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Abstract: Detailed Nuclear Magnetic Resonance (NMR) spectroscopy investigations on a novel
naphthalene-substituted 1,2,3-triazole-based fluorescence sensor provided evidence for the “turn-on”
detection of anions. The one-step, facile synthesis of the sensors was implemented using the “Click
chemistry” approach in good yield. When investigated for selectivity and sensitivity against a series
of anions (F−, Cl−, Br−, I−, H2PO4

−, ClO4
−, OAc−, and BF4

−), the sensor displayed the strongest
fluorometric response for the fluoride anion. NMR and fluorescence spectroscopic studies validate a
1:1 binding stoichiometry between the sensor and the fluoride anion. Single crystal X-ray diffraction
evidence revealed the structure of the sensor in the solid state.

Keywords: Nuclear Magnetic Resonance spectroscopy; naphthalene; 1,2,3-triazole; Click chemistry;
fluorometric; turn-on; fluoride; anion

1. Introduction

Small, inexpensive organic molecular sensors are making an impact in the field of molecular
recognition and as a result, have captured the attention of chemists [1–3]. When chemosensors
respond to external stimuli, distinct and significant changes can be observed—for example, in color
or fluorescence [4–6]. Anions are crucial in biological and environmental systems; optimum
concentrations are critical to proper functioning, as an excess or diminished amount of anions can
prove fatal in both systems [7].

The ability to detect fluoride is important for the environment, industry, biological systems,
and the military [6,8]. Developing cost-effective, high-performance, easily portable methods for the
detection of this anion is highly beneficial to society [8]. The fluoride (F−) anion, in particular, has
a significant impact on health. With groundwater concentrations of 0.5 to 48 ppm [9], this anion
is important for healthy dental and bone development [10,11]. However, overexposure causes
fluorosis [12] and high levels in utero can impede children’s cognitive development [13]. In military
operations, the detection of fluoride could be quite useful in the uranium enrichment process for
nuclear power and weaponry development [14,15]. In chemical warfare, quick measurement of
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fluoride levels can expedite tracking of harmful phosphorofluoridate nerve agents such as sarin that
hydrolyze to release the anion upon contact with the atmosphere [16,17].

A number of colorimetric and fluorometric sensors have been developed to detect anions through
a Brønsted acid–base reaction and/or hydrogen bond formation at the N–H and O–H moieties [18].
For ion recognition, complicated molecules with multistep syntheses are used to create highly conjugated
systems with common scaffolds such as ureas, amides, and/or phenolic groups [19,20]. Photoinduced
electron transfer (PET) [21,22], metal-to-ligand charge transfer (MLCT) [22,23]; excimer/exciplex
formation [23], intramolecular charge transfer (ICT) [24]; and excited state intra/intermolecular proton
transfer (ESPT) [25,26] are some of the signaling mechanisms by which the anions are detected.

One of the greatest challenges for chemists is to create chemosensors that are stable, fast, sensitive
at the parts per million (ppm) level, and efficient [27]. Organosensors, through reversible interactions,
present an avenue into various applications such as resettable logic gate systems [28–31], molecular
security devices [32,33], micellar devices [34,35], dual sensors [36,37], corrosion inhibitors [38],
fabrication of materials and polymers, etc. [39,40]. The optically and chemically stable naphthalene
substituted-1,2,3-triazole molecule, NpTP ((2-(4-(naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)phenol, Scheme 1)
described herein is produced with straightforward synthesis, targeted design, and sensitive as well as
selective ion-recognition properties.
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Bypassing complicated synthetic steps, the 1,2,3-triazole chemosensors is accessed in one step
with an azide–alkyne cycloaddition utilizing the most well-known “Click” reaction [41–46]. With this
approach, the recognition core can be easily retained while the signaling units are readily modified
using commercially available precursors. Furthermore, unlike other naphthyl-based fluoride sensors
reported in the literature [47,48] that function through the interaction of the anion with N-H groups in
cage-like bisurea systems, NpTP utilizes a much simpler phenolic–triazole binding core.

The triazole units serve distinct roles in sensing. They can be a part of the response group,
participate in cation and anion chelation, or function as a ligation unit that links one part of a sensor
to another [42,44]. These scaffolds are N-donors via one of the sp2-nitrogens during cation binding,
and H-donors at the Csp2-H proton in anion binding [41,44]. In the case of NpTP, the triazole serves
in three capacities: ligation, signaling, and recognition.

