation of saline water irrigation treatments. Three levels of saline water (230 ‘tap water
control’, 2000 and 4000 mg/L NaCl) were used for irrigation every 3 days throughout the
experimental time at 80% of soil field capacity. HA levels (0, 500, 1000 and 2000 mg/L)
were sprayed 5 times at intervals of 15 days starting on 6 February 2023.

Six plants (90 days from planting) from each treatment (every 2 plants represent one
replicate) were used for recorded morphological and flowering attributes as well as some
physiological characteristics.

2.2. Vegetative Growth

Vegetative growth attributes were determined, including stem length (cm), stem
diameter (cm), number of leaves/plant, as well as shoot fresh and dry weights/plant (g).
Additionally, leaf area per plant (cm2) was estimated using leaf area meter LI-3000 COR
(Walz Co., Forest Grove, OR, USA).

2.3. Flowering Attributes

The numbers of inflorescences plant−1, inflorescence diameter (cm), inflorescence
stock length (cm), as well as inflorescences fresh and dry weights (g), were also recorded at
90 days from planting.

2.4. Physiological Growth Characteristics

Leaf greenness (SPAD) or chlorophyll content index was estimated with a SPAD-502
Plus chlorophyll meter (Konica Minolta, Tokyo, Japan). Nine measurements were occupied
per leaf and averaged to provide a single record per leaf.

Proline concentration in the plant shoot was estimated following the protocol of Bates
et al. [34] using a ninhydrin reagent. An aliquot of fresh leaf tissues was extracted by
aqueous sulfosalicylic acid. The extract was combined with acid ninhydrin reagent for 1 h
in a boiling water bath. The chromophore was collected by toluene; the optical density was
measured at 520 nm; and proline concentration (µg/g fresh weight ‘FW’) was determined
based on the calibration curve by proline.

Nitrogen (N) and phosphorus (P) contents were extracted from shoot dry weight with
5 mL of H2SO4 at 100 ◦C for 2 h; an aliquot of H2SO4/HClO3 mix was dispensed dropwise;
subsequently, the digestible was chilled for 15 min at Laboratory Temperature (22–24 ◦C)
following Association of Official Analytical Chemists (A.O.A.C.) protocol [35]. N content
was measured with the micro-Kjeldahl outline. The technique of Cooper [36] was used for
the estimation of P with a phosphate standard curve. Meanwhile, potassium (K), calcium
(Ca), magnesium (Mg), manganese (Mn), copper (Cu), iron (Fe), zinc (Zn) and sodium (Na)
were extracted by acid digestion (70% nitric acid and 30% hydrochloric acid) in a Milestone
MLA 1200 Mega microwave digestion device, then assessed using iCAPTM 7000 Plus Series
ICP-OES (Thermo ScientificTM, Waltham, MA, USA), following A.O.A.C. scheme [35].

2.5. Statistical Analysis

Data was exposed to the two-way analysis of variance (ANOVA) using the CoHort
Software, version number 6.303 statistical package (CoHort software, 2006; Birmingham,
UK) to evaluate the role of humic acid in mitigating salt injury. When significant (p ≤ 0.05),
a comparison of means (Tukey test) was implemented. The data existing are mean with
standard error (SE). The statistical significance was considered as * p ≤ 0.05, ** p ≤ 0.01;
and *** p ≤ 0.001.
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3. Results
3.1. Growth Attributes

Ivy geranium plant growth significantly (p ≤ 0.05) decreased by increasing salinity
levels up to 4000 mg/L in irrigation water relative to irrigation with tape water (230 mg/L
NaCl)(Figure 1a, Table 1). Irrigation with 2000 mg/L NaCl strongly reduced stem length,
leaf area per plant and shoot dry weight (50–57%) and had less effect on stem diameter,
leaf number plant and shoot fresh weight (15–29%). When treated with 4000 mg/L NaCl
dramatically decreased stem length, leaf number/plant, leaf area and shoot dry weight
(61–71%) and had less effect on stem diameter and shoot fresh weight (35–40%), respectively,
over non-salinized control plants (Figure 1a, Table 1).

Application of HA concentrations significantly (p ≤ 0.05) increased all growth at-
tributes of Ivy geranium plants over untreated plants. The uppermost values of vegetative
trials were obtained and recorded once spraying with 1000 mg/L HA, following 500 mg/L
HA, and finally by 2000 mg/L HA. HA at 1000 mg/L significantly boosted (p ≤ 0.05) stem
length, stem diameter, leaves number/plant, leaf area, shoot fresh and dry weights by 98.6,
57.2, 97.4, 81.7, 43.2and 81.6%, respectively, over 0 mg/L HA treated plants.

