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Abstract: Solid-state nuclear magnetic resonance (NMR) spectroscopy provides significant structural
information regarding the conformation and dynamics of a variety of solid samples. In this study,
we recorded the 13C and 15N solid-state NMR spectra of a self-assembled isoleucine-phenylalanine
(Ile–Phe–OH) dipeptide. Immediately after the addition of hexane to a solution of concentrated
peptide in ethyl acetate, the peptide visually aggregated into a nanofiber. Then, we obtained
well-resolved 13C and 15N NMR signals of the natural, isotopic-abundant Ile–Phe–OH peptide in the
nanofiber. Furthermore, we calculated the chemical shift values of the reported crystal structure of
the Ile–Phe dipeptide via the density functional theory (DFT) calculation and compared these results
with the experimental values. Notably, the two sets of values were in good agreement with each other,
which indicated that the self-assembled structure closely reflected the crystal structure. Therefore,
herein, we demonstrated that solid-state NMR characterization combined with DFT calculations is a
powerful method for the investigation of molecular structures in self-assembled short peptides.
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1. Introduction

In supramolecular chemistry, the self-assembly of small molecules into highly ordered
architectures has attracted significant interest. Many self-assembled systems are composed of a variety
of weaker (non-covalent) interactions, such as hydrogen bonding and van der Waals forces, as well
as electrostatic, π–π stacking, and hydrophobic interactions [1]. For example, when diphenylalanine
peptide (Phe–Phe–OH) is dissolved in 1,1,1,3,3,3-hexafluoro-2-isopropanol (HFIP) and water is added
as a poor solvent, the peptide rapidly self-assembles into a nanofiber [2]. With respect to the dipeptide,
hydrogen bonding and π–π interactions among the inter-peptides play a crucial role in the growth of
associated components [3]. Usually, studies on self-assembled dipeptides involve the use of HFIP as
a first solvent, which dissolves the peptide at high concentrations, and the addition of water, which
triggers the rapid self-association.

In this study, we prepared isoleucine-phenylalanine (Ile–Phe–OH) (Scheme 1) and subsequently
dissolved it in ethyl acetate at high concentrations. Immediately after the addition of n-hexane
to the formed solution, the peptide visually aggregated. Reportedly, for Phe–Phe–OH, different
organic solvents can be used to control the self-assembly behavior and attain a solvent-dependent
morphological change [4]. For instance, in aqueous or methanol solutions, Phe–Phe–OH self-assembles
to form hollow tubular structures [4,5]. However, with the introduction of an acetonitrile–water solvent
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to the mixture, a structural transition from diphenylalanine (Phe–Phe–OH) microtubes to highly
uniform nanowires occurs [6]. These assembled structures are in fact considered useful for various
applications [7,8], such as in piezoelectric devices and for cell membrane disruptions [9–11]. Therefore,
it is important to characterize the molecular structure of self-assemblies in order to understand the
functionalized peptide materials at the molecular level. To address this issue, our research group
is presently investigating the molecular structures of several types of self-assembled peptides by
solid-state nuclear magnetic resonance (NMR).
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Scheme 1. The chemical structure of isoleucine-phenylalanine (Ile–Phe–OH).

Generally, solid-state NMR spectroscopy can provide structural insights not only on insoluble
molecules, such as membrane proteins and amyloid fibers [12,13], but also on crystalline
dipeptides [14,15]. Previously, the molecular structures of the self-assembled Phe–Phe–OH and cyclic
dipeptides have been characterized by 13C solid-state NMR experiments [16,17]. Moreover, solid-state
13C and 15N NMR analyses have proved advantageous in the investigation of local dynamics, as well as
the detection of structures containing –NH– hydrogen bonds and side-chain conformations in proteins
and peptides [18–20]. Usually, 13C NMR chemical shift values of protein backbones and side chains
are tightly coupled with secondary structures [18,19], while 15N NMR signals are sensitive, not only to
conformations, but also to hydrogen bond strengths [21]. Based on these reports, solid-state NMR is
considered useful in investigating the self-assembled molecular structure in the materials. Herein, we
demonstrate the structural characterization of Ile–Phe–OH in nanofibers using solid-state NMR.

