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Abstract: Machine learning is gaining popularity in the commercial world, but its benefits are yet to be
well-utilised by many in the microfluidics community. There is immense potential in bridging the gap
between applied engineering and artificial intelligence as well as statistics. We illustrate this by a case
study investigating the sorting of sperm cells for assisted reproduction. Slender body theory (SBT)
is applied to compute the behavior of sperm subjected to magnetophoresis, with due consideration
given to statistical variations. By performing computations on a small subset of the generated data,
we train an ensemble of four supervised learning algorithms and use it to make predictions on the
velocity of each sperm. Our results suggest that magnetophoresis can magnify the difference between
normal and abnormal cells, such that a sorted sample has over twice the proportion of desirable cells.
In addition, we demonstrated that the predictions from machine learning gave comparable results
with significantly lower computational costs.
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1. Introduction

The World Health Organisation (2002) found that about one in ten couples worldwide experience
difficulties conceiving. Today, assisted reproduction techniques account for over 1% of the infants born
in developed countries [1].

The chances of successful conception significantly dependent on sperm morphology, both in
natural fertilisation [2] as well as the various forms of assisted reproduction ([3–5]). Hence, it is
beneficial to come up with sorting procedures which improve the proportion of such sperm in
a sample. While desirable sperm cells can be manually selected for use in in-vitro fertilisation (IVF) or
intracytoplasmic sperm injection (ICSI) [6], this is not feasible for intrauterine insemination (IUI) given
the large number of sperm required. Therefore, the procedure should ideally be passive.

There are a variety of methods [7] to sort human sperm cells by their motility or morphology, as well
as a multitude of microfluidic techniques yet to be used on sperm cells [8–10]. Dielectrophoresis [11]
has been applied to separate mature spermatozoa from non-mature spermatogenic cells [12]. A separate
group of researchers performed magnetic-activated cell sorting to obtain viable and morphologically
normal spermatozoa that enjoy higher cryosurvival rates [13,14]. A magnetic particle in diamagnetic
medium experiences a magnetic force towards the region of higher magnetic field density, while
the opposite is true for a diamagnetic particle in paramagnetic medium [15]. Therefore, the sperm
cells may be doped with paramagnetic nanoparticles [16] or sorted in their natural form via
diamagnetophoresis [17]. Despite evidence that sperm cells subjected to a magnetic field remain viable
with the potential for fertilisation [16,18], there is more to be studied before such sorted spermatozoa
may be used to increase the success rates of assisted reproduction for the public.
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Due to ethical concerns involved in carrying out experiments with human sperm, it is beneficial
for researchers to first carry out theoretical studies to assess the feasibility of sorting using the various
techniques under different experimental set-ups. Mathematical models of increasing complexity
and accuracy have been developed to understand the kinematics of micro-swimmers such as sperm
cells [19,20]. These theoretical computations are often taken from the deterministic approach. However,
as sperm cells differ in their morphology, more insights can be gained by studying their behavior from
a statistical approach.

In spite of technological advances, precise theoretical models are still computationally expensive,
and running numerical simulations for a large number of samples to obtain statistically reliable results
may be time-consuming. Moreover, in the process of testing for convergence, the scale of simulations
that are carried out will exceed that which is required for statistical analysis. Notably, the use of
machine learning [21] has been proven to provide accurate predictions and is gaining popularity,
but its use in engineering research is still not widespread despite great potential. Common models
include k-nearest neighbor regression [22], ridge regression [23], random forest regression [24], and
artificial neural networks [25]. In k-nearest neighbor regression, the predictor and target variables of
all known samples are stored. For all new data to be predicted, only the k samples having the least
‘distance’ will be considered, with the simple or weighted-average value taken. Ridge regression is
linear regression with L2 regularization, where a penalty term is added to the sum of square errors to
be minimized, thus avoiding overly-large coefficients in the linear model. In random forest regression,
a large number of decision trees is built, each using a subset of predictor variables so as to avoid
overfitting. For each decision tree, the population is split based on one variable at a time, where
the chosen variable as well as threshold determining the split minimizes the sum of square errors
(in the case of regression). In artificial neural networks, the first layer or nodes receives input from the
predictor variables, adds a bias to the weighted sum and passes it through a non-linear function, and
feeds the output to the subsequent layer of nodes. This continues until an output is obtained from
the final single node after the hidden layer. The weights and bias are ‘learnt’ by minimizing the cost
function via optimization. Each model has its own hyperparameters to be tuned, and there are also
other well-established supervised learning algorithms, but the four mentioned above will suffice for
the scope of this paper. There is no single best learning algorithm [26], and therefore ensembles often
out-perform [27] their individual components. In this paper, we will apply supervised learning using
an ensemble of the aforementioned algorithms.