Application of HA concentration gave an encouraging impact and growth improve-
ments at all levels of salt stress and consequently performed as growth stimulants. Ac-
cordingly, it is possibly mentioned that HA levels could be lessened by the detrimental
impacts of salty water (2000 and 4000 mg/L NaCl), which boosted entire growth trials of
Ivy geranium plants under salinity. HA at 1000 mg/L attained the greatest tolerance against
severe salinity (4000 mg/L) and enhanced plant growth attributes (Figure 1b, Table 1)

Table 1. Effect of humic acid (HA), salinity and their interactions on Ivy geranium plant growth
attributes at 90 days from planting.

Treatments Stem Length
(cm)

Stem Diameter
(mm)

Leaf Number
plant−1

Leaf Area
(cm2)

Shoot FW
(g)

Shoot Dry
Weight (g)

NaCl salinity (mg/L)
230 tap water (S0) 32.2 ± 2.8a 29.1 ± 1.1a 55.2 ± 4.3a 655.2 ± 51.4a 195.0 ± 8.2a 92.1 ± 6.8a
2000 (S1) 15.8 ± 0.9b 20.7 ± 1.1b 45.4 ± 3.0b 322.0 ± 26.0b 166.0 ± 8.0b 39.4 ± 2.7b
4000 (S2) 12.4 ± 0.9b 18.8 ± 1.1c 21.5 ± 1.7c 253.4 ± 17.4b 116.8 ± 3.5c 26.5 ± 1.8c

ANOVA p values *** *** *** *** ***

HA (mg/L)
0 (H0) 13.5 ± 1.7b 17.8 ± 1.6d 25.6 ± 3.0c 290.8 ± 43.6c 130.0 ± 10.1d 38.5 ± 7.4c
500 (H1) 22.9 ± 3.8a 24.1 ± 1.6b 47.7 ± 6.4a 441.2 ± 75.9ab 169.3 ± 12.3b 58.6 ± 11.5b
1000 (H2) 26.8 ± 4.2a 28.1 ± 1.5a 50.6 ± 5.8a 528.5 ± 93.0a 186.2 ± 14.9a 70.0 ± 13.5a
2000 (H3) 17.4 ± 2.4b 21.4 ± 1.6c 38.7 ± 4.9b 380.2 ± 44.3bc 151.5 ± 9.4c 43.5± 7.7c

ANOVA p values *** *** *** *** *** ***

Interaction effects
S0H0 20.0 ± 0.5d 24.0 ± 0.5de 34.0 ± 0.5d 451.7 ± 18.8cd 167.3 ± 5.8d 67.6 ± 1.4c
S0H1 38.4 ± 0.2b 30.3 ± 0.8b 68.3 ± 0.8a 719.3 ± 15.3b 205.0 ± 4.0b 104.0 ± 4.0b
S0H2 43.6 ± 0.7a 34.0 ± 0.5a 68.6 ± 0.0a 893.8 ± 39.0a 233.0 ± 4.5a 123.0 ± 0.5a
S0H3 27.0 ± 0.6c 28.0 ± 0.5bc 50.0 ± 0.5bc 556.0 ± 3.53bc 174.6 ± 6.8d 74.0 ± 0.5c
S1H0 12.0 ± 0.5fg 16.3 ± 0.3hi 29.0 ± 0.5de 266.4 ± 0.8ef 123.6± 0.8e 30.0 ± 0.5fg
S1H1 16.6 ± 0.7e 22.0 ± 0.5ef 51.0 ± 1.1bc 318.6 ± 103.3d–f 180.6 ± 1.2cd 42.0 ± 0.5e
S1H2 20.2 ± 0.4d 26.3 ± 0.8cd 54.3 ± 2.4b 393.0 ± 2.9c–e 194.6 ± 2.6bc 53.0 ± 1.1d
S1H3 14.3 ± 0.6ef 18.3 ± 0.3gh 47.3 ± 0.8c 310.2 ± 8.2d–f 165.0 ± 0.5d 32.6 ± 0.3f
S2H0 8.5 ± 0.5h 13.3 ± 0.3i 14.0 ± 0.5g 154.4 ± 0.8f 99.0 ± 0.5f 18.0 ± 0.5h
S2H1 13.9 ± 0.5e–g 20.0 ± 0.5fg 24.0 ± 0.5ef 285.7 ± 0.5d–f 122.3 ± 0.8e 30.0 ± 0.5fg
S2H2 16.5 ± 0.5e 24.0 ± 0.5de 29.0 ± 0.5de 298.8 ± 0.5d–f 131.0 ± 0.5e 34.0 ± 0.5f
S2H3 11.0 ± 0.5gh 18.0 ± 0.5gh 19.0 ± 0.5fg 274.6 ± 0.5ef 115.0 ± 1.0ef 24.0 ± 0.5gh

ANOVA p values *** *** *** *** *** ***

Significance levels are denoted by *** p ≤ 0.001. Mean values ± standard error in a column for each characteristic,
with dissimilar letters are significantly different (Tukey test at p ≤ 0.05).
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Figure 1. Effect of saline water (a) and role of 1000 mg/L humic acid (HA) on mitigation of the drastic
effect of 4000 mg/L NaCl (b) on Ivy geranium plant growth attributes at full flowering (90 days from
planting).