Previous work by our group investigated the sensing properties of PTP (2-(4-phenyl-1-H-
1,2,3-triazol-1-yl)phenol) [49]. This molecule exhibited a blue “turn-on” fluorescent response to fluoride
(F−), acetate (OAc−) and dihydrogen phosphate (H2PO4

−). PTP was equally responsive to OAc− and
H2PO4

−, and three times more sensitive to F− compared to the other two anions. NpTP presented
herein illustrates a red-shift effect on the signal output, a yellow “turn-on” fluorescence upon interacting
with fluoride, acetate, and dihydrogen phosphate due to increased conjugation length in the sensor,
i.e., replacing the phenyl group in PTP with naphthyl in NpTP. Additionally, our investigations have
revealed that the incorporation of the naphthyl unit significantly improved the ion selectivity and
fluoride sensitivity of the sensor relative to PTP.

The results presented in this study show a strong fluoride response with NpTP. The sensor
“turns-on” in the presence of a fluoride ion upon irradiation at 300 nm. The binding pocket is created
by the phenolic –OH and triazole Csp2-H site (Scheme 2). Detailed NMR investigations (1) showed
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the structural skeleton of NpTP; (2) displayed the binding interaction with F−; and (3) revealed the
stoichiometry between the sensor and the analyte after titrating with varied concentrations of fluoride
anion with NpTP. NMR, Ultra violet-visible (UV-Vis) and fluorescence spectroscopy studies detailed
the molecule’s response to host anions as their tetrabutylammonium salts (F−, Cl−, Br−, I−, H2PO4

−,
ClO4

−, OAc−, BF4
−).
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2. Results and Discussion

The detailed characterization of NpTP was carried out by NMR (1D and 2D) and single crystal
X-ray analysis. NMR studies revealed the structure, the anion-binding site and the stoichiometry
between the sensor and the fluoride anion. The photophysical properties of NpTP with and without the
anions (F−, Cl−, Br−, I−, H2PO4

−, ClO4
−, OAc−, BF4

−) were investigated by steady state absorption
and fluorescence spectroscopy.

2.1. Nuclear Magnetic Resonance Spectroscopic Studies

The NpTP structure was characterized by 1H-NMR in various deuterated solvents such as
acetonitrile-d3 (CD3CN), dimethylsulfoxide-d6 ([(CD3)2SO]), and acetone-d6 [(CD3)2CO]. Figure 1
shows the comparison between the three solvents. The aromatic peaks in these solvents appear in
the range of δ 7.00 to 9.05 ppm with anticipated coupling patterns. The triazole Csp2–H (H7) proton
singlet, as expected, is highly deshielded and hence is a reference peak in many studies (δ 9.05 ppm in
DMSO; δ 9.00 ppm in acetone, and δ 8.78 ppm in acetonitrile) [41,50]. The H5 proton has noticeably
shifted its position in all three solvents, with acetone being highly downfield (δ 7.82 ppm as doublet
of doublets in acetone-d6). The naphthyl core has seven resonance signals; the singlet at δ 8.52 in
DMSO-d6 is easily identified as the H10 proton. The H14 and H13 proton split as a doublet (δ 8.11 ppm
and δ 8.00 ppm, respectively). The phenolic –OH proton is visible as a broad singlet in DMSO-d6

at δ 10.60 ppm (Figure 2 and Figure S1). The correlational spectroscopy (g-COSY) studies helped in
assigning all the aromatic protons. A strong meta coupling (4J) cross peak of the H10 and H14 proton is
visible and is marked below in Figure 3.

The 13C-NMR signals (Figure 4, Figures S2 and S3) for the aromatic region ranged from δ 117.5
to 150.5 ppm in DMSO-d6. With the help of 1D DEPT 90 (Figure S4) and 2D HSQC (Figure 5), all the
single bonded carbon hydrogen correlations were marked. The HMBC studies (Figure S5), aided in
allocating the quaternary carbons (1, 6, 8, 9, 11, and 12). The strong peaks for example seen for C1
carbon are for H5 and H3 protons through three bond correlations and the weak peak is seen for H2
proton via two bond correlation. Both the 1D and 2D studies guided in assigning the 1H and 13C
resonances for the NpTP molecule.
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C–H bonds are marked).

