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Abstract: A diatomaceous earth (DE)-based adsorbent DE-Ce was prepared and optimized to remove
phosphorus from wastewater. DE was modified through purification–cerium loading, improving its
phosphorus adsorption capacity and recycling ability. The preparation conditions were optimized
using the Box–Behnken design, and the response surface method was employed to analyze the
effects of roasting temperature, cerium concentration, and HCl concentration on the preparation of
DE-Ce. Scanning electron microscopy, X-ray fluorescence spectrometry, and X-ray photoelectron
spectroscopy were used for characterization, with results indicating that HCl washing can effectively
remove impurities. Cerium was mainly loaded onto DE in the form of Ce(OH)3, and pore size
and capacity increased following cerium loading, with the formation of a macroporous structure.
The obtained DE-Ce adsorbent removed 98.30% phosphorous, with the removal process following
the secondary kinetic and Langmuir models. According to material characterization and model
analysis results, the phosphorus removal mechanism primarily involves electrostatic adsorption,
ligand exchange, and precipitation. Overall, the findings indicate that cerium modification can
effectively improve the adsorption capacity of DE.

Keywords: cerium-modified diatomaceous earth; adsorbent; response surface method

1. Introduction

Phosphorus is highly associated with the eutrophication of water bodies, affecting
water quality, destroying the ecological environment, and threatening human health [1,2].
Phosphorus can be removed using biological [3,4], adsorption [5–7], chemical precipita-
tion [8,9], and membrane [10,11] methods; among them, the simple process, low cost, and
environmental friendliness of adsorption indicates that it is ideal for removing phospho-
rus [12,13], with the adsorbent used being the key to successful phosphorus removal [14,15].
Traditional adsorbents have the disadvantages of poor regeneration performance, low ad-
sorption capacity, and high costs, which limits their application in phosphorus-containing
wastewater. Diatomaceous earth (DE) is a natural mineral that primarily comprises amor-
phous silica (SiO2–nH2O), and its unique physicochemical properties, such as high porosity
and permeability, abundant hydroxyl functional groups, and strong adsorption capacity
has led to its use as an ideal adsorbent [16–19]. Porosity is conducive to metal oxide loading
and pollutant removal from wastewater [20]; thus, DE has received extensive attention as
an adsorbent in the field of water treatment. However, the micropores on the surface of
DE often become blocked with organic matter or other impurities, restricting the number
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of available active sites and limiting the adsorption and removal capacity, and DE is con-
sidered insufficient for the adsorption of negative-charged species, such as HPO4

2− and
H2PO4

− [21,22]. DE is also known to have trouble with solid–liquid separation when used
for water treatment. Therefore, improving the adsorption performance and reuse rate of
DE-based adsorbents is the focus of much research, and commonly-used metals such as
Al, La, Ce, Mg, and Zn, which have been widely used for DE modification, have excellent
adsorption capacities for pollutants [14].

Cerium is a rare-earth element that is characterized by abundant storage capacity
and a nontoxic nature, and it is the only lanthanide element that includes both Ce(III)
and Ce(IV) bivalent states, lowering the effects of pH [23–25]. Cerium is a paramagnetic
substance, indicating that its characteristics are mainly dependent on the incomplete
filling of its 4f electron layer [26]. Its oxide has been associated with room-temperature
ferromagnetism, primarily owing to its abundant oxygen vacancies, indicating a high
potential for application as an adsorbent. Several studies [27–32] have shown that cerium
occurs mainly in the forms of cerium oxide (CeO2) and cerium hydroxide (Ce–OH), and
cerium modification can effectively enhance the removal capacity of adsorbents for arsenate,
phosphate, and heavy metals (Table 1), and the high phosphate affinity and low cost of
cerium renders it a preferred material for phosphorus removal [16,33]. Liu et al. [34] used
impregnation–roasting–impregnation to load hydrated cerium oxide onto natural zeolite,
resulting in the adsorbent HCO-MZ that mainly worked via the interchange of Ce–OH with
H2PO4

− or HPO4
2−, which clearly demonstrated phosphorus removal effects. In another

study, Li et al. [35] loaded cerium oxide onto porous silica microspheres and showed that
electron conversion between Ce(III) and Ce(IV) provided abundant chemisorption sites
for the adsorption of phosphorus. The results of these experiments indicate that cerium
can optimize the material properties of an adsorbent, improving its phosphorus removal
effect. At present, most studies investigating phosphorus removal are focused on single
DE adsorbents and cerium-based adsorbents, with only few studies examining the use of
cerium-modified DE.