3.2. Flowering Attributes

Salinity levels up to 4000 mg/L significantly (p ≤ 0.05) decreased all flowering charac-
teristics, over control plants. The lowermost values were achieved under 4000 mg/L which
decreased inflorescence number/plant, inflorescence stalk length, inflorescence diameter
and inflorescence fresh and dry weights by 49.4, 67.0, 62.8, 60.9 and 74.4%, respectively,
over the control Ivy geranium plant (Table 2).

Table 2. Effect of humic acid (HA), salinity and their interactions on Ivy geranium plant flowering
attributes at 90 days from planting.

Treatments Inflorescence
No/Plant

Inflorescence Stalk
Length (cm)

Inflorescence
Diameter (mm)

Inflorescence Fresh
Weight

(g)

Inflorescence Dry
Weight

(g)

NaCl salinity (mg/L)
230 tap water (S0) 68.0 ± 2.8a 23.5 ± 1.9a 50.0 ± 2.4a 57.5 ± 6.4a 27.5±2.9a
2000 (S1) 43.0 ± 1.6b 10.0 ± 0.7b 36.1 ± 2.2b 33.7 ± 1.8b 8.3 ± 0.5b
4000 (S2) 34.4 ± 2.2c 7.7 ± 0.7b 18.5 ± 1.4c 22.5 ± 1.8c 7.0 ± 0.7b

ANOVA p values *** *** *** *** ***

HA (mg/L)
0 (H0) 37.4 ± 4.2d 9.8 ± 1.8c 25.1 ± 3.9d 23.7 ± 2.4c 8.9 ± 1.6c
500 (H1) 52.0 ± 5.7b 15.2 ± 2.7a 37.7 ± 4.8b 40.7 ± 6.0b 15.4 ± 3.6b
1000 (H2) 56.7 ± 4.9a 18.8 ± 3.3b 43.4 ± 5.3a 54.0 ± 8.8a 21.1 ± 5.1a
2000 (H3) 47.8 ± 5.4c 11.0 ± 1.9c 33.3 ± 4.0c 33.1 ± 3.9bc 11.6 ± 2.8bc

ANOVA p values *** *** *** *** ***

Interaction effects
S0H0 52.6 ± 1.2c 17.3 ± 0.3c 38.6 ± 0.3d 30.6 ± 0.3de 15.3 ± 0.3d
S0H1 74.3 ± 0.3ab 26.0 ± 1.0b 53.3 ± 0.8b 64.0 ± 1.5b 30.0 ± 1.1b
S0H2 76.3 ± 0.8a 32.3 ± 0.6a 61.0 ± 0.5a 88.0 ± 5.1a 41.6 ± 1.7a
S0H3 69.0 ± 0.5b 18.3 ± 1.8c 47.0 ± 0.5c 47.3 ± 1.4c 23.0 ± 0.5c
S1H0 35.2 ± 2.1g 7.0 ± 0.5f 25.3 ± 0.3f 26.0 ± 1.1d-f 6.8 ± 0.1gh
S1H1 45.0 ± 0.5de 11.0 ± 0.5de 40.0 ± 0.5d 34.0 ± 0.5d 8.6 ± 0.3e-g
S1H2 50.0 ± 0.5cd 13.3 ± 0.3d 45.3 ± 0.3c 43.0 ± 0.5c 11.0 ± 0.5e
S1H3 42.0 ± 0.5ef 8.8 ± 0.6ef 34.0 ± 0.5e 32.0 ± 0.5de 7.0 ± 0.5f–h
S2H0 24.4 ± 2.1h 5.3 ± 0.3f 11.3 ± 0.3h 14.6 ± 0.3g 4.8 ± 0.1h
S2H1 36.6 ± 2.8fg 8.6 ± 0.3ef 20.0 ± 0.5g 24.3 ± 1.6ef 7.6 ± 0.6e–h
S2H2 44.0 ± 0.5de 11.0 ± 0.5de 24.0 ± 0.5f 31.0 ± 0.0de 10.6 ± 0.3ef
S2H3 32.6 ± 0.3g 6.0 ± 0.5f 19.0 ± 1.1g 20.0 ± 0.5fg 5.0 ± 0.5gh

ANOVA p values *** *** *** *** ***

Significance levels are denoted by *** p ≤0.001. Mean values ± standard error in a column for each characteristic,
with dissimilar letters are significantly different (Tukey test at p ≤ 0.05).
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Alternatively, the application of HA boosted flowering attributes. Spraying with
1000 mg/L HA provided the maximum values of flowering characteristics, the incre-
ment was 51.7, 90.9, 72.9, 127.2 and 134.9% for inflorescence number/plant, inflorescence
stalk length, inflorescence diameter, inflorescence fresh and dry weights, respectively, as
compared with untreated plants (Table 2).