Fluoride ion interaction with NpTP was investigated by evaluating the binding mechanism of the
anion with the sensor. For this purpose, the Csp2-H triazole proton signal was used to verify the site of
interaction between the NpTP molecule and the fluoride anion. The 1H-NMR titration experiments
were carried out with the sensor by gradual addition of 0 to 4.0 equivalents of tetrabutylammonium
fluoride (TBAF) in CD3CN (Figure 6). The protons on the phenyl ring (H2–H4) and the triazole proton
were greatly affected. The H4 proton, which is in the para position to the –OH group, is shielded from
7.10 to 6.24 (∆δ = 0.84) with increased concentration of TBAF from 0 to 4.0 equivalents. The protons
that are ortho and meta to –OH (H2 and H3) initially unite to form the broadened peak at ~δ 7.27 after
the addition of 0.2 equivalents of TBAF. At a higher concentration of approximately one equivalent,
it splits again into two distinct resonances. These results are in accordance with the previously reported
PTP sensor from our group [49]. The initial downfield and later upfield shifts of the H2 phenyl proton
showed the impact of fluoride binding on the ring. The proton meta (H3) to the –OH group was
moderately affected at higher concentrations of F− ion. This confirmed our hypothesis of the increased
electron density in the phenyl ring displaying a significant impact on ortho and para position of phenyl
protons with a through-bond propagation [51,52].

Substantial change was observed in the chemical shift of the Csp2-H triazole proton (δ 8.78 in
CD3CN) before and after its binding with fluoride. The change in delta value is significant from 8.78
to 9.58 (∆δ = 0.80) with increasing equivalents of TBAF. This strong deshielding effect is attributed
to the fact that the triazole proton is in the vicinity of the anion through possible hydrogen bonding-
like interaction [53]. The H5 proton on the phenyl ring, in comparison to other protons’ chemical
shifts, is minimally affected throughout the course of the titration, providing additional evidence
for a binding site with fluoride. The above results support the fact that the triazole proton and the
phenolic proton (–OH) are part of the binding pocket. The naphthyl protons H10 and H13–H18 are not
influenced by fluoride binding [49].
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The titration experiments also helped to find the binding stoichiometry of the sensor with the F−

ions through Job’s plot [54,55]. The change in the delta value of the triazole proton H7 (∆δ = δx − δo)
at δ 8.78 [55] was plotted against the mole fraction of the sensor [NpTP]/([NpTP + TBAF]). The plot
was fitted using the non-linear curve fit parameters of the ORIGIN 8.0 software. It showed a maximum
intensity at 0.45 mole fraction, revealing the binding stoichiometry of F− ions to NpTP as 1:1 (Figure 7).
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To understand the structural conformations of NpTP in solution, Nuclear Overhauser Effect
(NOE) experiments were carried out (Figures S6 and S7). We did not find any correlation between the
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triazole Csp2-H proton (H7) and the phenyl H5 proton, indicating that the phenolic –OH is in close
proximity to the H7 proton. A strong NOE correlation is observed between the a) triazole proton H7
and the H10 and H14 protons and b) H10 and H15 protons on the naphthyl ring (Figure S6). The NOE
correlation is also seen for the –OH proton and the H2 proton, suggesting the position of the phenolic
group towards phenyl proton rather than the triazole proton (Figure S7). NOE studies of NpTP in
presence of four equivalents of TBAF (Figure S8) showed the correlation between the H7, H10, and H14
protons, indicating that the naphthyl core is unaffected. There is no conformational change before and
after fluoride binding. It also suggests that the fluoride anion is in close vicinity to the triazole proton
and the –OH proton, shown in Scheme 2. The single X-ray crystal structure for NpTP and our previous
studies on cation sensor (BPT) [56] also support this hypothesis. The crystal structure substantiated
that there is no intramolecular hydrogen bonding between the phenolic oxygen (–OH) and the triazole
proton (see Section 2.4).

Since the phenolic (–OH) group was part of the binding pocket, the behavior of the –OH group
was studied in DMSO-d6 by a titration study with NpTP and TBAF. In this polar aprotic solvent,
the phenolic –OH resonates distinctly at δ 10.60 ppm. Upon addition of 0.5 equivalents of fluoride
anion, the –OH proton signal completely disappears indicating a hydrogen bond between F- and
the phenolic –OH. Higher equivalents of TBAF (2.0 equivalents) generated a triplet at 16.1 ppm,
which intensified with 4.0 equivalents of TBAF. The highly deshielded triplet peak is an indication
of the stable hydrogen bonded HF2

− ion. This provided evidence to a deprotonation pathway in the
ion-recognition process (Figures S9 and S10) [57,58].