Table 1. Application of cerium-loaded materials.

Material Ce Type Method Pollutant Capacity (mg/g) Ref.

BC-Ce Ce(NO3)3
(CeO2) *

impregnation–
precipitation–

pyrolysis
Cr(VI) 47.83 [27]

NaY@Ce CeCl3
(cerium hydroxide) *

coprecipitation
method

Sb(III)
Sb(V)

24.65
7.28 [28]

Cu45Zn3Ce1/AC Ce(NO3)3·6H2O impregnation method PH3 61.86 [29]

Ce-bentonite cerium sulfate P
NH3–N

1.261
0.884 [30]

CHP cerium hydroxide * hydrothermal method phosphates 86.7 [31]

Ce-MIL-101-NH2
CeCl3·eC2O

(cerium hydroxide) * solvothermal method phosphate As(V) 341.5
249 [32]

Note: “*” indicates the loading form of cerium in the materials.

In this experiment, DE and paramagnetic cerium were used as raw materials to prepare
a DE-based adsorbent via cerium loading (referred to as DE-Ce). The response surface
method (RSM) was employed to optimize the roasting temperature, cerium concentration,
and HCl concentration of the prepared DE-Ce adsorbent and to explore the involved
chemical interactions. DE-Ce was prepared under optimal conditions and comprehensively
characterized using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and
other characterization tools, allowing investigation of the phosphorus removal mechanism.
The results of this study are expected to provide technical support for the treatment of
phosphorus-containing wastewater and eutrophication management in water bodies.
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2. Materials and Methods
2.1. Materials and Chemicals

DE was purchased from Yunnan, China, and screened two–three times using a
100-mesh sieve before adding deionized water at a solid–liquid ratio of 1:10. Samples
were then stirred until homogenous and left until the bottom layer could be removed, dried
at 105 ◦C, removed, cooled to 25 ◦C, ground, and passed through a 100-mesh sieve to obtain
pretreated DE. XRF analysis showed that the main chemical components of the treated
DE were SiO2, Al2O3, and Fe3O4, with contents of 90.51%, 3.78%, and 0.59%, respectively.
HCl, Ce(SO4)2·4H2O, and (NH4)6MO7O24·4H2O were analytically pure, while NaOH and
KH2PO4 were of excellent purity.

2.2. Synthesis Procedure

DE was modified using the purification–cerium loading method. The experimental
method is presented in Figure 1.
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Figure 1. Flow chart showing material preparation (DE, diatomaceous earth; PDE, purified DE;
DE-Ce, magnetic DE-based adsorbent).

Appropriate amounts of pretreated DE were weighed in a beaker, and different con-
centrations of HCl (1–8 mol/L) added at a solid–liquid ratio of 1:4. Samples were then
reacted in a water bath at 80 ◦C for 4 h and washed repeatedly with deionized water until
a neutral pH was achieved. The samples were then filtered and the filter cake was dried
at 105 ◦C, and cooled to 25 ◦C before roasting at 300 ◦C–700 ◦C for 2 h. The samples were
then ground and passed through a 230-mesh sieve to obtain purified DE (PDE).

PDE was weighed into a beaker, and different concentrations of a cerium sulfate
solution (0–0.2 mol/L) were added to achieve a liquid–solid ratio of 50:1 before adjusting
to obtain a pH of 10.0. Ce impregnation was then performed over a period of 0.5–24 h. The
impregnated material was filtered, and the filter cake was dried at 80 ◦C before cooling
to 25 ◦C. The material was then heated for 0.1–4 h at 200 ◦C–800 ◦C in a muffle furnace,
ground, and passed through a 230-mesh sieve to obtain DE-Ce, which was then sealed
and stored.

