

Article

Intramolecular Spin State Locking in Iron(II) 2,6-Di(pyrazol-3-yl)pyridine Complexes by Phenyl Groups: An Experimental Study

Yulia Nelyubina 1,2,*, Alexander Polezhaev 1,3, Alexander Pavlov 1, Dmitrii Aleshin 1,4, Svetlana Savkina¹, Nikolay Efimov², Teimur Aliev¹ and Valentin Novikov^{1,*}

- ¹ A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilova Str. 28, 119991Moscow, Russia; aleksandr.polejaev@gmail.com (A.P.); pavlov@ineos.ac.ru (A.P.); dima.aleshin26@gmail.com (D.A.); savkinasveta91@mail.ru (S.S.); a.teimur1990@gmail.com (T.A.)
- ² Kurnakov Institute of General and Inorganic Chemistry, Leninsky prosp. 31, 119991 Moscow, Russia; nnefimov@yandex.ru
- ³ Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
- ⁴ Lomonosov Moscow State University, Leninskiye Gory, 1, 119991 Moscow, Russia
- * Correspondence: unelya@ineos.ac.ru (Y.N.); novikov84@ineos.ac.ru (V.N.); Tel.: +7-499-135-6568 (N.Y)

Received: date; Accepted: date; Published: date

Table S1. Crystal data and structure refinement parameters for the studied complexes.

Parameter	Fe(L1)2OTf2	Zn(L1)2(ClO4)2.		Fe(L2)2OTf2		Fe(L2)2(BF4)2
Formula unit	C46H34FeN10O4,	4C46H34N10O4Zn,		2C54H42FeN10O8,		C54H42FeN10O8, 2BF4,
	2CF3O3S, C4H10O	8ClO ₄ ,	4C4H10O,	4CF3O3S,	2CH2Cl2,	$2CH_2Cl_2$
		7C2H3N, 1	6H2O	3.5H2O		
Formula weight	1218.94	5092.51		2858.83		1358.30
Crystal system	Monoclinic	Monoclinic		Triclinic		Monoclinic
Space group	P21/n	P21/c		P-1		P21
Z	4	1		1		2
a, Å	15.7804(11)	15.5731(6)		13.5638(17)		12.3685(9)
b, Å	21.7218(15)	15.7187(6)		13.8402(17)		19.7935(15)
c, Å	16.0669(12)	24.4975(9)		19.155(2)		13.5108(10)
α, °	90	90		103.274(2)		90
β, °	102.990(2)	105.3980(10)		100.382(2)		116.8220(10)
γ, °	90	90		113.756(2)		90
V, Å ³	5366.5(7)	5781.5(4)		3049.5(7)		2951.8(4)
D_{calc} (g cm ⁻¹)	1.509	1.463		1.557		1.528
Linear absorption,	4.5	5.98		4.99		5.26

μ	(cm ⁻¹	I)
pre-	(1

F(000)	2504	2642	1463	1384
$2\Theta_{\max}$, °	54	56	52	54
Reflections measured	55433	64424	38944	52651
Independent	11726	13975	11988	12890
reflections				
Observed reflections	8202	10262	5969	10532
$[I > 2\sigma(I)]$				
Parameters	743	808	851	807
R1	0.0904	0.0567	0.0916	0.0470
wR2	0.2474	0.1839	0.2593	0.1146
GOF	1.399	1.147	1.141	1.002
$\Delta ho_{ ext{max}}/\Delta ho_{ ext{min}}$ (e Å-3)	0.979/-0.579	1.253/-0.784	1.523/-1.315	0.482/-0.382

Figure S1. Variable-temperature magnetic susceptibility data for microcrystalline samples of $Fe(L2)_2OTf_2(\mathbf{a})$ and $Fe(L2)_2(BF_4)_2(\mathbf{b})$ according to *dc*-magnetometry (•) and for their acetonitrile-d₃ solutions according to the Evans method (•). The red line represents the fit.

Figure S2. ¹H chemical shifts for an acetonitrile-d₃ solution of $Fe(L2)_2OTf_2(\mathbf{a})$ and $Fe(L2)_2(BF_4)_2(\mathbf{b})$ plotted versus 1/T. The solid lines represent linear fits.

Figure S3. Correlation plot of experimental *vs.* theoretical ¹H chemical shifts for Fe(**L2**)₂OTf₂ with optimized (**a**) and X-ray geometries (**b**) of $[Fe(L2)_2]^{2+}$; $\Delta \chi_{ax} = 7.61 \cdot 10^{-32} \text{ m}^3$.

Figure S4. Correlation plot of experimental *vs.* theoretical ¹H chemical shifts for Fe(**L2**)₂(BF₄)₂ with optimized (**a**) and X-ray geometries (**b**) of $[Fe(L2)_2]^{2+}$; $\Delta \chi_{ax} = 7.61 \cdot 10^{-32} \text{ m}^3$.

Figure S5. Packing of $[ML_2]^{2+}$ cations in Fe(L1)₂OTf₂ (a) and Zn(L1)₂(ClO₄)₂ (b).

Figure S6. Packing of $[ML_2]^{2+}$ cations in $Fe(L2)_2OTf_2$ (a) and $Fe(L2)_2(BF_4)_2$ (b).

Figure S7. Organic compounds with a phenyl-pyrazol-1-yl (**a**) or phenyl-pyrazol-3-yl (**b**) fragment distributed over the the angle between the two planes.

[Fe(Ph ₂ -;	1-bpp)2] ²⁺	[Fe(Ph-1,	3-bpp) ₂] ²⁺
Spin state	HS	Spin state	HS
θ,°	61.2-62.3	θ,°	69.8-71.5
γ,°	32.4 - 36.5	γ,°	45.3 - 49.2

[Fe(Py-tpy)2] ²⁺		[Fe(pTol ₂ -tpy) ₂] ²⁺		
Spin state	HS	Spin state	HS	
θ,°	76.5	θ,°	58.8°	
γ,°	68.8	γ,°	39.7 - 52.9	

Figure S8. General view of the HS complexes [Fe(L)₂]²⁺ of terpy (above) and bpp (below) with phenyl groups (and similar) from CSD showing 'parallel-displaced' intramolecular stacking interactions, and their schematic representation.

Figure S9. 1 H NMR spectra of the ligand L1 (above) and the complex Zn(L1)₂(ClO₄)₂ (below).

Figure S10. Differences in ¹H chemical shifts between the complex $Zn(L1)_2(ClO_4)_2$ and the ligand L1 calculated as $\delta_{Zn(L1)_2(ClO_4)_2} - \delta_{L1}$.

Pair of nuclei	Distance (X-ray)	Cross-peak	Pair of nuclei	Distance (X-ray)	Cross-peak
1-9	4.0 - 4.8	+	1-10	3.8 - 4.0	+
2-9	3.4 - 4.2	+	2-10	4.0 - 5.3	+
3-9	4.5 - 4.8	+	3-10	5.5 - 6.4	_

Figure S11. ROESY NMR data for Zn(L1)2(ClO4)2.

Figure S12. ¹H NMR spectra recorded after adding equimolar quantities of **L1**, **terpy** and FeCl₂ in methanol-d4 (**a**) and for pure [Fe(**terpy**)₂]Cl₂ ¹H NMR (300.13 MHz, CD₃OD) δ: 8.68 (4H, br.s., **5**'), 8.59 (2H, br.s., **6**'), 8.30 (4H, br.s., **4**'), 7.87 (4H, br.s., **2**'), 7.09 (4H, br.s., **3**'), 6.93 (4H, br. s., **1**') (**b**).