The interactive impact of saline water and HA on flowering attributes indicates
that the highest inflorescence number plant−1, inflorescence stalk length, inflorescence
diameter and inflorescence fresh and dry weights were obtained from the treatment of
tap water plus 1000 mg/L HA over all treatments. Within severe salinity (4000 mg/L)
utilization of 1000 mg/L HA increased inflorescence number/plant, inflorescence stalk
length, inflorescence diameter, inflorescence fresh and dry weights by 7%, respectively,
over non-treated plants that irrigated with 4000 mg/L NaCl (Table 2).

3.3. Chlorophyll

The value of chlorophyll index was individually affected (p ≤ 0.05) by saline water
and/or HA spray (Table 3). The maximum chlorophyll level (SPAD) was achieved from
Ivygeranium irrigated with tape water. Increasing salinity levels induced a significant
decline in SPAD value. This reduction reached 37% for geranium irrigated with 4000 mg/L
NaCl relative to plants irrigated with tap water.

Table 3. Effect of humic acid (HA), salinity and their interactions on Ivy geranium plant chlorophyll
(mg/g FW) and proline (µg/g FW) concentration at 90 days from planting.

Treatments Chlorophyll Proline

NaCl salinity (mg/L)
230 tap water (S0) 22.0 ± 1.9a 147.4 ± 5.9c
2000 (S1) 15.5 ± 0.7b 228.0 ± 3.7b
4000 (S2) 13.9 ± 0.6b 246.7 ± 3.3a

ANOVA p values *** ***

HA (mg/L)
0 (H0) 12.5 ± 0.5c 188.4 ± 17.7d
500 (H1) 18.1 ± 1.5b 213.7 ± 15.1b
1000 (H2) 22.6 ± 2.2a 226.1 ± 13.5a
2000 (H3) 15.4 ± 0.8bc 201.3 ± 14.5c

ANOVA p values *** ***

Interaction effects
S0H0 14.0 ± 0.5ef 118.7 ± 0.5j
S0H1 24.0 ± 0.5b 154.0 ± 0.9h
S0H2 31.6 ± 0.8a 172.9 ± 0.6g
S0H3 18.6 ± 0.3c 144.2 ± 0.5i
S1H0 12.6 ± 0.3fg 212.3 ± 0.6f
S1H1 16.0 ± 0.0de 234.5 ± 0.6d
S1H2 19.3 ± 0.3c 244.3 ± 0.6c
S1H3 14.3 ± 0.3ef 221.0 ± 0.4e
S2H0 11.0 ± 0.5g 234.3 ± 0.4d
S2H1 14.3 ± 0.3ef 252.7 ± 0.7b
S2H2 17.0 ± 0.5cd 261.1 ± 0.7a
S2H3 13.3 ± 0.3fg 238.8 ± 0.1cd

ANOVA p values *** ***
Significance levels are denoted by *** p ≤ 0.001. Mean values ± standard error in a column for each characteristic
with dissimilar letters are significantly different (Tukey test at p ≤ 0.05).

Conversely, HA spraying caused a substantial rise in chlorophyll index in ivy geranium
plants over nontreated plants (0 mg/L HA). The greatest values of chlorophyll were
recorded once plants were sprayed with 1000 mg/L, followed by 500 mg/L and, finally,
2000 mg/L relative to untreated plants (Table 3).
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Likewise, the data in Table 3 reveal that HA as a biostimulant mitigated the harmful
impacts of saline water on the chlorophyll index in Ivy geranium plants. HA at 1000 mg/L
was utmost effective in this respect and increased chlorophyll by 52.7 and 54.5% as com-
pared with untreated plants (0 mg/L HA) that were irrigated with 2000 and 4000 mg/L
NaCl, respectively.

3.4. Proline

Considerable concentrations of free proline were observed under salinity and HA
compared with control plants (Table 3). Irrigation with saline water up to 4000 mg/L
induced the hyperaccumulation of proline in Ivy geranium plant shoots. Severe salinity
produced 67.3% greater proline concentration compared to non-salinized plants (Table 3).

Proline accumulation was raised by the supplementation of HA concentrations as
compared to untreated plants. The more effective concentration of HA was 1000 mg/L
compared to untreated plants (Table 3).