2.3. Characterization

SEM (Gemini SEM 300, Shanghai, China) was performed with an accelerating voltage
of 3 kV and gold spraying for 45 s at 10 mA to observe the morphological changes on the
surfaces of the adsorption materials. XRF spectrometry (K-Alpha, Thermo Fisher Scientific,
Waltham, MA, USA) was used to analyze the main DE-Ce elements and determine if
cerium compounds were successfully loaded. The adsorption and desorption curves of the
materials were determined at −196.15 ◦C using N2 as an adsorbent. Vacuum degassing was
performed for 12 h at 250 ◦C using a Mack ASAP2460 (McMurdoch (Shanghai) Instrument
Co., Ltd., Shanghai, China), and the specific surface area and pore size were calculated.
The crystal structure of the adsorption materials was analyzed using XRD (Panaco X’Pert
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PRO, PANalytical B.V., Almelo, The Netherlands) with Cu-targeted K α-rays as the X-ray
source. Scanning was performed continuously over 10◦–90◦ at 4◦/min. The magnetic
properties of the materials were analyzed using a vibrating sample magnetometer (VSM,
7404, LakeShore, Columbus, OH, USA). All test samples were prepared under the optimal
preparation conditions.

2.4. Adsorption Experiment

KH2PO4 was dried at 110 ◦C for 2 h, and the obtained material was used to prepare
a 50-mg/L phosphorus standard reserve solution, which was then diluted to 1 mg/L to
simulate wastewater.

A conical flask containing experimental water and an appropriate amount of DE-Ce
was then placed in a gas bath thermostatic shaker. The reaction was shaken at 25 ◦C and
200 r/min to obtain supernatant, which was then centrifuged over the designed reaction
period; ammonium molybdate spectrophotometry was used to determine the phospho-
rus content. Absorbance was measured using an ultraviolet–visible spectrophotometer
(DR6000, HACH, Loveland, CO, USA).

The experimental data obtained for DE-Ce phosphorus removal were fitted using the
pseudo-first-order and pseudo-second-order kinetic models [36]:

ln
(
qe − qt

)
= lnqe− K1t (1)

t
qt

=
1

K2q2
e
+

1
qe

, (2)

where t is the contact time between DE-Ce and phosphorus, qe is the amount of phosphorus
at which equilibrium adsorption is achieved using DE-Ce, qt is the adsorption capacity
of DE-Ce for phosphorus at time t of the reaction, K1 is the adsorption rate constant for
the pseudo-first-order model, and K2 is the adsorption rate constant of the pseudo-second-
order model.

In the utilized adsorption isotherm model, Langmuir describes monolayer adsorption
and Freundlich describes multilayer adsorption [19]:

Ce

qe
=

Ce

qmax
+

1
qmaxKL

(3)

log qe= logKF +
1
n

log Ce, (4)

where Ce is the equilibrium concentration of DE-Ce, qe is the equilibrium adsorption capac-
ity of DE-Ce for phosphorus adsorption, qmax is the maximum of phosphorus adsorption
achieved using DE-Ce, KL is the constant in Langmuir’s adsorption model, KF is the con-
stant in Freundlich’s adsorption model, n is the Freundlich constant, and 1/n can be used
to represent the adsorption capacity.

3. Results and Discussion
3.1. RSM
3.1.1. RSM Design

In the previous experiment, we considered five factors. The orthogonal experiments
demonstrated that the studied factors influenced material preparation in the following
order: roasting temperature > cerium concentration > HCl concentration > impregnation
time > transition temperature, in which the impregnation time and transition tempera-
ture have no obvious effect on the removal of phosphorus. Therefore, in the subsequent
experiments, they were set to 2 h and 250 ◦C, respectively.

Based on the results obtained, the RSM was used to identify the key influencing factors
and determine the effects of interactions among the factors during synthesis. At a transition
temperature of 250 ◦C and an impregnation time of 2 h, three factors were selected as
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independent variables: roasting temperature (X1), cerium concentration (X2), and HCl
concentration (X3). The response surface model was then established using the phosphorus
removal rate as the response value (Y, %). All independent variables and levels are shown
in Table 2.

Table 2. Experimental factors and levels.