2. Results and Discussion

First, we observed the morphology of the Ile–Phe peptide as it self-assembled, formed after
treatment with the ethyl acetate-hexane solution. Scanning electron microscope (SEM) images of the
sample are shown in Figure 1. The morphology of the self-assembled peptide appeared as a straight
fiber with an average width of around 80 nm, which was easily dissolved in an aqueous solution.
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Figure 1. SEM images of the self-assembled fibers (scale bar: 5.00 μm, left) and an expanded region 
of the image (scale bar: 1.00 μm, right). 
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dependent on local secondary structures [19]. In addition, according to a 13C estimation using 
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13C chemical shifts are summarized in Table 1). Additionally, the typical line-width of the 13Cγ1 Ile1 
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[19,22]. The position of the carboxylic signal is very sensitive to the ionization state; COO− is low-field 
resonance, and COOH is high-field resonance [23]. It is reported that carboxylic signal of the Phe–
Phe–OH nanotube prepared by the addition of water appeared at around 180 ppm because of the 
forming ionization state (COO−) [17], while, the C-terminal carboxylic signal appeared at 167.2 ppm 
as COOH, which was an unusual resonance position. Furthermore, the resonance suggested that the 
C-terminal group might have a twisted conformation. Consequently, one defined angle θ (Cβ1-
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takes a twisted conformation at the C-terminal group (θ = 16°, see Table A1) [3]. In addition, usually, 
a 13Cδ1 Ile signal is related to the Ile side-chain orientation between the trans, gauche, and gauche (-) 
forms [24]. A signal position of 13Cδ1 Ile1 at 10.7 ppm shows the most populated trans conformation. 
It is suggested that the side-chain conformation contributes to intermolecular contact. Additionally, 
it is reported that, as opposed to Val–Phe–OH, self-assembled Ile–Phe–OH peptides form a strong 
gel in aqueous solutions [25]. However, according to our initial solvent screening, Ile–Phe–OH did 
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A 13C cross polarization-magic angle spinning (CP-MAS) NMR spectrum of Ile–Phe in the
self-assembled state was obtained at 300 K, as shown in Figure 2. The spectrum displayed well-resolved,
strong, and narrow isotropic peaks from all carbon atoms in the assembled Ile–Phe peptide, even
though the peptide was synthesized with a natural abundance of isotopes. In addition, because the
sample was sufficiently dried, the signals of n-hexane disappeared. Generally, the 13C NMR resonance
positions of the individual amino acid residues in proteins are well-known and highly dependent on
local secondary structures [19]. In addition, according to a 13C estimation using ChemBioDraw, all
13C NMR signals could be assigned to the resonances of the dipeptide (allocated 13C chemical shifts
are summarized in Table 1). Additionally, the typical line-width of the 13Cγ1 Ile1 signal at 25.8 ppm
was 115.2 Hz, which indicates that the structural homogeneity of the peptide in the fiber was high.
The isotropic 13C chemical shift of the backbone Cα and carbonyl carbons of the respective amino acid
residues in model polypeptides are significantly displaced up to 6–8 ppm, depending on their local
conformations [18,19]. The validity of the conformation-dependent 13C chemical shifts of particular
residues from the simple model systems to more complicated proteins has been proven to be excellent
and can be utilized as a diagnostic means to distinguish their local conformations, as far as in amyloid
fibril, silk fiber, collagen, and transmembrane protein [22]. Thus, using conformation-dependent
13C chemical shift lists, the local secondary structure was readily identified. The signals of carbonyl
13C=O of Ile1, 13Cα of Ile1, and Phe2 appeared at 173.2, 57.1, and 52.3 ppm, respectively, and those
resonances indicated the secondary structure of a β-sheet form [19,22]. The position of the carboxylic
signal is very sensitive to the ionization state; COO− is low-field resonance, and COOH is high-field
resonance [23]. It is reported that carboxylic signal of the Phe–Phe–OH nanotube prepared by the
addition of water appeared at around 180 ppm because of the forming ionization state (COO−) [17],
while, the C-terminal carboxylic signal appeared at 167.2 ppm as COOH, which was an unusual
resonance position. Furthermore, the resonance suggested that the C-terminal group might have a
twisted conformation. Consequently, one defined angle θ (Cβ1-Cα1···Cα2-Cβ2) might be close to
0◦, which means the orientation of the side chains is on the same side of peptide bond plane [3].
Indeed, the backbone structure of Ile–Phe–OH in the crystal reportedly takes a twisted conformation
at the C-terminal group (θ = 16◦, see Table A1) [3]. In addition, usually, a 13Cδ1 Ile signal is related
to the Ile side-chain orientation between the trans, gauche, and gauche (-) forms [24]. A signal
position of 13Cδ1 Ile1 at 10.7 ppm shows the most populated trans conformation. It is suggested
that the side-chain conformation contributes to intermolecular contact. Additionally, it is reported
that, as opposed to Val–Phe–OH, self-assembled Ile–Phe–OH peptides form a strong gel in aqueous
solutions [25]. However, according to our initial solvent screening, Ile–Phe–OH did not form a gel in
an aqueous solution. We believe that the Ile side chain may play a key role in the formation of a highly
ordered structure.
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Figure 2. 13C cross polarization-magic angle spinning (CP-MAS) NMR spectrum of self-assembled
Ile–Phe–OH after an ethyl acetate-hexane treatment. I1: Ile1; F2: Phe2; and ssb: spinning side band.