Slender body theory (SBT) will be used to to compute the kinematic behavior of spermatozoa,
with two goals in mind. Statistical analysis will be carried out with varying amounts of data, to find
out the quantity of data which is sufficient without being excessive. This will be explored by studying
the sorting of spermatozoa via magnetophoresis to enhance the proportion of morphologically normal
cells. Secondly, we explore the feasibility of using machine learning on a smaller dataset to predict
the results, so as to save computational or laboratory costs. Our findings can be generalised to other
theoretical simulations utilising a different model to compute the hydrodynamics of some organism,
as well as to experimenters obtaining actual data.

2. Model

A human sperm has a head of length lh = 4.81± 0.43 µm and width wh = 3.32± 0.38 µm [28], with
a typical thickness gh of 1.1 µm [29]. Attached to the head is a flagellum of arc length Λ = 42± 4 µm [30]
with a radius of 0.25 µm [31]. The flagellar beat frequency f and amplitude b also vary [32] according to
the sperm head morphology. The swimming speed of a human sperm ranges from 36 to 51 µm s−1 [32].
Under such small length and velocity scales, the hydrodynamics of human sperms are governed by the
Stokes equation. Therefore, we adopt the SBT to solve the velocity of the sperm subjected to an external
magnetic field. The use of SBT significantly reduces the computational cost as compared to other
numerical methods [33], at the same time providing accurate computation results which have been
experimentally verified [34,35].
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The sperm head is modelled as a sphere of radius ah = 3
√

lhwhgh with a volume equivalent to the
ellipsoid. The origin of the body-fixed frame is located at the point where the flagellum is attached
to the sperm head (Figure 1). Given that the motion of a human sperm is highly directional [36],
we prescribe the flagellum beating pattern to be a modified sinusoidal waveform [37]. The centerline
of the flagellum in the body-fixed frame xc = [x(t), y(x,t), z(x,t)]T has a spatial and time dependence of

y(x, t) = b

{
1− exp

[
−
( x

Λ
kE

)2
]}

sin
(

2πx
Λ
− 2π f t

)
, z(x, t) = 0, (1)

where t is the time and x is the axial coordinate. The exponential term in Equation (1) ensures that the
prescribed flagellum is attached to the sperm head with no deflection at the fixed end. kE controls the
tapering [38] of the flagellum and is chosen to be 1/4 which gives a fair depiction of the actual sperm
beating pattern [39]. At each time frame, the axial length xf(t) ends at a different value to satisfy the

constraint
∫ x f (t)

0

√
1 + (∂y/∂x)2dx = Λ.
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Figure 1. Flagellum comprising N discrete straight segments, each represented by a dotted rectangle.
Inset: the local coordinate system xL and yL of a segment at an angle θ with respect to the general x-axis
of the body-fixed frame x-y.

SBT approximates the hydrodynamic force acting on the flagellum of arc length Λ and radius p
as that due to a series of Stokeslets and potential dipoles along its centreline [40,41]. The flagellum is
discretized into N cylindrical segments, each of length 2q where p << q << Λ, with a constant force
per unit length f exerted by each element on the fluid [42]. Following the conventions in Appendix A,
we express the velocity at the centre of the α-th segment in the body-fixed frame uα due to the
hydrodynamic force per unit length fβ exerted by the β-th segment (α, β = 1, 2, . . . , N) as:

uα,j =
N

∑
β=1

Kαβ
ij fβ,j, (2)