Regarding interactive effects, spraying HA substantially induced proline accretion
in Ivy geranium under saline and non-saline conditions over plants with no HA addition
(Table 3). The ultimate concentration of proline was recognized with 1000 mg/L HA
spraying together with severe salinity, which boosted proline by 120%.

3.5. Ion Content

Ion contents (macro and micro-nutrient) were significantly (p ≤ 0.05) affected by
salinity, HA and their combinations (Tables 4 and 5). Data recorded that salinity stress
progressively decreased all ions except Fe and Na, which is raised with increasing salinity
stress. The lowest content of N (54.8%), P (50.7%), K (48.2%), Ca (45.1), Mg (45.9), Mn
(36.8%), Cu (33.5%) and Zn (35.6%) was recorded under 4000 mg/L NaCl over nonsalinized
plants. Meanwhile, 4000 mg/L NaCl significantly (p ≤ 0.05) increased Fe and Na by 44.3
and 61.3% relative to non-salinized treatment.

Table 4. Effect of humic acid (HA), salinity, and their interactions on Ivy geranium macro-nutrient
concentration (mg/total dry weight) at 90 days from planting.

Treatments Nitrogen Phosphorus Potassium Calcium Magnesium

NaCl salinity (mg/L)
230 tap water (S0) 372.2 ± 12.1a 81.7 ± 3.0a 502.1 ± 6.8a 48.7 ± 3.0a 47.6 ± 3.0a
2000 (S1) 264.1 ± 4.8b 76.7 ± 2.9b 398.0 ± 15.8b 33.1 ± 2.1b 32.1 ± 2.1b
4000 (S2) 168.0 ± 9.2c 40.2 ± 1.7c 259.7 ± 8.5c 26.7 ± 2.4c 25.7 ± 2.5c

ANOVA p values *** *** *** *** ***

HA (mg/L)
0 (H0) 243.9 ± 32.5c 55.7 ± 5.4c 340.5 ± 38.0c 23.1 ± 3.3c 22.0 ± 3.3c
500 (H1) 289.7 ± 32.2a 73.0 ± 6.9a 410.8 ± 35.5a 38.9 ± 3.1b 42.3 ± 5.0a
1000 (H2) 285.1 ± 33.5ab 75.9 ± 7.3a 424.6 ± 36.4a 45.6 ± 4.5a 40.5 ± 2.5a
2000 (H3) 253.7 ± 22.9bc 60.3 ± 6.4b 370.6 ± 31.8b 37.0 ± 2.1b 35.7 ± 2.2b

ANOVA p values *** *** *** *** ***

Interaction effects
S0H0 330.9 ± 2.7c 69.4 ± 0.6e 475.9 ± 0.37c 35.5 ± 0.3e 34.2 ± 0.5e
S0H1 408.3 ± 0.6b 88.8 ± 0.3b 513.5 ± 0.6b 50.9 ± 0.4b 62.2 ± 0.5a
S0H2 416.3 ± 0.6a 94.4 ± 0.4a 533.3 ± 0.6a 63.2 ± 0.5a 50.0 ± 0.4b
S0H3 333.3 ± 0.4c 74.3 ± 0.5d 485.8 ± 0.2c 45.2 ± 0.5c 44.2 ± 0.5c
S1H0 284.3 ± 0.5d 63.2 ± 0.6f 333.4 ± 0.6f 21.1 ± 0.4g 20.1 ± 0.4h
S1H1 274.4 ± 0.7e 85.2 ± 0.5c 444.4 ± 0.6d 35.9 ± 0.3e 34.9 ± 0.3e
S1H2 244.3 ± 0.5g 86.5 ± 0.7bc 454.6 ± 0.7d 40.2 ± 0.6d 39.3 ± 0.6d
S1H3 253.4 ± 0.6f 71.9 ± 0.1de 359.8 ± 7.4e 35.0 ± 0.4e 34.0 ± 0.4e
S2H0 116.5 ± 0.6k 34.4 ± 0.6h 212.3 ± 0.6i 12.6 ± 0.7h 11.6 ± 0.7i
S2H1 186.5 ± 0.5i 45.1± 0.4g 274.4 ± 0.6h 30.0 ± 0.3f 29.9 ± 0.1fg
S2H2 194.5 ± 0.6h 46.7 ± 0.6g 285.9 ± 0.3g 33.4 ± 0.5e 32.4 ± 0.5ef
S2H3 174.6 ± 0.6j 34.6 ± 0.5h 266.2 ± 0.5h 30.9 ± 0.1f 29.0 ± 0.3g

ANOVA p values *** *** *** *** ***

Significance levels are denoted by *** p ≤ 0.001. Mean values ± standard error in a column for each characteristic,
with dissimilar letters are significantly different (Tukey test at p ≤ 0.05).
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Table 5. Effect of humic acid (HA), salinity and their interactions on Ivy geranium micro-nutrient
concentration (mg/total dry weight) at 90 days from planting.