In 1H-NMR, the H7 proton in deuterated DMSO (Figure S9) at 1 equivalent of TBAF started
splitting. Our understanding is that the fluoride anion is in close proximity to the triazole proton
and hence is severely affected. To confirm this hypothesis, we monitored the interaction through
19F-NMR titration in DMSO-d6, where the singlet for pure TBAF appears at δ −106 ppm, and HF2

− can
be seen at −144 ppm (weak signal). At one equivalent of TBAF, the −106 ppm peak completely
disappears indicating the formation of a complex between the NpTP molecule and the F− ion.
At higher concentrations (2–4 equivalents), the doublet for HF2

− ion at −144 ppm was clearly observed
(Figure S11) [59,60].

In comparison to the previously reported sensor, PTP [49], from our group, the 1H-NMR studies
with NpTP showed similar observations. The phenolic –OH proton was significantly affected but
the aryl core (phenyl in PTP and the naphthyl in NpTP) was not. The binding site for fluoride in
both sensors consisted of the triazole proton and the phenolic proton. The triazole proton in PTP
appeared at δ 8.65 ppm and in NpTP at δ 8.78 ppm in CD3CN. For both sensors, the 1H-NMR titration
experiments conducted in CD3CN at four equivalents of TBAF resulted in considerable deshielding of
the triazole proton and shielding of the proton para to the phenolic –OH. The change in the triazole
proton’s chemical shift for PTP was 0.70 ppm and 0.8 ppm for NpTP.

2.2. Absorption and Fluorescence Studies

With the NpTP molecule, anion recognition was investigated using steady state absorption
and fluorescence experiments. This was carried out by screening the molecule with the
tetrabutylammonium salts of various anions: F−, Cl−, Br−, I−, H2PO4

−, ClO4
−, OAc−, and BF4

−.
Significant spectral changes for NpTP in both absorption and fluorescence spectra were noted in the
presence of F−, OAc−, and H2PO4

– ions (Figure 8). However, fluoride showed the most significant
response compared to the other two anions. In acetonitrile, NpTP showed the lowest energy absorption
band in the range of 275–310 nm, peaking at 290 nm. The structured absorption is characteristic of
the π–π* transition in the polyaromatic ring system [61–64]. Development of a new absorption peak
around 355 nm at the cost of the pre-existing NpTP original band indicates effective interaction of
these ions with NpTP leading to the formation of a new complex (Figure 8).
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Figure 8. Absorption spectra and bars (in the inset) representing the spectral response of NpTP
(~1 × 10−5 M) upon the addition of 4 × 10−4 M of various anions in acetonitrile. The bars in the inset
are plotted by monitoring the absorbance of NpTP at 355 nm in presence of anions.

Modulation in the fluorescence color change of the molecule, as observed in the presence of a UV
lamp (Section 2.3) under the influence of fluoride, acetate, and dihydrogen phosphate anions, steered
us to investigate the emission properties of NpTP in the presence of these ions. An emission spectrum
of NpTP molecule was obtained upon exciting the molecule at 300 nm (around λmax absorption).
The structured emission band spanning between 345 nm and 380 nm is due to the naphthalene
moiety [65,66], whereas the band at 330 nm is a signature of the phenol triazole group [49]. With the
addition of a series of tetrabutylammonium salts of ions, emission spectra of NpTP in presence of the
ions (Figure 9) resulted in a similar spectral changes as the absorption profiles (Figure 8). With the
addition of F−, OAc−, and H2PO4

– ions, the NpTP emission from the naphthalene moiety was
quenched and two new bands developed—one around 410 nm and the other at 530 nm. The band
at 530 nm revealed a low quantum yield with respect to the one at 410 nm. Also, in the presence
of fluoride ions, the 410 nm band had comparatively higher fluorescence than the other two ions.
Fluorescence color study (see Section 2.3, Figure 12) under a UV lamp (long wavelength ~365 nm)
resulted in yellow fluorescence for NpTP in the presence of F−, OAc–, and H2PO4

– ions, which
validated the existence of a 530 nm emission band (yellow region in the color spectrum) in the presence
of these three ions.

