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Abstract: The theoretical equations of Zeeman energy levels, including the zero-field energies and
the first- and second-order Zeeman coefficients, have been obtained in closed form for nine states
of the 3T1(g) ground term, considering the axial ligand-field splitting and the spin-orbit coupling.
The equations are expressed as the functions of three independent parameters, ∆, λ, and κ, where ∆ is
the axial ligand-field splitting parameter, λ is the spin-orbit coupling parameter, and κ is the effective
orbital reduction factor, including the admixing. The equations are useful in simulating magnetic
properties (magnetic susceptibility and magnetization) of the complexes with 3T1(g) ground terms,
e.g., octahedral vanadium(III), octahedral low-spin manganese(III), octahedral low-spin chromium(II),
and tetrahedral nickel(II) complexes.

Keywords: Zeeman coefficients; 3T1(g) ground term; axial ligand-field splitting; spin-orbit coupling;
magnetic properties

1. Introduction

Magnetic properties of metal complexes with T ground term is difficult to be interpreted because
of the spin-orbit coupling. Since the orbital angular momentum depends on the symmetry around the
central metal ion, the distortion effect should be considered in addition to the spin-orbit coupling. This
paper reports theoretical expression of Zeeman energy levels for distorted metal complexes with 3T1

ground terms for the purpose of simulating the magnetic properties at high speed.
Concerning the T-term magnetism, Figgis successfully simulated the temperature dependence of

the effective magnetic moment of the metal complexes with 2T2 ground terms [1], considering both
the axial distortion and the spin-orbit coupling. After that magnetic properties were well interpreted
for metal complexes with 4T1 [2], 3T1 [3], and 5T2 [4] ground terms. On the other hand, however, the
secular matrices were to be solved each time to simulate the magnetic properties. Therefore, it takes
more time to optimize multiple parameters. In addition, simulation can be freely performed only by
those who can use programs to solve matrix equations, and simulation output can only be performed
within the programmed range.

In order to solve the problem, magnetic susceptibility equation was successfully expressed in
closed form for distorted metal complexes with the 4T1 ground terms [5]. The closed-form expression
is easily handled, and the extension to the dinuclear and higher nuclearity system is possible [5–7].
In fact, the first successful magnetic analysis of dinuclear octahedral high-spin cobalt(II) complexes
with slightly distorted cobalt(II) ions was conducted using the closed-form expression [5]. Theoretical
closed-form expression for magnetic properties has been reported for 2T2 [8], 4T1 [5], and 5T2 [9]
ground terms; however, the expression for the 3T1 term had not been obtained yet. Therefore, in this
study, magnetic susceptibility and magnetization equations were obtained for the 3T1 term.

The magnetic susceptibility and magnetization equations for the 3T1 ground term enable us to
analyze magnetic data of metal complexes, including octahedral vanadium(III), octahedral low-spin
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manganese(III), octahedral low-spin chromium(II), and tetrahedral nickel(II) complexes, considering
the spin-orbit coupling and the distortion around the central metal ion, without solving the secular
matrix each time.

2. Results

2.1. Zero-Field Energies and Zeeman Coefficients

The 3T1(g) term consists of nine states, which can be expressed as linear combinations of nine
orthogonal basses. In general, there are two typical types of basis sets for multielectron systems.
One is T-term-based, and the other is P-term-based, using the structural isomorphism of nT with
nP [10]. In this study, the latter was chosen, and the basis set is as follows: [|0, 0〉, |0,±1〉, | ± 1, 0〉,
| ± 1,±1〉, | ± 1,∓1〉] using the |ML, MS〉 notation. The method for obtaining the wave functions
were well described by Kahn [11] for the 4T1g term, and the method is also useful for the 3T1(g) term.
Considering both the axial distortion and the spin-orbit coupling, the Hamiltonian can be written as
H = ∆(L2

z − 2
3 )−

3
2 κλL · S + β(− 3

2 κLu + geSu) ·Hu (u = x, y, z) for the basis set, where ∆ is the axial
splitting parameter, λ is the spin-orbit coupling parameter, and κ is the effective orbital reduction
factor. It is noted that the axial distortion includes both the tetragonal distortion and the trigonal
distortion and that the effective orbital reduction factor includs the admixing of the excited 3T1(g)(P)
term. The ground 3T1(g) term can be described by the following nine wave functions, Ψ1–Ψ9, including
the 13 coefficients, c1–c13, and the coefficients are obtained by solving a 9× 9 secular matrix established
on the basis of the Hamiltonian. The matrix can be reduced to three matrices A, B, and C as shown
below. The matrices were basically led according to the method of Lines for the 4T1g term [2], using
the structural isomorphism of nT1 with nP [10]; however, the treatment of the orbital reduction factor
was modified according to Kahn [11].