Treatments Manganese Copper Iron Zinc Sodium

NaCl salinity (mg/L)
230 tap water (S0) 0.95 ± 0.00a 0.18 ± 0.01a 1.55 ± 0.03b 0.37 ± 0.00a 47.8 ± 1.3c
2000 (S1) 0.82 ± 0.02b 0.20 ± 0.00b 2.24 ± 0.10a 0.30 ± 0.02b 67.5 ± 3.2b
4000 (S2) 0.60 ± 0.02c 0.12 ± 0.00c 2.25 ± 0.07a 0.24 ± 0.01c 77.1 ± 3.0a

ANOVA p values *** *** *** *** ***

HA (mg/L)
0 (H0) 0.71 ± 0.06c 0.13 ± 0.01c 1.65 ± 0.05c 0.24 ± 0.02d 77.9 ± 5.8a
500 (H1) 0.81 ± 0.05b 0.17 ± 0.01b 2.07 ± 0.14b 0.34 ± 0.01b 60.4 ± 3.9b
1000 (H2) 0.87 ± 0.04a 0.20 ± 0.01a 2.28 ± 0.13a 0.37 ± 0.01a 55.7 ± 3.5c
2000 (H3) 0.78 ± 0.04b 0.16 ± 0.01b 2.06 ± 0.14b 0.27 ± 0.02c 62.4 ± 4.0b

ANOVA p values *** *** *** *** ***

Interaction effects
S0H0 0.92± 0.00ab 0.14 ± 0.00d 1.47 ± 0.04g 0.34 ± 0.00c 55.1± 0.0g
S0H1 0.97 ± 0.00a 0.20 ± 0.00b 1.51 ± 0.06g 0.38 ± 0.00b 44.9± 0.3hi
S0H2 0.98 ± 0.00a 0.23 ± 0.00a 1.74 ± 0.00ef 0.42 ± 0.00a 44.3 ± 0.61i
S0H3 0.95 ± 0.00a 0.17 ± 0.00c 1.50 ± 0.00g 0.37 ± 0.00bc 46.8 ± 0.2h
S1H0 0.74 ± 0.00de 0.17 ± 0.00c 1.66 ± 0.00f 0.23 ± 0.00f 84.2 ± 0.5b
S1H1 0.85 ± 0.03bc 0.19 ± 0.00bc 2.33 ± 0.00c 0.35 ± 0.00c 65.2 ± 0.5f
S1H2 0.92 ± 0.00ab 0.25 ± 0.00a 2.56 ± 0.00a 0.38 ± 0.00b 54.0± 0.7g
S1H3 0.80 ± 0.00cd 0.19 ± 0.00bc 2.44 ± 0.00bc 0.24 ± 0.00f 66.4 ± 0.3ef
S2H0 0.49 ± 0.03g 0.10 ± 0.00e 1.84 ± 0.00e 0.15 ± 0.00g 94.5 ± 0.6e
S2H1 0.61 ± 0.00f 0.13 ± 0.00d 2.38 ± 0.00c 0.28 ± 0.00e 71.1 ± 0.4d
S2H2 0.71 ± 0.01e 0.13 ± 0.00d 2.54 ± 0.00ab 0.32 ± 0.00d 68.8 ± 0.1de
S2H3 0.61 ± 0.00f 0.12 ± 0.00de 2.24 ± 0.00d 0.22 ± 0.00f 74.0 ± 0.3c

ANOVA p values *** *** *** *** ***

Significance levels are denoted by *** p ≤ 0.001. Mean values ± standard error in a column for each characteristic,
with dissimilar letters are significantly different (Tukey test at p ≤ 0.05).

On the other hand, HA concentrations foliar spraying increased all ion concentrations
except Na which decreased in the shoot of the Ivy geranium plant over non-treated plants.
The most effective concentration of HA in increasing N, P, K, Ca, Mg, Mn, Cu, Fe and Zn,
as well as decreased Na, was 1000 mg/L over nontreated plants (Tables 4 and 5).

Foliar spray with HA concentrations under all levels of saline water distinctly inval-
idates their determinantal impact on ion content. The foremost effective concentration
was 1000 mg/L HA, which increased N (66.9%), P (35.8%), K (34.6%), Ca (164.6%), Mg
(179.2%), Mn (44.8%), Cu (36.0%), Fe (38.0%) and Zn (113.3%), meanwhile declining Na
(27.1%) compared with unsprayed severe salt-affected plants.