The 15N CP-MAS spectrum of self-assembled Ile–Phe–OH is shown in Figure 3. Two significant
signals of N-terminal amine NH3

+ at Ile1 and amide –NH– at Phe2 appeared at 16.0 and 97.6 ppm,
respectively, although the S/N ratio was rather low due to the extremely low 15N natural abundance
(0.37%) and resonance frequency (60.81 MHz). Reportedly, the 15N chemical shifts of amides are
dependent on the intermolecular hydrogen bond distance [14,21]. Hence, in the present study, the
NMR signal of the amide indicates that the peptide formed an intermolecular hydrogen bond during
the self-assembly process. Furthermore, 15N chemical shifts of amines are also affected by multiple
hydrogen bonds [14]. Therefore, herein, the signal position at 16.0 ppm was identified with the
formation of the hydrogen bond. Based on these results, we concluded that the role of hydrogen
bonds in the formation of self-assembled structures is significant. Another contribution to consider is
the steric effect on the amide nitrogen atom [26]. It is possible that such an effect could change the
orientation of the Phe2 side chain, as well as twist the C-terminal group. As a result, the amide 15N
signal appeared at less than 100 ppm.
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The torsion angle likelihood obtained from shift (TALOS) system can predict the torsion phi and
psi angles of protein backbone [27]. However, this system cannot be applied to dipeptides because the
peptide is too short. Therefore, we performed quantum chemical calculations on the crystal structure
and compared the obtained results to the experimental ones of the self-assembled structure. The
crystal structure of the Ile–Phe dipeptide has been previously determined by Görbitz to contain two
dipeptides and two water molecules in the unit cell [28,29]. Herein, we calculated the chemical shift
values of the crystal structure using the density functional theory (DFT) calculation and compared
the results with the experimental values of the synthesized self-assembled structure. The calculation
was performed on the system using trimer dipeptide molecules extracted from the crystal structure
(Figure A1), with the water molecules being deleted from the system. The results from the calculations
and the experimental values of the self-assembled structure are summarized in Table 1. The chemical
shifts of all carbon atoms, which exist inside the trimer structure (Figure A1), were in relatively good
agreement with the experimental results, although those absolute values were not completely equal.
The three torsion angles of peptide backbone in the crystal structure also showed that the C-terminal
group takes twisted form and both side chains are located on the same side of peptide bond plane
(Figure A1 and Table A1). On the other hand, a discrepancy was found in the N-terminal amine NH3

+

at Ile1 and C-terminal carbonyl carbon at Phe2 between the self-assembled and crystal structures. It
is expected that this change was caused by the deletion of water molecules from the trimer model
and the ionization state of COO− in the crystal structure. Another discrepancy was also found in
the atoms of Cγ2 and Cδ1 at Ile1 and Cδ, Cε, and Cζ at Phe2, which was probably caused by the
lack of intermolecular side-chain interactions because of the existence of these atoms on the outside
of the trimer structure from the crystal structure (Figure A1). Based on these results, we concluded
that the intermolecular interactions of the trimer molecules represented well the interactions in the
experimental structure. In addition, the obtained results indicate that the self-assembled structure
should closely reflect the crystal structure. However, in order to further investigate the conformation of
the self-assembled structure, more detailed calculations with several possible model structures would
be needed. Nevertheless, the results from this study demonstrated that 13C and 15N solid-state NMR
analysis combined with DFT calculations could potentially be an effective approach to investigate the
local structure of self-assembled molecules.

Table 1. 13C and 15N NMR chemical shift values of self-assembled Ile–Phe after an ethyl acetate-hexane
treatment and calculated values of the crystal structure of Ile–Phe–OH.