The flagellum segment velocity uα can also be expressed in terms of the linear and rotational
velocities, uh and ωh, of the head centre in the body-fixed frame together with the beating of
the flagellum,

uα,j = uh,i + εijkωh,jrα,k + να,i, (3)

where εijk is the permutation symbol, rα is the displacement vector from the head centre to the centre of
the α-th segment in the body-fixed frame, and vα = ∂xc/∂t is evaluated at the centre of the α-th segment.
The driving force of the flagellum is provided by the relative fluid velocity it experiences due to its
beating, according to the kinematics prescribed in Equation (1). This is related to the time-rate of change
of the flagellum waveform, ∂y(x,t)/∂t, which is incorporated in Equation (3) under να,i. Combining
Equations (2) and (3) provides a relation between the sperm velocity and the hydrodynamic force.
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We further neglect the interaction between the flagellum and head as this interaction is found to
be insignificant [35,43], and hence the hydrodynamic force and moment exerted by the fluid on the
head centre in the body-fixed frame are −6πµrhuh and −8πµr3

hωh, respectively, where µ is the fluid
viscosity. To transform the force and moment from the body-fixed frame to the inertia frame, we adopt
a transformation matrix H which depends on the relative orientation of the two frames. Therefore,
the total hydrodynamic force and moment on the sperm in the inertia frame, based on the action and
reaction, can be represented as,

Fhydro,i = −Hij(6πµrhuh,j +
Λ
N ∑N

β=1 fβ,j), (4)

Mhydro,i = −Hij

(
8πµr3

hωh,j +
Λ
N

N

∑
β=1

ε jkmrβ,k fβ,m

)
, (5)

We then consider the effect of an external magnetic field to be applied for sperm sorting. A particle
of volume Vp in a magnetic field B experiences the magnetic force in the inertia frame [15]:

Fmag,i =

(
χp − χm

)
Vp

µ0
Bj∂jBi, (6)

where χp and χm are the particle and medium magnetic susceptibility, respectively, and µ0 is the
magnetic permeability in vacuum. Building upon a previous work [44], we adopt the same general
framework in which the magnetic field exerted on the sperm in the inertia frame satisfies the first
order approximation B = [C1 + C2X, 0, 0]T due to the small dimension of the sperm, where C1 and C2

are constants. When O(C2X)� O(C1), the magnetic force on the sperm head centre and β-th segment
of the flagellum can further be simplified to Fh =

[
4πr3

hC0/3, 0, 0
]T and Fβ =

[
πp2ΛC0/N, 0, 0

]T

respectively, where C0 =
(
χp − χm

)
C1C2/µ0. The total force acting on the sperm, and the total

moment about the centre of the sperm head, due to the external fields can thus be represented as:

Fext,i = Fh,i + ∑N
β=1 Fβ,i, (7)

Mext,i = ∑N
β=1

(
Hjmrβ,m

)
Fβ,k, (8)

As sperm sorting is performed in the low Reynolds number regime, the total force and moment
arising from the hydrodynamic propulsion and external field over the entire sperm are zero. Consider
the Navier–Stokes equation ReSt∂̃tũi + Reũj∂̃jũi = −∂̃i p̃ + µ̃∂̃j∂̃jũi + f̃b,i in non-dimensionalised form,
where Re is the Reynolds number, St the Strouhal number, p the pressure, fb the body force and the
superscript tilde denotes the non-dimensionalised variable. The right side of the equation represents
total force exerted on the control volume. As the Reynolds number of a swimming sperm is many
orders of magnitude smaller than unity, the total force can be approximated as 0 [45], i.e., Fhydro + Fext

= 0 and Mhydro + Mext = 0. Solving these equations, the instantaneous velocities of the sperm in the
body-fixed frame, uh and ωh, can be obtained.

Simulations have been run on a multi-core Windows® 64bit PC (CPU E5–1650 v4, 64Gb RAM)
installed with MATLAB® R2016b. An average time of 3.0 s is taken to prescribe the flagellum
shape at each time frame, calculate the kernel Kαβ, then to solve the instantaneous and subsequently
time-averaged velocity of the sperm. This adds up to over 30 days on a single computer for every one
million samples computed.

3. Results and Discussion

The introduction of an external force results in a stabilising effect. Figure 2a shows the trajectories
of three identical sperms when subjected to no external field (trajectory denoted by blue line) versus
relatively weak fields in which the induced force has the same direction as the initial heading of the
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sperm (trajectory denoted by yellow and green lines) for 20 s. The sperm starts off oriented along
the X-axis of the inertial frame. However, the trajectory is not aligned to the X-axis due to the finite
length of the flagellum. If the swimmer had been an infinite sheet [46], its motion would remain in the
direction of its initial heading. The sperm flagellum motion is symmetrical over a beating cycle with
respect to the x-axis in its body-frame, but asymmetrical with respect to the X-axis in the inertial frame.
The instantaneous rotation of the sperm causes its orientation ∅ to change at each time instance, such
that each unit of ux and uy leads to varying displacement along the X- or Y-axis of the inertial frame.
The result is a net displacement in the Y-direction. A greater magnitude of C0 tends to align the sperm
more strongly towards the direction where the external force is applied. This is because the larger
magnetic force on the head leads to a higher time-averaged swimming velocity of the head which
creates a larger hydrodynamic force to balance with the magnetic force. This difference in velocity
between the head and flagellum causes the sperm to align with the external magnetic force. Therefore,
our focus in the following discussion is the time-averaged velocity component of the sperm in the
X-direction of the inertia frame:

UX =
1

1/ f

∫ 1/ f

0
H1juh,jdt. (9)

For other cases that magnetic force is not in the same direction as the initial heading of the sperm;
the difference in velocity between the head and flagellum tilts the sperm until it aligns with the
magnetic force. To show this, we consider a scenario that the magnetic force and sperm heading are in
the opposite direction (red line in Figure 2b). The magnetic force (with C0 = 0.1 mN/mm3) pulls the
sperm head to the negative-X direction at a larger speed as compared to the flagellum. Consequently,
the sperm aligns with the direction of the magnetic force in 20 s and continues swimming in that
direction thereafter. As such, we only consider the case that the magnetic force is in the same direction
as the initial heading of the sperm in the rest of the paper.
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Assessment of sperm which satisfies the strict (Tygerberg) condition gives a good indication of 
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and width of 2 to 3 µm, as well as a head width to length ratio of between three-fifths and 
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Figure 2. (a) Trajectory of spermatozoa, initially heading in the negative x-direction, subjected to
C0 =−0.1 mN/mm3 (orange line),−0.05 mN/mm3 (green line), and 0 (blue line) over 10 s; (b) trajectory
of spermatozoa, initially heading in the negative (orange) or positive (red line) x-direction, subjected to
C0 = −0.1 mN/mm3 for 20 s. In both plots, the upward-pointing triangles denote the starting position
of the sperm while the inverted triangles denote the ending position. The horizontal and vertical axes
are the X- and Y-position of the inertial frame, normalized with respect to the flagellum arclength.



Magnetochemistry 2018, 4, 31 6 of 17

Assessment of sperm which satisfies the strict (Tygerberg) condition gives a good indication of the
expected fertilisation rates [47]. Quantitatively, the sperm should have a head length of 3 to 5 µm and
width of 2 to 3 µm, as well as a head width to length ratio of between three-fifths and two-thirds, with
a tail measuring about 45 µm in length [48]. Without going into the biological aspects of individual
sperm, a cell which fulfils these physical dimensions will be deemed conditionally satisfactory, while
a cell which fails at least one condition will be considered abnormal.

As an illustration of how the application of an external field enables sorting, we consider
the velocity distribution of 100,000 sperm cells subjected to no external field (Figure 3a) and
C0 =−1 mN/mm3 (Figure 4a). Using MATLAB® 2016b and setting the seed number as i for the ith sperm,
a pseudo-random value is generated from Λ = 42 ± 4 µm, lh = 4.81 ± 0.43 µm and wh = 3.32 ± 0.38 µm.
Each sperm is categorized based on their head morphology according to Table 1, and their flagellum
beating frequency f and amplitude b are generated using the relevant mean and standard deviation.
The distribution of computed velocity is presented as a histogram of normal cells super-imposed over
the histogram of abnormal cells. The machine learning model is trained using 10,000 of those samples,
and based on the parameters of the remaining 90,000 cells, their overall velocity distribution is predicted
as shown in Figures 3b and 4b. The choice of a sample size of 100,000 will be justified subsequently,
as it is necessary to first introduce new parameters that will be involved in this decision.
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Figure 3. Velocity of spermatozoa in the test set of 90,000 samples (a) computed using slender
body theory (SBT) computation and (b) obtained from predictions made using an ensemble of
supervised learning trained on 10,000 samples. The blue and orange region represents the number of
morphologically normal and abnormal cells, respectively. The sperm cells are not subjected to any
applied field (C0 = 0).
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10,000 samples. The blue and orange region represents the number of morphologically normal and
abnormal cells, respectively. The sperm cells are subjected to C0 = −1 mN/mm3.
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Table 1. Categories of sperm according to their head morphology, and the corresponding flagellum
beat frequency and amplitude given with their respective standard deviations. Data from [32].