To further study the interaction of fluoride with NpTP, TBAF was progressively added to the
molecule in acetonitrile. The fluorescence intensity of the 330 nm band of the sensor gradually
decreased with a concomitant development of the bands at 410 nm and 530 nm (Figure 10). To unveil
the characteristics of each emission band, excitation scans were collected by monitoring the emission
wavelengths at 530 nm (Figure 11a) and 410 nm (Figure 11b). The spectrum obtained at λem

530 nm resembled the absorption spectrum when fluoride was added to the molecule, with the
peak maximizing at 350 nm. To substantiate our result, the molecule was excited at 350 nm and a
broad emission band peaking at 545 nm correlates to the emission band due to fluoride ion interaction
with NpTP (Figure 11a).



Magnetochemistry 2018, 4, 15 10 of 18
Magnetochemistry 2018, 4, x FOR PEER REVIEW  10 of 18 

 

 
Figure 9. Fluorescence spectra of NpTP (~1 × 10−6 M) upon the addition of 4 × 10−4 M of various anions 
in acetonitrile. λexc = 300 nm. 

 
Figure 10. Fluorescence spectra of NpTP (~1 × 10−6 M) upon the addition of TBAF in acetonitrile. 
Concentrations of TBAF are provided on the legends. λexc = 300 nm. 

The spectrum obtained at λem 410 nm (Figure 11b) is rather interesting as it showed the excitation 
band specific to the naphthalene triazole itself. This hinted at the fact that fluoride addition resulted 
in a notable change in the photophysical property of the NpTP molecule. The presence of an electron 
withdrawing group in the form of F− ions dramatically influenced the excited state dynamics of the 
molecule through an inductive effect caused after fluoride is bound to NpTP. This allowed an 
electron flow throughout the aromatic rings, causing further conjugation in the system and, as a 
result, a red shifted emission band of NpTP appeared at 410 nm (Figure 11b). This also demonstrated 
the excited state proton transfer (ESPT) process occurring in this molecule when fluoride abstracts 
the phenolic proton [26]. The appearance of the 410 nm emission band is attributed to the formation 
of an anion of NpTP. Deprotonation occurs during the excited state lifetime of the molecule. This 
phenomenon correlates to the widely studied photophysics of 2-Naphthol [25,67–71] where the 
molecule undergoes the ESPT process at high pH conditions, revealing emission of the Naptholate 
anion around 410 nm [67]. Observation of the emissions from both the deprotonated NpTP and 

350 400 450 500 550
0

5

10

15

20

25

30

35

40

45

50
 NpTP

 F-

 Cl-

 Br-

 I-

 H2PO-
4

 ClO-
4

 OAc-

 BF-
4

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)

Wavelength (nm)

350 400 450 500 550
0

10

20

30

40

50

[TBAF] x 10-6 M
 0
 2
 4
 8
 64
 120
 240
 400

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)

Wavelength (nm)

Figure 9. Fluorescence spectra of NpTP (~1 × 10−6 M) upon the addition of 4 × 10−4 M of various
anions in acetonitrile. λexc = 300 nm.
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Figure 10. Fluorescence spectra of NpTP (~1 × 10−6 M) upon the addition of TBAF in acetonitrile.
Concentrations of TBAF are provided on the legends. λexc = 300 nm.

The spectrum obtained at λem 410 nm (Figure 11b) is rather interesting as it showed the excitation
band specific to the naphthalene triazole itself. This hinted at the fact that fluoride addition resulted in
a notable change in the photophysical property of the NpTP molecule. The presence of an electron
withdrawing group in the form of F− ions dramatically influenced the excited state dynamics of
the molecule through an inductive effect caused after fluoride is bound to NpTP. This allowed
an electron flow throughout the aromatic rings, causing further conjugation in the system and,
as a result, a red shifted emission band of NpTP appeared at 410 nm (Figure 11b). This also
demonstrated the excited state proton transfer (ESPT) process occurring in this molecule when fluoride
abstracts the phenolic proton [26]. The appearance of the 410 nm emission band is attributed to the
formation of an anion of NpTP. Deprotonation occurs during the excited state lifetime of the molecule.
This phenomenon correlates to the widely studied photophysics of 2-Naphthol [25,67–71] where the
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molecule undergoes the ESPT process at high pH conditions, revealing emission of the Naptholate
anion around 410 nm [67]. Observation of the emissions from both the deprotonated NpTP and
NpTP-F− hinted at the fact that the excited state reaction is partially completed during the excited
state lifetime [67]. Similar observations in the fluorescence spectral patterns of OAc− and H2PO4

–

ions indicated that deprotonation and anion binding are simultaneously taking place with anions that
have higher basicity. Though acetate is considered more basic than fluoride, the fluorescence response
for fluoride ions is relatively higher than for acetate (Figure 8). Here, the size of the anion played an
important part in its binding with the molecule. Fluoride, being smaller in size than acetate, has better
proximity to fit in the triazole pocket and bind with the –OH proton.
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Figure 11. Emission (red) and fluorescence excitation (black) spectra of NpTP (~1 × 10−6 M) in
acetonitrile for (a) λexc is 350 nm to obtain emission spectrum and λem is monitored at 530 nm for
excitation scan; (b) λexc is 300 nm to obtain emission spectrum and λem is monitored at 410 nm for
excitation scan.