4. Discussion

Reduced agricultural water consumption and increased water use efficiency are
needed globally to protect water for human use [37]. This disorder encourages the adoption
of some alternative water resources for irrigation, such as saline water, which hastens the
onset of salinized soil. Accordingly, some researchers have shown that foliar spraying of
HA concentrations is able to play a substantial function in boosting plant establishment by
increasing a plant’s aptitude to endure stress tolerance [38,39]. Results from the present
study show that salinity stress reduced Ivy geranium growth and flowering as well as
ion (N, P, K, Ca, Mg, Mn, Cu and Zn) and chlorophyll but raised Fe, Na and proline.
Alternatively, HA in special 1000 mg/L considerably boosted all examined characteristics
while minimizing Na accumulation.

The injury impact of salinity on vegetative growth trials was established previ-
ously [12,14]. These depressive effects might be attributed to the distribution of bio-
physiological pathways and molecular modifications, i.e., photosynthesis, nutrient balance,
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reactive oxygen species (ROS) buildup and alterations in salt injury in different plants.
Additionally, salinity stress may be hindering ion absorption resulting from the occurrence
of Na and chloride ions in irrigation water or the permeability of these ions to the plant tis-
sues, which consecutively causes ionic toxicity alongside a decline in the vegetative growth
characteristics of plants [40]. Additionally, salinity induces hormonal imbalance that partic-
ipates in cellular division and enlargement that negatively affects plant growth [41,42]. HA
supplementation normally increases plant growth and lessens salinity injury [43,44]. The
motivating impact of HA under normal or stressful circumstances is devoted to hastening
photosynthesis pathways and enhancing photo-assimilation translocation in plants [45].
HA application improved hormonal and ROS balance [46]; as well as activation of antiox-
idant enzymes and accelerating organic solute accumulation [47], which was ultimately
reflected in plant growth [22]. Moreover, the encouraging role of HA can be linked to its
impact on boosting interior carbon dioxide concentration and leaf thickness, improving
cell water maintenance and boosting water use efficiency [30]. Additionally, HAs’ posi-
tive effect could be due to the hormone-like activity or may be connected to encouraging
indole acetic acid assimilation, which accelerates cell division and enlargement as well
as eradicating ROS [48]. Additionally, gibberellic acid (GA)-like substances and activity
in humic substances have been reported since the 1990s [49], accordingly, the accumula-
tion of gibberellin may accelerate the cell elongation-related genes that are induced cell
elongation [50], raise cell permeability and recover the absorption of nutrients [51,52].

A current study proved that flowering attributes markedly decreased with saline
water, which was confirmed previously in different plants [13,53]. Therefore, salt-affected
plants may lessen flowering intensity, delay flowering and shorten the flowering period [8].
Flower stalk length is an energetic quality feature of OFP as it impacts the commercial
importance of cut flower crops. Flower length and diameter, stem thickness and length were
considerably decreased by raising the salinity level over control, which was approved by
Kucukahmetler [54]. According to Ahmad et al. [55], the application of saline water blocks
the vascular system and eventually restricts water uptake. The reduction in flowering due
to salinity may be attributable to the decline of plant photosynthesis through the variations
in chlorophyll levels and components and the destruction of chloroplasts [56]. Moreover,
it hinders photochemical activities and reduces the Calvin cycle enzyme activities [57],
modifying the concentration of hormones straight intricate in flowering, such as abscisic and
jasmonic acids [58]. HA not only encouraged vegetative growth but also floral attributes
as a greater number of florets per spike were formed by plants treated with HA. Current
findings are harmonized with the results of Nofal et al. [29] and Baldotto and Baldotto [44]
who stated that HA improved the flowering of several ornamental and flowering plants
when used at higher concentrations. These findings confirmed that HA spraying improved
spike length, which established the function of HA in enhancing ion uptake and sequentially
improved spike length and whole flower quality. Parallel outcomes of enhancement in
ion uptake, particularly of N, P and S by the activity of HA, have also been stated by
Atiyeh et al. [59] and Arancon et al. [60]. Additionally, given the presence of GA-like
compounds and activity in HS that have been reported since the 1990s, the stimulating
effect of HA on blooming may be the result of the buildup of GA that accelerates flowering
development [49].