Types of Head Normal Amorphous Elongated
Tapering

Piriform
Tapering Megalo-Cephalic

lh/µm 3–5 3–5 >5 3–5 >5
wh/µm 2–3 >3 <3 <2 >3
f /Hz 15.2 ± 0.7 13.3 ± 1.0 13.0 ± 0.9 12.2 ± 1.3 11.2 ± 1.4
b/µm 4.76 ± 0.27 4.73 ± 0.43 4.98 ± 0.33 5.36 ± 0.45 4.96 ± 0.70

Due to differences in the morphology as well as wriggling amplitude and frequency, the velocity
distribution differs between normal and abnormal sperm. This is consistent with our previous
work using resistive force theory [44]. The proportion of normal cells, as represented by the blue bars,
is around 11%. This is reasonable, given that this value is reported to be 6.5± 3.9% [49]. One possibility
of sorting cells is to introduce an opposing flow equal in magnitude to the chosen cut-off velocity.
In low shear rates where the non-dimensionalised shear Z =

.
γ/(2π f ) is in the order of 10−1, the effect

of shear has insignificant influence on the flagellum waveform or sperm velocity [50]. Considering
the channel width to be over an order of magnitude greater than the sperm characteristic length, the
flow far from the walls acts as a bulk advection and boundary effects are negligible [44]. Cells with
velocities less negative than the cut-off will acquire a net positive velocity due to advection in the
positive x-direction and be eventually flushed out of the right end of the channel (Figure 5). Meanwhile,
those which overcome the advection will have a net negative velocity and head towards the left end of
the channel. The proportion of normal cells can be increased by modifying the cut-off velocity, but will
have to come at the expense of discarding some normal cells as well. The effectiveness of sorting will
be accessed according to the purity χ and yield η as defined here:

χ =
number of conditionally satisfactory sperm collected

total number of sperm collected
, (10)

η =
number of conditionally satisfactory sperm collected

initial number of conditionally satisfactory sperm
. (11)
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The predicted velocities have a lower variance and tend to be distributed closer to the mean
velocity, with outliers having less extreme values than what is computed (Figure 5). This is not
surprising, due to the nature of the k-nearest neighbor regressor which averages out the prediction
with other less extreme neighbors as well as the nature of regression trees in the random forest. Since
the normal and abnormal cells are predicted to have velocities that are more tightly clustered about
their respective mean values, the distinction between these two categories of sperm become magnified,
leading to an optimistic estimate of the purity that can be achieved by sorting. This effect is more
pronounced when a small training set is used to train the learning model, but prevails even when
a large amount of data is used. Nonetheless, the qualitative conclusions from both the computed



Magnetochemistry 2018, 4, 31 8 of 17

and predicted velocity distributions remain the same, that the normal sperm cells can be segregated.
The extent of quantitative in the results will be explored in the following section.

Before proceeding, it is necessary to determine the quantity of data required to obtain convergence
in the results, so that a benchmark is available for subsequent comparisons. The cumulative mean
flagellum length, head length, and computed velocity are presented in Figure 6, normalized with their
respective mean values obtained from 100,000 samples. For the avoidance of doubt, we chose this
number a posteriori, initially beginning with a small number and making increments until convergence
is obtained. This normalized value ψ is:

ψ =
(∑n

i=1 ϕi)/n(
∑

n f inal
i=1 ϕi

)
/n f inal

, (12)

where n is the sample size considered, nfinal is 105, and ϕ is the sperm parameter of interest.
The proportion of morphologically normal cells, which by our definition is the purity without sorting,
is presented in its absolute percentage points as a function of the sample size.
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Figure 6. (a) Cumulative mean flagellum length (red line), head length (green line), and computed
velocity (blue line) normalised with respect to mean values obtained from 100,000 samples;
(b) proportion of morphologically normal cells in percentage points. The x-axis, in logarithmic scale,
of each plot denotes the number of samples used in the computation.

Given that there are little fluctuations in all parameters when the sample size is increased from 104

to 105, we shall use the results computed using 100,000 samples as our benchmark. Moving forward,
we explore the feasibility of running the simulation on a smaller number of samples and making use
of supervised learning to predict the expected purity.