Overall, relative to our previous study with a phenyl-based sensor, PTP, the spectroscopic
investigation with NpTP revealed increased ion-selectivity with the replacement of the phenyl unit by
the naphthyl group. While fluoride induces the strongest response in both molecules, with PTP the
intensity of the fluorescence with OAc− and H2PO4

− was on par [49]. For NpTP, the improvement in
ion selectivity is verified by a fluorescence output with H2PO4

− that is significantly lower than that for
OAc− (Figure 9), a clear and marked distinction occurring between F− versus OAc− versus H2PO4

−.
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The stoichiometry of the sensor with F− was determined from the modified Benesi–Hildebrand
equation (Equation (1)) [72]. The graph was plotted with 1/∆F against 1/[L] (Figure S12):

1/∆F = 1/∆Fmax + 1/K. 1/∆Fmax. 1/[L], (1)

where ∆F = Fx − F0 and ∆Fmax = F∞ − F0;
F0, Fx, and F∞ are the fluorescence intensities of the NpTP molecule considered in the

absence, at an intermediate concentration, and at a concentration of complete interaction of the
anion, respectively. K is the binding constant and [L] is the concentration of the fluoride anion.
The fluorescence was monitored at 530 nm. NpTP showed a linear variation upon addition of fluoride,
justifying the validity of the above equation and confirming the 1:1 interaction between the sensor and
the anion. The binding constant, K, determined from the slope to be 2.8 × 104 M−1 for NpTP–fluoride
binding, demonstrated higher sensitivity towards fluoride compared to our previously studied triazole
molecule, PTP (K = 9.0 × 103 M−1) [49].

2.3. Color Studies

The color study showed (Figure 12) a “turn-on” yellow fluorescence enhancement of NpTP,
under a UV lamp of wavelength 365 nm, with tetrabutylammonium salts of fluoride. Salts of H2PO4

–

and OAc− ions also showed the “turn-on” fluorescence but the color intensity was low compared to
the F− anion. The results corroborated the absorption and fluorescence spectroscopy experiments.
The observations from spectroscopic and color studies of NpTP upon addition of F− were attributed
to hydrogen bonding, which is consistent with previous studies on hydrogen bonding interactions
between the sensor and the analyte [24,49,73,74].
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Figure 12. Color changes of NpTP under a UV lamp of long wavelength (365 nm) upon addition of
~2 × 10−2 M of anions to ~1 × 10−3 M sensor in acetonitrile.

2.4. Single Crystal X-ray Crystallography Studies

The single X-ray crystal of NpTP (15 mg) was obtained by slow evaporation of a mixed solvent
system (0.5 mL methanol + 0.2 mL acetonitrile + 2–3 drops of DMSO). A colorless pyramidal crystal
of C18H13N3O having approximate dimensions of 0.067 mm × 0.068 mm × 0.071 mm was used for
the X-ray crystallographic analysis. Crystal data, data collection, and structure refinement details are
summarized in Table 1. NpTP crystallized in the tetragonal space group P43 (#78) with the unit cell
parameters a = 7.3806(16) Å, b = 7.3806(16) Å, c = 50.665(11) Å, volume = 2759.9(13) Å3. The structure
was collected at 140 K and had an unweighted r factor of 4.88% (R1). The thermal ellipsoid of the
single-crystal structure of NpTP is shown in Figure 13.

The structure has two independent NpTP molecules in the asymmetric unit that only differ in
the orientation of the naphthyl ring to the triazole. The structure is held together by two independent
hydrogen bonding chains with H-bond between the phenolic O–H and the triazole nitrogen of
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neighboring molecules. The first chain runs parallel to the a-axis (Figure S15), the second runs
parallel to the b-axis (Figure S16). Combined, these form a network of hydrogen bonds that holds the
overall structure together. The detail reports on NpTP crystal structure is provided in Table S1–S7.Magnetochemistry 2018, 4, x FOR PEER REVIEW  13 of 18 
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Table 1. Experimental details for NpTP molecule for single X-ray crystal studies.