Atom Observed Chemical Shift (ppm) Calculated Chemical Shift (ppm)

Ile1

15NH3
+ 16.0 3.2 ± 1.3

13Cα 57.1 60.1 ± 0.6
13Cβ 36.2 37.2 ± 0.2

13Cγ1 25.8 23.3 ± 0.1
13Cγ2 13.0 −0.3 ± 0.3
13Cδ1 10.7 −0.6 ± 0.3

13C=O 173.2 150.1 ± 0.4

Phe2

15NH 97.6 97.9 ± 2.5
13Cα 52.3 53.4 ± 0.5
13Cβ 36.2 29.5 ± 0.3
13Cγ 137.1 141.7 ± 1.8

13Cδ1 125.0 115.9 ± 0.6
13Cδ2 121.9 ± 0.6
13Cε1 129.4 121.2 ± 0.4
13Cε2 116.6 ± 0.4
13Cζ 127.5 109.7 ± 1.2

13COOH 167.2 (COOH) 159.4 ± 0.9 (COO−)
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3. Materials and Methods

Natural, isotopic-abundant Ile–Phe–OH was synthesized via a microwave-assisted solid-phase
peptide method using an Initiator+ Alstra (Biotage) peptide synthesizer and was subsequently cleaved
from the resin using 95% trifluoro-acetic acid (TFA) solution. The peptide was purified using a
reverse-phase high-performance liquid chromatography (HPLC, Shimadzu Prominence system)
system equipped with a Kinetex Axia C18 ODS column. The product (Ile–Phe–OH) was confirmed by
its mass number, [M + H] = 279.01 m/z, using matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOF-MS, Bruker Daltonics). The Ile–Phe–OH peptide was dissolved
in ethyl acetate at a high concentration of 200 mg/mL. The formed solution was then diluted with
n-hexane to a final peptide concentration of 10 mg/mL, after which the peptide rapidly self-assembled
into an aggregate.

The morphology of the sample was identified by SEM (HITACHI High-Tech SU-8010). The
nanofiber sample was dry, and 10 mg of the dried sample were packed into a 4.0 mm o.d. zirconia
NMR rotor. 13C and 15N high-resolution solid-state NMR spectra were recorded on a Bruker Avance III
(600 MHz) solid-state NMR spectrometer operating at 150.92 and 60.81 MHz for carbon and nitrogen
nuclei, respectively, and equipped with a 4.0 mm E-free MAS probe. The number of scans was 5000 for
13C and 15,000 for 15N, and the probe temperature was set to 300 K. CP-MAS with a spinal 64 proton
decoupling [30] was performed at a MAS frequency of 10.0 kHz. The 13C and 15N contact times
were set to 1.0 and 2.0 ms, respectively. The 13C and 15N chemical shifts were externally referenced
to 176.03 ppm for the carbonyl carbon of glycine (tetramethylsilane at 0.0 ppm) and 11.59 ppm for
15NH4NO3. The estimation of the 13C chemical shifts was performed using ChemBioDraw Ultra
ver. 12.0.

For the DFT calculation, trimer dipeptide molecules were extracted from the crystal structure
of Ile–Phe [28] and are shown in Figure A1. The system consisted of two dipeptide molecules in the
unit cell and one additional neighbor dipeptide molecule. In the calculations, the water molecules
were deleted from the unit cell, and the geometry of the system was not optimized to keep the
arrangement of the molecules in the crystal structure. The chemical shift calculation was performed
via the GIAO/DFT method using the B3LYP/6-31G** basis set of the Gaussian 16 B.01 software [31].

4. Conclusions

Because short peptides can take various conformations, it is important to identify these in order
to understand the mechanisms of peptide self-assembly. In this study, self-assembled Ile–Phe peptides
obtained after an ethyl acetate-hexane treatment were obtained as nanofibers. Subsequently, 13C and
15N solid-state NMR measurements were performed on the self-assembled Ile–Phe peptide fibers, and
the observed signals were also compared with the calculated ones from the crystal structure. The
observed chemical shift values are generally consistent with the calculated values, although a few
discrepancies remain. Accordingly, we found that the structure of the self-assembled Ile–Phe peptide
was very similar with the crystal structure. We also demonstrated that solid-state NMR structural
analysis combined with DFT calculations of self-assembled dipeptides is an effective approach.
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Appendix A

The trimer dipeptide molecules were extracted from the crystal structure of the Ile–Phe dipeptide,
which was determined by Görbitz [28]. The trimer structure was shown in Figure A1 and used for the
chemical shift calculation. The structure visualization and dihedral angle calculations were performed
by VMD software [32].
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