Variable
Scope and Level

Factor Coding −1 0 +1

Roasting temperature (◦C) X1 500 550 600
Cerium concentration (mol/L) X2 0.07 0.11 0.15

HCl concentration (mol/L) X3 2.0 3.0 4.0

3.1.2. Experimental Results of RSM

The Box–Behnken optimization experiments were designed to include 17 groups.
Table 3 presents the experimental scheme and results.

Table 3. Box–Behnken design and results.

Serial
Number

Variable Value Actual Value Response Value (Y, %)
(P Removal Rate)X1 X2 X3 X1 (◦C) X2 (mol/L) X3 (mol/L)

1 −1 −1 0 500 0.07 3 90.49
2 +1 −1 0 600 0.07 3 92.64
3 −1 +1 0 500 0.15 3 92.15
4 +1 +1 0 600 0.15 3 93.52
5 −1 0 −1 500 0.11 2 92.75
6 +1 0 −1 600 0.11 2 94.81
7 −1 0 +1 500 0.11 4 92.8
8 +1 0 +1 600 0.11 4 92.98
9 0 −1 −1 550 0.07 2 95.15
10 0 +1 −1 550 0.15 2 96.59
11 0 −1 +1 550 0.07 4 94.34
12 0 +1 +1 550 0.15 4 95.42
13 0 0 0 550 0.11 3 99.28
14 0 0 0 550 0.11 3 99.02
15 0 0 0 550 0.11 3 98.91
16 0 0 0 550 0.11 3 98.57
17 0 0 0 550 0.11 3 98.67

The Design Expert 10 software was used to sort the experimental data so that a
quadratic polynomial regression equation could be obtained (Equation (5)). The similarity
between the predicted results and those obtained from the experiment (Figure 2) indicates
a good model fit, the accuracy of the quadratic model is verified [37,38].

Y = 98.89 + 0.72 X1 + 0.63 X2 − 0.47 X3 − 0.20 X1 X2 − 0.47 X1X3 − 0.090 X2X3 −
4.37 X1

2 − 2.33 X2
2 − 1.19X3

2.
(5)

p-values of <0.05 indicate that the results of the prediction model are significant,
whereas p-values that are >0.1000 are frequently considered nonsignificant [39]. As seen
in Table 4, an F-value of 188.25 with a p-value of <0.0001 was obtained using the model,
indicating that the roasting temperature, cerium concentration, and HCl concentration
considerably affect the performance of the adsorbent. A correlation coefficient R2 of 0.9959
and an adjusted correlation coefficient R2

(Adj) of 0.9906 obtained for the model (Table 4)
demonstrates good simulation capabilities with high accuracy and reliability.
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Table 4. Results of variance analysis for phosphorus removal rate.

Source Sum of Squares Freedom Mean Square F p > F Significance

Mode 128.29 9 14.25 188.25 <0.0001 Significant
X1 4.15 1 4.15 54.77 0.0001
X2 3.20 1 3.20 42.27 0.0003
X3 1.77 1 1.77 23.34 0.0019

X1X2 0.15 1 0.15 2.01 0.1993
X1X3 0.88 1 0.88 11.67 0.0112
X2X3 0.032 1 0.032 0.43 0.5339
X1

2 80.22 1 80.22 1059.46 <0.0001
X2

2 22.76 1 22.76 300.58 <0.0001
X3

2 5.96 1 5.96 78.74 <0.0001
Residual 0.53 7 0.076

Lack of fit 0.20 3 0.070 0.87 0.5252 Not significant
Pure error 0.32 4 0.080
Cor total 128.82 16

R2 = 0.9959 R2
(Adj) = 0.9906 Adeq Precision = 39.031

The primary terms X1, X2, and X3, interaction term X1X3, and secondary terms X1
2,

X2
2, and X3

2 have p-values that are considerably less than 0.05 and are thus considered
significant, indicating the considerable contributions of these factors to the adsorbent
performance [40,41]. p-values of <0.0001 for X1

2, X2
2, and X3

2 indicate their significance.
In the model, the F-values of X1, X2, and X3 are 54.77, 42.27, and 23.34, respectively,
indicating that these three factors influence the performance of DE-Ce in the following
order: roasting temperature (X1) > cerium concentration (X2) > HCl concentration (X3). In
terms of interaction, X1X3 shows the largest effect, while X2X3 shows the smallest effect.