Crystal Data for NpTP

Chemical formula C18H13N3O
Mr 287.31

Crystal system, space group Tetragonal, P43
Temperature (K) 173

a, b, c (Å) 7.3806 (16), 7.3806 (16), 50.665 (16)
V (Å3) 2759.9(13)

Z 8
Radiation type Mo Kα

µ (mm−1) 0.09
Crystal size (mm) 0.07 × 0.07 × 0.07

Data collection for NpTP

Diffractometer Bruker D8 Venture Photon 100 diffractometer

Absorption correction Multi-scan
SADABS, Bruker

Tmin, Tmax 0.883, 1.00
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections 17713, 5409, 4263

Rint 0.045

Refinement

R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.096, 1.02
No. of reflections 5409
No. of parameters 398
H-atom treatment H-atom parameters constrained

∆ρmax, ∆ρmin (e Å−3) 0.16, −0.20
Special treatment Refined as a 2-component inversion twin

Computer programs: Data collection: Bruker APEX3; cell refinement: Bruker SAINT; data reduction: Bruker SAINT;
program(s) used to solve structure: SHELXT-2014 (Sheldrick 2014); program(s) used to refine structure: SHELXL2014
(Sheldrick 2014).

3. Materials and Methods

All chemicals and reactants for NpTP synthesis and the tetrabutylammonium salts of anions
were obtained from commercial sources (Sigma-Aldrich (St. Louis, MO, USA) and Acros Organics
(Pittsburgh, PA, USA)) and used without further purification. Column chromatography was performed
with Selecto Scientific Si-gel (particle size 100–200 microns). All reactions were monitored by thin-layer
chromatography (TLC) using Agela Technologies silica gel plates 60 F254 (Wilmington, DE, USA).
Visualization was accomplished with UV light and/or staining with appropriate stains (iodine,
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vanillin). Melting points were measured with a Vernier Melt Station (Beaverton, OR, USA) using
a Vernier LabQuest 2 and are uncorrected. NMR spectra were recorded on an Agilent MR400DD2
spectrometer (Santa Clara, CA, USA), with a multinuclear probe with two RF channels and variable
temperature capability (1H-NMR: 400 MHz, 13C-NMR: 100 MHz). The solvent used was CD3CN,
[(CD3)2SO], [(CD3)2CO] purchased from Sigma-Aldrich (St. Louis, MO, USA) and Acros Organics
(Pittsburgh, PA, USA) with TMS as an internal standard set at 0 ppm in both 1H-NMR and 13C-NMR
spectra. The NMR signals are reported in parts per million (ppm) relative to the residual in the
solvent. Signals are described with multiplicity, singlet (s), doublet (d), triplet (t), triplet of doublet (td),
quartet (q) and multiplet (m); coupling constants (J; Hz) and integration. High Resolution MS (HRMS)
analyses were performed using MALDI, Q-TOF micro, 3200API, LCMS, GCMS EI (DI) (Figure S13).
The Electrospray Ionization Mass Spectrometry (ESI-MS) was conducted using a Shimadzu LCMS-2020
Single Quad (Korneuburg, Austria) (Figure S14).

Room-temperature absorption and steady-state fluorescence measurements were performed
using a Shimadzu UV-2450 spectrophotometer and PerkinElmer LS55 (Waltham, MA, USA) with
a well plate reader fluorimeter, respectively. Concentration of NpTP was kept at ~1.0 × 10−6 M
in acetonitrile to avoid any possible intermolecular effect. Stock concentrations of ~1.0 × 10−2 M
for the tetrabutylammonium salts of anions were also prepared in acetonitrile. The solvents used
are of HPLC grade and all the experiments were performed at ambient temperature (27 ◦C) with
air-equilibrated solutions.

The single X-ray crystal structure measurements were made on a Bruker D8 Venture Photon
100 diffractometer using Mo-Kα radiation (Madison, WI, USA).