Using supervised learning algorithms from Python’s sklearn package [51], we build a supervised-
learning ensemble comprising k-nearest neighbor, ridge regression, random forest regression, and
artificial neural network with two hidden layers. The sperm velocity is predicted using only the
following six variables as inputs; the flagellum length, the head length and width, the beating frequency
and amplitude, and the applied field strength. Each cell will be classified as collected or excluded
depending on its velocity distribution. The purity predicted by each algorithm trained on a tenth of
the total samples is compared (Figure 7) with the purity obtained by computing the velocities of all
100,000 samples.

There are minor variations in the predictions of each algorithm, regardless of whether an external
field was applied, but we have chosen not to exclude any of them from the ensemble given that none
of them are outliers. Without the benefit of hindsight, it will not be known which algorithm gives
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a closer prediction to the ‘true’ result. Given that ensembles often out-perform [27] their individual
components, we will use the mean of the predicted results henceforth.Magnetochemistry 2018, 4, x FOR PEER REVIEW  9 of 17 
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Figure 7. (a) Sperm subjected to no external field, versus (b) sperm subjected to C0 of −1 mN/mm3.
Purity χ computed using 100,000 samples (blue star) for different yield η, compared with purity
obtained from supervised learning algorithms trained on 10,000 samples to predict remaining
90,000 samples (hollow red markers) using k-nearest neighbor (circle), ridge regression (square),
random forest (triangle) and artificial neural network (inverted triangle).

A dataset comprising 2,100,000 rows will be obtained, where each row contains information about
the sperm dimensions as well as the computed velocity under 21 different C0 values ranging from 0
to −1 mN/mm3 in intervals of 0.05 mN/mm3. This dataset will be split into training and test sets of
different sizes. The test set is unused in the training process, so as to give a fair validation of the model
and prevent overfitting [52].

The achievable purity corresponding to a target yield of 50% to 90% will be computed for varying
magnitudes of C0. Each data point in Figure 8 is obtained by running the full computation on 105

samples, and a best-fit polynomial is added for the respective target yield. It can be observed that when
the magnitude of C0 increases, the achievable purity initially decreases. This is because the normal
cells generally have a higher speed than abnormal ones. Given that the abnormal sperm are generally
larger than the normal ones, they are more strongly influenced when subjected to the external force.
Since C0 is in the swimming direction of the sperm cells, it increases the speed of the abnormal cells
to a greater extent than their normal counterparts, thereby causing the abnormal cells to catch-up.
Under weak magnetophoresis, the relative shift in velocity distribution causes the two categories to
become less distinct, because the abnormal sperm will be moving among the normal ones. However,
increasing the strength of magnetophoresis further will increase the extent of the relative shift and
eventually amplify the differences. When the magnitude of C0 increases beyond 0.9 mN/mm3, sorting
can further improve the proportion of normal cells.

To assess the feasibility of sorting sperm with a magnetic force in the order of 1 mN/mm3,
we consider the C0 =

(
χp − χm

)
C1C2/µ0 as described in the paragraph comprising Equation (6).

Given that the magnetic susceptibility of sperm cells is similar to that of water [53],
(
χp − χm

)
/µ0

is in the order of 10−1 for sperm in non-magnetic medium, for which a very large magnetic field
gradient is required to achieve |C0| = 1 mN/mm3. Hence, it may be more appropriate to dope the
sperm with paramagnetic particles or use a magnetic fluid medium. For small values of χp and χm

where demagnetization effects [54] can be neglected, the doping has to be limited such that
(
χp − χm

)
has to be of order 10−1 or smaller. For |C0| = 1 mN/mm3, the minimum value of C1C2 has to be 10,
which can be attained using BX = 5 + 2X so that O(C2X)� O(C1) in the scale of a microchannel. This
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corresponds to a magnetic field of 5 T, which is technically achievable [55] but its effects on the viability
of sperm cells has not been reported to the best of the authors’ knowledge and remains to be verified in
future experiments. To use a weaker magnetic field with a ceiling of 1.5 T [14], in which human sperm
cells have been reported to remain viable in, the value of

(
χp − χm

)
has to be of order unity. In this

case, demagnetization effects will have to be considered and accounted for, and Equation (6) alone is
insufficient. Here, we would like to focus on the analysis procedure using a simple model, where the
objective is to introduce the framework of utilising supervised learning in microfluidic sorting. The use
of magnetism for biological applications is an exciting field which warrants follow-up experimental
work as well as detailed theoretical analysis, and we hope our work can provide insights and serve as
a framework for future studies.
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Figure 8. Purity as a function of C0. The red circles, green squares and blue triangles denote the
computed purity corresponding to a yield of 50%, 70% and 90%, respectively. The dotted lines in
matching color are the best-fit polynomials.