It could be concluded that, from the current outcomes, chlorophyll content consider-
ably declined under saline water up to 4000 mg/L. The degeneration in chlorophyll, once
salinity occurs, could result from the drop in chlorophyll biosynthetic or boosted enzymatic
chlorophyll deprivation [61], in addition, the degeneration of the thylakoid membranes
and devastation of chlorophyll by diverse ROS, and alterations in chlorophyll protein
complexes [62]. Moreover, salinity may induce a deterioration in chlorophyll biosynthesis
intermediation and decrease the expression of ChlD, Chl Hand Chl I-1 gene encoding
subunits of Mg-chelatase [63,64]. As indicated in the current findings and earlier research,
utilization of HA has been recorded to improve chlorophyll accumulation in plants within
stress or non-stress circumstances [65,66]. This increase may be attributed to the rise
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in cytokinin assimilation, which accelerates chloroplast differentiation and chlorophyll
biosynthesis and declines its degradation [67]. Additionally, HA probably keeps chloro-
phyll biosynthesis via the protection of the sulphydryl group and boosts Mg absorption
and accumulation. The rise in chlorophyll levels by HA spraying might be caused by the
hastening of N and NO3uptake, improving N metabolism and assembly of protein [68].
Humic acid additionally increased N and K uptakes, which are elaborated in chloroplast
differentiation and chlorophyll assimilation [69].

Within stress conditions, plants possess several strategies including a hyperaccumu-
lation of organic osmolytes like proline without interfering with metabolic pathways to
withstand stress conditions [70,71]. Current findings proved that irrigation with saline
water with or without HA spraying significantly increased proline accumulation in plant
tissues. Numerous occupations are anticipated for proline buildup within stress factor
and/or HA spraying including osmotic adjustment, protein and enzyme stabilization,
and ROS scavenging, besides acting as a reservoir of energy and N for exploitation [72].
Moreover, Bellinger et al. [73] suggested that the rise of proline in salt-affected plants
might be deduced as a tolerance strategy of osmotic regulation and/or buildup of the extra
ammonium created by salinity. Proline buildup can be explicated by the greater inhibitory
rate of proline dehydrogenase and proline oxidase [71]. Yet, it is also possible to find a
lessening in the proline production in plants caused by its fast breakdown upon stress
reprieve. The breakdown products deliver reducing agents that support mitochondrial
oxidative phosphorylation and generation of adenosine triphosphate (ATP) for rescue
from stress and repairing stress-induced injury [74]. Moreover, HA appears to have an
encouraging effect on enzyme activity and secondary plant metabolism [22], as well as
plant respiration and photosynthesis, which in turn affect carbohydrate levels [75] and
amino acid metabolism [76].

Salinity normally induces ion imbalance by declines in N, P, K, Mg, Ca, Mn, Cu and Zn
associated with excess accretion of Fe and Na, which was confirmed previously [11,12,20].
The drastic impacts of salinity on plant nutritional status may be attributed to a decline
in nutrient uptake and/or transport as well as ion toxicity [77]. The deterioration of root
development within salinity could be one of the reasons behind the decline in plants’ ion
content [78]. Under salinity, the decrease in either N or P may result from the antagonism
between both chloride and nitrate [79] or phosphate [80] molecules, respectively. The
prevention of plant K uptake is chiefly caused by the physical and chemical similarities
between K and Na that induced the competition on major binding sites [81]. Additionally,
there is an antagonism between Ca and Mg with Na which affects membrane properties
and causes a degeneration of membrane integrity and selectivity [82]. The current findings
displayed that ions’ content was progressively increased by HA concentrations, never-
theless, Na was reduced. These findings were consistent with those achieved by Ennab
et al. [33] and Sahar et al. [83]. Additionally, HA maintained an extraordinary level of acid
phosphate activity that increased phosphate activity holds for improved plant P uptake [84].
HA has been described to improve plant nutrient uptake due to the improving permeability
of root membranes [85]. The findings additionally revealed that HA spraying possibly will
lessen the destructive impact of salinity by maintaining leaf water status, dropping the
uptake of Na and Cl [86], increasing Ca and K, motivating chloroplast development and
improving phloem loading [87]. Also, HA has been displayed to improve plant membrane
permeability, stimulating the uptake and translocation of nutrients and increasing root
development [88]. Additionally, HA usually retained ATPase and Na/H antiport, which
facilitate Na compartmentation under salinity [23]. Fernandez et al. [89] revealed that foliar
spraying of leonardite extracts (as a natural source of HA) motivated shoot growth and
promoted the buildup of several ions. It was stated that HA encourages H+-ATPase activity
in the plasma membrane and stimulates plant growth via the rise in lateral root emergence
and whole root absorbance [90]. The rise in nitrogen by HA application may be attributed
to the enhancement of nitrogen assimilation enzymes like nitrate reductase and nitrite
reductase [91].
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5. Conclusions

The current findings indicated that irrigating Ivy geranium plants with saline water
up to 4000 mg/L NaCl adversely affected vegetative and flowering growth attributes,
alongside decreasing nutrient contents (except Fe and Na). However, HA application
special at 1000 mg/L helped in recovering plant growth and flowering to levels comparable
to those of control plants.
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