The results of the RSM were used to produce a response surface graph, allowing
further analysis of the influencing factors. The interaction effects of roasting temperature,
cerium concentration, and HCl concentration on the phosphorus removal rate are presented
in Figure 3.
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Figure 3. Interactive influence and contour diagrams showing how different factors affect phos-
phorus removal rate. [(a,b), interactive effect of the roasting temperature and cerium concentration;
(c,d), interaction effect of the roasting temperature and HCl concentration; (e,f), interaction effect of
the cerium concentration and HCl concentration].

The upward convex spherical surfaces in the response surface plots of Figure 3 in-
dicate that the maximum phosphorous removal rate occurs under the interaction of two
influencing factors. The convex red points in Figure 3a,c,e represent the optimum interac-
tion conditions.

The density of the contour lines within the plots reflects the significance of the interac-
tion between the three influencing factors in terms of phosphorus removal, with all three
factors interacting to achieve phosphorus removal. The steep slope, dense contours, and
elliptical shape in the response surface plots obtained for roasting temperature and HCl
concentration in Figure 3c,d indicate that interaction between roasting temperature and
HCl concentration has the greatest effect on phosphorus removal.

The results of the regression model optimization demonstrate a predicted phosphorus
removal rate of 99.02% under the obtained optimal preparation conditions, which are a
roasting temperature of 555 ◦C, a cerium concentration of 0.12 mol/L, and an HCl concen-
tration of 2.76 mol/L. Preparation was, therefore, performed under these conditions, with
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two sets of parallel tests used to verify the practicality of the established prediction model.
The average phosphorus removal rate of 98.30% that was obtained under these conditions
is similar to the removal rate predicted by the model, with only −0.72% deviation. These
findings indicate the reliability of the model analysis and prediction.

3.2. Characterization
3.2.1. SEM

Figure 4a,b show a complete DE-Ce structure with abundant macroporous structures
following cerium loading. Comparison of DE (Figure 4c) with PDE (Figure 4d) shows
considerably lower amounts of surface and pore impurities and higher pore numbers for
PDE, indicating that acid washing effectively removes impurities [42]. Figure 4b shows
partially agglomerated or unevenly distributed cerium compounds both on the surface
and in the pores. The presence of the cerium compounds in the pores reduces the pore size;
however, they are not completely blocked and macroporous structures are clearly visible.
The DE-Ce surface is covered by large amounts of modified material, rendering it rough
and uneven.
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3.2.2. XRF

The elemental composition of DE-Ce was determined using XRF, with O, Ce, and Si
being the most abundant in terms of percentage. Cerium shows the highest abundance,
except for O, with its mass fraction of 24.32% indicating successful loading.

3.2.3. BET

The results also show that, compared to DE, the specific surface area of PDE increased
by 9.71 m2/g, the total pore volume increased by 0.0087 cm3/g, and the average pore size
increased by 1.51 nm. These findings indicate that acid washing–roasting purification can
effectively remove impurities from the surface of DE while also widening the pore channel.
The average pore size of DE-Ce is 3.5 times of that of DE, with a higher abundance of
macropores, resulting in a larger observed average pore size. The total pore volume of DE-
Ce is 2.1 times of that of DE. However, the specific surface area of PDE is four times of that
of DE, which is likely due to the alkaline method (pH = 10) used for the process of cerium
of loading and, more specifically, owing to the surface-stacking capacity of Ce(OH)3 under
alkaline conditions, which becomes attached to the DE-Ce surface [43]. The accumulation
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of Ce(OH)3 on the surface of DE leads to the formation of new pore size, increasing the
total pore volume, and the formation of new cerium compounds during roasting may lead
to a reduction in the DE-Ce surface area.