In studying non-deterministic processes such as sperm sorting, there are different approaches
which may be taken (Figure 9). In this paper, we compare the results obtained by these approaches.
Figure 9 compares the computed and predicted purity for a target yield of 50%, presented in
box-plots, super-imposed over the best-fit polynomial for results computed using 105 samples when
C0 = −1 mN/mm3. As a sample size of 105 has shown convergence, the results, as indicated by the
circle markers, will be used as a benchmark. Subsets of size 100, 1000 and 10,000 are considered, by
resampling with replacement [56] from the population of 100,000. Given that the variance of the results
is inversely proportional to the sample size, we set the number of repetitions to be 105 divided by the
size of each training set. Figure 11 shows the results under no applied field, in the same manner as
described. Using the first row of Figure 10 as an illustration, a set of 100 samples is drawn to train the
machine learning models. The purity using these training data are computed using the SBT model.
This process is repeated 1000 times to obtain the boxplots in Figure 10a. Predictions are then made on
the remaining 99,900 unseen samples, with a new machine learning model retrained for each repetition,
and the results are presented in Figure 10b.

The left column of Figures 10 and 11 reveals that the mean purity computed from the training
data of as little as 100 samples is very close to best-fit polynomial obtained from the full computation
of 105 samples. However, this is obtained from the mean of 1000 repetitions, and the large variance
indicates that any individual result obtained from small sample sizes might come with a substantial
error. The variance in computed purity from the training set is reduced significantly when a sample
size of 10,000 is used.
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sperm sorting.

In the right-hand column of Figures 10 and 11, supervised learning is applied to predict the purity
of all 105 samples for each C0, less those used for training, using only the six predictor variables for
each sperm. Apart from the substantial reduction in variance as the number of samples in the training
set increases, the error in the mean predicted purity also diminishes when the training size is increased
from 100 to 10,000. Despite the consistent predictions when a training size of 10,000 is used, the mean
predictions are larger for all cases considered. This is due to the phenomena where the predicted
velocity distributions for each category of sperm tend to be more centered to their mean, as discussed
earlier. However, there are significant savings in computational costs. After computing 10,000 samples,
the time taken to train the machine learning ensemble and make predictions on the remaining 90,000 is
in the order of minutes. If the velocity of those 90,000 sperm were to be computed using SBT, it would
require over three days on a Windows® 64bit PC (CPU E5–1650 v4, 64Gb RAM).

Instead of running the full computation for 105 samples, one can draw the same conclusion on
how sorting purity depends on yield as well as C0 by using the results predicted from one-tenth of the
sample and using machine learning to make predictions on the rest. This is more reliable than solely
making a conclusion from the purity of those one-tenth samples without machine learning, as evident
from the shorter whiskers of each plot in the right-hand column of Figures 10 and 11 as compared to
their counterparts on the left. However, the improved precision obtained by machine learning comes
at a cost of some reduction in accuracy, as the purity are consistently over-predicted.

We also consider the use of machine learning in investigating the sorting of sperm by
dielectrophoresis, where the force is modelled as FDEP = C0Γi [57,58] and where Γ is the shape
factor [59] rather than volume. The conclusions drawn are similar to those above—consistent
predictions with little variance are obtained when a training size of 10,000 is used—but the results
are always a couple of percentage points higher than results obtained from the full computation for
105 samples.

Depending on the objectives of their study, researchers can substantially reduce computational
costs by using an ensemble of a supervised machine learning model trained on a subset of the data. In
cases where quantitative accuracy is important but it is not feasible to carry out experiments or the full
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computation on a larger scale, a number of actions may be taken. Apart from amending the predictor
variables or increasing the sample size, a refined hyperparameter tuning can improve the machine
learning performance, provided the training set is satisfactory. Other algorithms may also be included
in the ensemble, with the weights from each constituent optimized to suit the problem at hand.Magnetochemistry 2018, 4, x FOR PEER REVIEW  12 of 17 
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Figure 10. Boxplots representing results computed (left column) and predicted (right column) from
training sets of size 100, 1000, and 10,000 samples in the first row (a,b); second row (c,d) and third row
(e,f), respectively. The circle markers are results computed from 105 samples, while the dashed-line is
the best fit polynomial. A C0 value of −1 mN/mm3 is used for sorting. The machine learning model
makes predictions on the remainder of the 100,000 samples less those used for training.
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Figure 11. Boxplots representing results computed (left column) and predicted (right column) from
training sets of size 100, 1000, and 10,000 samples in the first row (a,b); second row (c,d) and third row
(e,f), respectively. The circle markers are results computed from 105 samples, while the dashed-line is
the best fit polynomial. The sperm cells are not subjected to any applied field. The machine learning
model makes predictions on the remainder of the 100,000 samples less those used for training.