Ψ1 = c1|1,−1〉+ c2|0, 0〉+ c3| − 1, 1〉 (1)

Ψ2 = c4|1, 0〉+ c5|0, 1〉 (2)

Ψ3 = c4| − 1, 0〉+ c5|0,−1〉 (3)

Ψ4 = c6|1,−1〉+ c7|0, 0〉+ c8| − 1, 1〉 (4)

Ψ5 = c9|1,−1〉+ c10|0, 0〉+ c11| − 1, 1〉 (5)

Ψ6 = c12|1, 0〉+ c13|0, 1〉 (6)

Ψ7 = c12| − 1, 0〉+ c13|0,−1〉 (7)

Ψ8 = |1, 1〉 (8)

Ψ9 = | − 1,−1〉 (9)

Matrix A
|1,−1〉 |0, 0〉 | − 1, 1〉

∆
3 + 3

2 κλ − 3
2 κλ 0

− 3
2 κλ −2∆

3 − 3
2 κλ

0 − 3
2 κλ ∆

3 + 3
2 κλ

Matrix B
| ± 1, 0〉 |0,±1〉

∆
3 − 3

2 κλ

− 3
2 κλ −2∆

3
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Matrix C
| ± 1,±1〉
∆
3 −

3
2 κλ

By solving the matrices, the coefficients, c1–c13, are expressed as the functions of v (= ∆
κλ ) as

shown below.

c1 =
d1

|d1|

√
d2

1
d2

1 + d2
2 + d2

3
(10)

c2 =
d2

|d2|

√
d2

2
d2

1 + d2
2 + d2

3
(11)

c3 =
d3

|d3|

√
d2

3
d2

1 + d2
2 + d2

3
(12)

c4 =
d4

|d4|

√
d2

4
d2

4 + d2
5

(13)

c5 =
d5

|d5|

√
d2

5
d2

4 + d2
5

(14)

c6 =
d6

|d6|

√
d2

6
d2

6 + d2
7 + d2

8
(15)

c7 =
d7

|d7|

√
d2

7
d2

6 + d2
7 + d2

8
(16)

c8 =
d8

|d8|

√
d2

8
d2

6 + d2
7 + d2

8
(17)

c9 =
d9

|d9|

√
d2

9
d2

9 + d2
10 + d2

11
(18)

c10 =
d10

|d10|

√
d2

10
d2

9 + d2
10 + d2

11
(19)

c11 =
d11

|d11|

√
d2

11
d2

9 + d2
10 + d2

11
(20)

c12 =
d12

|d12|

√
d2

12
d2

12 + d2
13

(21)

c13 =
d13

|d13|

√
d2

13
d2

12 + d2
13

(22)

d1 = 1/V1 (23)

d2 = −1 (24)

d3 = 1/V1 (25)

d4 = −1/V4 (26)
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d5 = −1 (27)

d6 = 1/V2 (28)

d7 = −1 (29)

d8 = 1/V2 (30)

d9 = 1/V3 (31)

d10 = −1 (32)

d11 = 1/V3 (33)

d12 = −1/V5 (34)

d13 = −1 (35)

V1 =
1
6

(
−2v− 3 +

√
4v2 + 12v + 81

)
(36)

V2 =
12

3 + 2v
(37)

V3 =
1
6

(
−2v− 3−

√
4v2 + 12v + 81

)
(38)

V4 =
1
3

(
v−

√
v2 + 9

)
(39)

V5 =
1
3

(
v +

√
v2 + 9

)
(40)

Using the coefficients, c1–c13, the zero-field energies (E(0)
n ), the first-order Zeeman coefficients

(E(1)
n,z and E(1)

n,x), and the second-order Zeeman coefficients (E(2)
n,z and E(2)

n,x) are expressed as follows,
where ge is the g-factor of the free-electron.