3.2.4. XRD

Figure 5 shows sharp diffraction peaks for DE and PDE at 2θ = 26.6◦, which generally
corresponds to quartz impurities. The reduced diffraction peak obtained for PDE as
compared to DE is mainly due to the reduced number of impurities on the surface following
purification. This finding is the same as that observed using SEM. The presence of the
SiO2 diffraction peak at 2θ = 26.6◦ suggests that the original structure is not altered by
cerium loading. However, the weaker diffraction peaks may be due to the presence of
cerium compounds on the surface. It can be seen from the DE-Ce results in Figure 5, the
diffraction peaks at 27.4◦, 28.2◦, 31.7◦, 42.4◦, 47.5◦, 48.9◦, and 50.3◦ are associated with
the Ce(OH)3 (110), (101), (200), (210), (002), (211), and (102) crystal planes, respectively.
Diffraction peaks indicating CeO2 at 28.6◦ and 59.0◦ correspond to the (111) and (222)
crystal planes, respectively, and may be attributed to the decomposition of Ce(OH)3 and the
production of CeO2 during baking, respectively; however, the weaker intensity of the CeO2
diffraction peaks indicates that either the CeO2 content or its crystallinity is low, suggesting
that cerium is mainly loaded in the form of Ce(OH)3 both in the pores and on the surface.
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3.2.5. VSM

In order to explore the magnetic properties of DE-Ce, VSM analysis was performed on
the material, and the results are shown in Figure 6. The M-H curve of DE-Ce is linear. It can
be seen from the characteristics of the magnetization curve that the curve passes through the
origin and exhibits central symmetry. With the increase in the applied magnetic field, the
magnetization of DE-Ce increases continuously. When the applied magnetic field strength
is zero, the magnetization of DE-Ce is also zero. DE-Ce does not have ferromagnetism and
is a paramagnetic material.
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3.3. Adsorption Kinetic Analysis

Figure 7 shows that phosphorus adsorption by DE-Ce can be divided into three stages.
The first and fastest adsorption stage at 0–0.5 min is associated with rapid reaction, which
is followed by gradual deceleration over a period of 0.5–240 min and further rate reduction
after 240 min, resulting in equilibrium at 720 min, at which point, the phosphorus removal
rate reaches 98.64%.
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According to Table 5, the pseudo-second-order kinetic model, with an R2 of 0.981, could
explain the phosphorus adsorption by DE-Ce. The theoretical adsorption of 0.998 mg/g is
similar to the 0.986 mg/g achieved via experimentation, indicating that chemical adsorption
dominates the removal process.
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Table 5. Model parameters in the DE-Ce phosphorus adsorption kinetics.

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

K1 (min−1) 0.927 K2 (min−1) 5.074
qe (mg/g) 3.004 qe (mg/g) 0.950

R2 0.968 R2 0.981

3.4. Adsorption Isothermal Analysis

The isothermal adsorption models were also investigated to further analyze the ad-
sorption type. The pH values of the reaction solution were adjusted to 4.0, 7.0, and 10.0
using 1.0 mol/L NaOH solution or 1.0 mol/L HCl, respectively.

According to Figure 8 and Table 6, the correlation coefficient values of R2 (0.994,
0.974, and 0.983) obtained using the Langmuir model were greater than those obtained
by Freundlich (0.876, 0.919, and 0.868) under the three pH conditions. The qe obtained
by fitting the Langmuir isothermal adsorption equation is close to the values obtained for
adsorption. The phosphorus adsorption that was achieved using DE-Ce could therefore
be explained using the Langmuir model, which is associated with monolayer adsorption.
The weak adsorption capacity of DE is associated with a 0.440-mg/g peak for maximum
phosphorus adsorption. By contrast, the best theoretical phosphorus adsorption capacity of
DE-Ce (17.133 mg/g) indicates a 39-fold increase in the adsorption capacity for phosphorus
following modification.
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Figure 8. Fitting curve obtained for the DE-Ce adsorption model. (a) The fitting curve of the DE-Ce
adsorption model under the condition of 25 ◦C and pH = 4.0; (b) The fitting curve of the DE-Ce
adsorption model under the condition of 25 ◦C and pH = 7.0; (c) The fitting curve of the DE-Ce
adsorption model under the condition of 25 ◦C and pH = 10.0. Black square is the adsorption capacity
of DE-Ce to phosphorus at different concentrations of phosphorus.

Table 6. Parameters in the isothermal model of phosphorus adsorption.