4. Conclusions

In this paper, we consider the use of magnetophoresis to sort sperm cells according to their
morphology, applying SBT to compute the hydrodynamic force. Given the variations between individual
sperm cells, a statistical approach is taken to study the feasibility of sorting. The mathematical
procedure in SBT cannot be reduced to a straightforward analytical relation, and hence a large number
of computations is required. We explore the benefit of applying machine learning to this field of
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microfluidics and applied engineering. An ensemble of k-nearest neighbor regression, ridge regression,
random forest regression, and artificial neural network is deployed.

The results provide two key pieces of information. First, magnetophoresis influence normal
and abnormal cells to different extents. Making use of the difference in their velocity distribution,
the proportion of morphologically normal cells can be more than doubled through microfluidic sorting.
Second, the machine learning carried out here has successfully established a reasonably accurate
relation between the given sperm’s characteristics and its resulting velocity. The inference drawn from
the predictions are valid qualitatively and give a good representation of the trend, using only a small
fraction of the time required to run full numerical computations.

Our framework presented here will prove useful for researchers who wish to explore the feasibility
of non-deterministic applications such as cell sorting. The use of machine learning enables a wider
variety of possibilities to be considered, and should be embraced by fields outside computer science.
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Appendix A. Slender Body Theory (SBT)

Slender body theory is developed by Batchelor [41] and further applied by Lighthill [40] to solve
the propulsion of microorganisms. Subsequently, Higdon [42] presented the indefinite integrals which
may be applied directly without performing the integration.

The local coordinate system is set up such that the origin is located at the center of the segment of
radius p and length 2q, and the xL axis coincides with the cylindrical axis (Figure 1). The velocity at
any arbitrary point in the local coordinate system xL

p can be related to the hydrodynamic force per unit
length fL on this segment in the local coordinate, using Equation (A1) in Higdon [42]:

uL
p,i= [KL

ij

(
XL

p −XL
c

)∣∣∣∣∣ XL
c = [q, 0, 0]

XL
c = [−q, 0, 0]

] f L
j . (A1)

When xL
p has the same zL component as xL

c , KL
ij

(
XL

p −XL
c

)
can be further simplified to

KL
11=

1
8πµ
{2 ln [r− (xL

p,1 − xL
c,1)] +

xL
p,1 + xL

c,1

r
}, (A2)

KL
12=

1
8πµ
{

xL
p,2 + xL

c,2

r
− p2

2

xL
p,2 − xL

c,2

r3 }, (A3)

KL
21=

1
8πµ

xL
p,2 − xL

c,2

r
, (A4)

KL
22=

1
8πµ
{ln [r− (xL

p,1 − xL
c,1)]−

xL
p,1 − xL

c,1

r
− p2

2(xL
p,2 − xL

c,2)
[
xL

p,1 − xL
c,1

3

r3 − 2
xL

p,1 − xL
c,1

r
]}, (A5)

KL
13 = KL

23 = KL
31 = KL

32 = KL
33 = 0. (A6)

where r = XL
p − XL

c .
To transfer the force and velocity from the local coordinate system to the body-fixed frame in our

problem, one can use
up,j = ΘijuL

p,j, (A7)
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fi = Θij f L
j , (A8)

where the transformation matrix is defined as

Θij =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 0

. (A9)

The velocity at any arbitrary point xp in the body-fixed frame can be expressed in terms of the
hydrodynamic force per unit length f:

up,j = Kij fi. (A10)

where

Kij = Θik[KL
km(X

L
p −XL

c )

∣∣∣∣∣ XL
c = [q, 0, 0]

XL
c = [−q, 0, 0]

]ΘT
mj. (A11)
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