General procedure for synthesis of sensor 2-(4-(naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)phenol (NpTP):
2-Azidophenol (225.4 mg, 1.67 mmol) [75] and naphthylene-2-acetylene (253.9 mg, 1.67 mmol) were
suspended in tert-butanol/water (33.4 mL; 1:1, v/v) in a round bottomed flask. In order to dissolve
the solids completely, the mixture was warmed slightly above the room temperature. An aqueous
solution of copper(II) sulfate pentahydrate (8.10 mg, 0.03 mmol in 2 mL of water) was then added
dropwise, followed by sodium ascorbate (64.0 mg, 0.32 mmol in 2 mL of water). The reaction was
stirred vigorously while refluxing for 24 h. Upon cooling to room temperature, the resulting mixture
was placed in an ice bath and diluted with water (~20 mL) to induce precipitation. The crude, solid
product was collected with vacuum filtration and purified by flash column chromatography (10% ethyl
acetate in hexanes followed by 40% ethyl acetate in hexanes) to provide a beige powder, 329.6 mg (69%).

Melting point: 225.9–226.5 ◦C.
1H-NMR (400 MHz, DMSO-d6) δ 10.60 (brs, 1H, OH), 9.05 (s, 1H), 8.52 (s, 1H), 8.11 (dd, 1H, 1.6, 8.0 Hz),
7.98–8.04 (m, 2H), 7.95 (dd, 1H, 1.4, 8.0 Hz), 7.66 (dd, 1.68, 7.92), 7.50–7.60 (m, 2H), 7.39 (ddd, 1H, 0.8,
1.76, 7.48 Hz), 7.17 (dd, 1H, 1.28, 8.3 Hz), 7.03 (td, 1H, 1.2, 7.6 Hz).
13C-NMR (100 MHz, DMSO-d6) δ 150.0, 146.1, 133.2, 132.6, 130.4, 128.5, 128.0, 127.7, 126.6, 126.1, 125.5,
124.6, 123.7, 123.6, 123.4, 119.5, 117.0.
ESI-MS m/z 288.0 [M + H]+; calculated value for C18H13N3O = 287.0, found from experiment 288.0.
HRMS (ESI/QTOF) m/z: [M + H]+ calculated for C18H14N3O 288.1131; Found 288.1119.

4. Conclusions

A new, simple, efficient synthesis of a naphthalene-based -1,2,3-triazole fluorescent sensor that
showed yellow “turn-on” fluorescence response in the presence of fluoride ions has been developed.
The single crystal and NMR studies confirmed the skeletal structure of NpTP. The binding interaction
of NpTP with the fluoride anion through the phenolic group and the triazole proton of the sensor
was confirmed from the upfield shift of the phenolic protons and the downfield shift of the triazole
proton. Job’s plot using NMR studies revealed 1:1 binding between the NpTP molecule and the anion.
Steady state studies of UV-Vis and fluorescence supported the formation of the new species after
the interaction of NpTP and F−. The presence of fluoride ions demonstrated an ESPT process in
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the molecule. The recognition behavior of the NpTP molecule towards anions can find applications
in logic gate systems, molecular switches, dual detection systems, and in a biological environment.
The described sensing system can also open up avenues in “structure–signal” (structure–property)
investigations for developing a predictive model for tuning the signal-output of 1,2,3-triazole sensors
for efficient and selective sensing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/4/1/15/s1.
Figure S1. 1H-NMR spectrum of NpTP. Figure S2. 13C-NMR spectrum of NpTP in DMSO-d6. Figure S3. 13C-NMR
spectrum of NpTP in Acetone-d6. Figure S4. 1D DEPT90 spectrum of NpTP. Figure S5. 2D HMBC spectrum of
NpTP. Figure S6. The 2D NOESY spectrum of NpTP in ((CD3)2S=O, RT) showing the correlation between the H7
proton and H10 and H14 protons and in between H10 and H15 proton. Figure S7. The 2D NOESY spectrum of
NpTP in ((CD3)2S=O, RT) showing the correlation between the -OH proton and H2 proton. Figure S8. 2D NOESY
spectrum of NpTP + 4 equivalence of TBAF. Figure S9. 1H-NMR Titration experiments of NpTP with TBAF
in DMSO-d6. Figure S10. 1H-NMR Titration experiments of NpTP with TBAF in DMSO-d6, region expanded
from 13.5 to 18.0 ppm. Figure S11. 19F-NMR Titration experiments of NpTP with TBAF in DMSO-d6. Figure S12.
Benesi–Hildebrand plot of NpTP. Figure S13. HRMS of NpTP. Figure S14. ESI of NpTP. Figures S15 and S16.
Single Crystal X-ray spectroscopic study. Tables S1–S7. Detail reports on NpTP crystal structure.
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