Samples
Langmuir Freundlich

qm (mg/g) KL (L/mg) R2 n KF ((mg/g) (mg/L)−n) R2

pH = 4.0 16.317 3.838 0.994 4.246 8.231 0.876
pH = 7.0 17.133 3.867 0.974 3.912 8.379 0.919
pH = 10.0 15.794 2.977 0.983 4.125 7.689 0.868

The favorability for adsorption can be judged in accordance with RL (Table 6). The ex-
pression 0 < RL < 1 that was obtained using the Langmuir model indicates good adsorption
performance for the DE-Ce adsorbent, while the expression 0 < 1/n < 0.5 obtained using
the Freundlich model indicates that phosphorus adsorption is achievable using DE-Ce [44].
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3.5. Adsorption Mechanism
3.5.1. Electrostatic Adsorption and Sedimentation

XRD was performed to further investigate the mechanism of phosphorus adsorption
by DE-Ce. The XRD results after DE-Ce adsorption are presented in Figure 9. Based on
these results and the findings of the JCDPS card analysis, the diffraction peak intensities
at 20.1◦, 41.7◦, and 44.6◦ correspond to the (101), (211), and (103) crystallographic planes,
respectively, in CePO4 (No. 04-0632). Ce(HPO4)2 (No. 34-0466) exhibits characteristic
absorption peaks at 18.7◦, 30.2◦, 32.7◦, 43.5◦, and 47.1◦, with the presence of CePO4 and
Ce(HPO4)2 diffraction peaks in the XRD pattern indicating the formation of CePO4 and
Ce(HPO4)2 crystal structures during adsorption.
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Figure 9. XRD pattern following DE-Ce adsorption. a, XRD pattern of DE-Ce before adsorption; b,
XRD pattern of DE-Ce adsorption.

The form that phosphate takes in water is heavily influenced by pH, while the form
of DE-Ce-adsorbed phosphorus is only slightly dependent on pH as Ce3+ is strongly at-
tracted to PO4

3− under acidic conditions [45]. As the pH increases, H3PO4 is gradually
deprotonated to become H2PO4

− and HPO4
2− [44]. Figure 10 shows that the zeta point

position of DE-Ce is 5.26 and that the surface of DE-Ce is positively charged in solutions
where pH < 5.26. In this pH range, DE-Ce exhibits a strong electrostatic adsorption effect
on negatively charged phosphates such as H2PO4

2−. As the pH increases, DE-Ce becomes
negatively charged (pHPZC = 5.26) and the increased negative charge enhances the electro-
static repulsion effect of DE-Ce toward anions such as H2PO4

2− [46]. Moreover, phosphate
competes with the increasing number of OH− molecules in an alkaline solution [47]. The
weaker affinity of phosphate for Ce–OH on the DE-Ce surface as compared to the attraction
to OH− in solution results in most active sites on the DE-Ce surface becoming occupied
by OH−, limiting the phosphorus removal [42]. However, the continuing high removal
rate may be due to Ce(III) hydrolysis leading to the formation of Ce–OH, at which time,
the adsorption of phosphorus by DE-Ce is dominated by ligand exchange [48]. When
DE-Ce adsorbs phosphorus, Ce3+ reacts with phosphate to generate CePO4 precipitate
and Ce(OH)3 reacts with hydrogen phosphate to generate Ce(HPO4)2 via ligand exchange,
leading to phosphate capture.
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3.5.2. Ligand Exchange

XPS was performed on DE-Ce before and after the reaction to further explore the
phosphorus removal mechanism for DE-Ce.

The P 2p spectra are presented in Figure 11a,b. The obvious P 2p peak and resulting
binding values of P 2p3/2 and P 2p1/2 at 133.8 and 134.9 eV, respectively, following adsorp-
tion correspond to HPO4

2− and PO4
3−, respectively, indicating the successful adsorption

of phosphorus by DE-Ce. The stronger P 2p peak at 133.8 eV indicates that the phosphate
is mainly loaded onto the DE-Ce surface in the form of HPO4

2− [48]. The lower binding
energy as compared to that of purified KH2PO4 (~134.0 eV) is likely due to the interaction
between cerium and phosphate, thus demonstrating that DE-Ce removes phosphorus by
chemisorption [24].

Four pairs of spin–orbit double peaks are present in the Ce 3d spectrum of cerium
in DE-Ce [Figure 11c,d], with photoelectron peaks indicating Ce 3d3/2 and Ce 3d5/2 at
882.9/901.3, 886.0/904.3, 888.9/907.7, and 898.4/916.8 eV, respectively. The spin–orbit dou-
ble peaks observed at binding energies of 882.9/901.3, 888.9/907.7, and 898.4/916.8 eV cor-
respond to the characteristic chemical state of Ce4+, while the double peak at 886.0/904.3 eV
corresponds to the chemical state of Ce3+. This finding indicates that cerium occurs is in
the forms Ce3+ and Ce4+ in DE-Ce, which is likely due to the oxidation of Ce3+ during
preparation [49]; however, this observation may also be due to the fact that Ce(OH)3 and
Ce(OH)4 form when cerium and OH− are combined and that Ce(OH)3 is sensitive to
air, thus forming Ce(OH)4 [50]. The percentage of cerium in the different valence states
can be estimated from the peak area, and the ratio of Ce3+ to Ce4+ content is 1:3.2 [51].
The slight displacement of Ce3+ following phosphorus absorption may be due to electron
transfer between Ce3+ and phosphate, which leads to the generation of a Ce–O–P complex,
indicating a strong affinity and interaction between phosphate and cerium [21,23].

Peaks are also observed at approximately 529.7, 531.6, and 532.6 eV in the O 1s
profiles of DE-Ce [Figure 11e]. The photoelectron peaks at 529.7, 531.63, and 532.6 eV,
which correspond to lattice O, surface-active O (O–H), and carboxylic acid O (O–C=O),
respectively, are weaker after phosphorus adsorption than they are before adsorption,
indicating that lattice O has transformed into surface-active O [52]. This phenomenon may
be explained by the production of Ce–O–P under the coordination of Ce3+ with phosphate.
The considerable decrease in the peak area of Ce–OH further confirms the production of
Ce–O–P [53].
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The analysis results indicate that the adsorption of phosphorus by DE-Ce is the result
of interaction between physical and chemical adsorption, with chemical adsorption playing
a dominant role. The main mechanisms by which phosphorus is removed by DE-Ce
include electrostatic adsorption, ligand exchange, and precipitation, as shown in Figure 12.
DE-Ce has a pHPZC value of 5.26, which means that at pH values of <5.26, its surface
is positively charged and it has a strong electrostatic adsorption effect on the negatively
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the DE-Ce surface. However, at a pH of >5.26, the hydrolysis of Ce(III) produces Ce–
OH, providing additional exchange sites, and phosphate generates Ce–O–P inner sphere
compounds via ligand exchange.
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4. Conclusions

An effective DE-Ce adsorbent was synthesized using cerium-modified DE, and the
effects of roasting temperature, cerium concentration, and HCl concentration on adsorbent
preparation were examined using the RSM. The significance of these parameters for ad-
sorption is as per the following order: roasting temperature > cerium concentration > HCl
concentration. Among the interaction effects, those of the roasting temperature and HCl
concentration are the strongest. Combined with the previous experiments, the optimal
preparation conditions are a roasting temperature of 550 ◦C, a cerium concentration of
0.12 mol/L, an HCl concentration of 2.76 mol/L, a transition time of 30 min, and an impreg-
nation time of 2 h. The characterization results and adsorption experiments indicate that
phosphorus adsorption by DE-Ce conforms to the secondary kinetic model, or chemisorp-
tion, and the Langmuir model, or unimolecular layer adsorption. The successful loading
of Ce(OH)3 onto DE can effectively increase the number and size of the pores observed
on the DE surface and improve its structure. DE-Ce is a paramagnetic material. The
mechanisms of phosphorus adsorption include electrostatic adsorption, precipitation, and
ligand exchange. The overall results show that cerium loading is favorable for improving
the adsorption capacity of DE. DE-Ce has a good removal effect on phosphorus, but its
removal effect on other pollutants and its recyclability need to be further studied.
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