E(0)
1 = c1

2
(

∆
3
+

3
2

κλ

)
+ c2

2
(
−2∆

3

)
+ c3

2
(

∆
3
+

3
2

κλ

)
+ 2c1c2

(
−3

2
κλ

)
+ 2c2c3

(
−3

2
κλ

)
(41)

E(0)
2 = E(0)

3 = c4
2
(

∆
3

)
+ c5

2
(
−2∆

3

)
+ 2c4c5

(
−3

2
κλ

)
(42)

E(0)
4 = c6

2
(

∆
3
+

3
2

κλ

)
+ c7

2
(
−2∆

3

)
+ c8

2
(

∆
3
+

3
2

κλ

)
+ 2c6c7

(
−3

2
κλ

)
+ 2c7c8

(
−3

2
κλ

)
(43)

E(0)
5 = c9

2
(

∆
3
+

3
2

κλ

)
+ c10

2
(
−2∆

3

)
+ c11

2
(

∆
3
+

3
2

κλ

)
+ 2c9c10

(
−3

2
κλ

)
+ 2c10c11

(
−3

2
κλ

)
(44)

E(0)
6 = E(0)

7 = c12
2
(

∆
3

)
+ c13

2
(
−2∆

3

)
+ 2c12c13

(
−3

2
κλ

)
(45)

E(0)
8 = E(0)

9 =
∆
3
− 3

2
κλ (46)

E(1)
1,z = (−c1

2 + c3
2)(

3κ

2
+ ge)β (47)

E(1)
2,z = −c4

2(
3κ

2
)β + c5

2geβ (48)

E(1)
3,z = c4

2(
3κ

2
)β− c5

2geβ (49)

E(1)
4,z = (−c6

2 + c8
2)(

3κ

2
+ ge)β (50)
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E(1)
5,z = (−c9

2 + c11
2)(

3κ

2
+ ge)β (51)

E(1)
6,z = −c12

2(
3κ

2
)β + c13

2geβ (52)

E(1)
7,z = c12

2(
3κ

2
)β− c13

2geβ (53)

E(1)
8,z = −(3κ

2
)β + geβ (54)

E(1)
9,z = (

3κ

2
)β− geβ (55)

E(2)
1,z =

(−c1c6 + c3c8)
2( 3κ

2 + ge)2β2

E(0)
1 − E(0)

4

+
(−c1c9 + c3c11)

2( 3κ
2 + ge)2β2

E(0)
1 − E(0)

5

(56)

E(2)
2,z =

(−c4c12(
3κ
2 ) + c5c13ge)2β2

E(0)
2 − E(0)

6

(57)

E(2)
3,z =

(−c4c12(
3κ
2 ) + c5c13ge)2β2

E(0)
3 − E(0)

7

(58)

E(2)
4,z =

(−c1c6 + c3c8)
2( 3κ

2 + ge)2β2

E(0)
4 − E(0)

1

+
(−c6c9 + c8c11)

2( 3κ
2 + ge)2β2

E(0)
4 − E(0)

5

(59)

E(2)
5,z =

(−c6c9 + c8c11)
2( 3κ

2 + ge)2β2

E(0)
5 − E(0)

4

+
(−c1c9 + c3c11)

2( 3κ
2 + ge)2β2

E(0)
5 − E(0)

1

(60)

E(2)
6,z =

(−c4c12(
3κ
2 ) + c5c13ge)2β2

E(0)
6 − E(0)

2

(61)

E(2)
7,z =

(−c4c12(
3κ
2 ) + c5c13ge)2β2

E(0)
7 − E(0)

3

(62)

E(2)
8,z = E(2)

9,z = 0 (63)

E(1)
1,x = E(1)

2,x = E(1)
3,x = E(1)

4,x = E(1)
5,x = E(1)

6,x = E(1)
7,x = E(1)

8,x = E(1)
9,x = 0 (64)

E(2)
1,x =

((c1c4+c2c5)(
√

2
2 ge)+(c2c4+c3c5)(− 3

√
2

4 κ))2β2

E(0)
1 −E(0)

2

+
((c3c4+c2c5)(

√
2

2 ge)+(c2c4+c1c5)(− 3
√

2
4 κ))2β2

E(0)
1 −E(0)

3

+

((c1c12+c2c13)(
√

2
2 ge)+(c2c12+c3c13)(− 3

√
2

4 κ))2β2

E(0)
1 −E(0)

6

+
((c3c12+c2c13)(

√
2

2 ge)+(c2c12+c1c13)(− 3
√

2
4 κ))2β2

E(0)
1 −E(0)

7

(65)

E(2)
2,x =

((c1c4+c2c5)(
√

2
2 ge)+(c2c4+c3c5)(− 3

√
2

4 κ))2β2

E(0)
2 −E(0)

1

+
((c6c4+c7c5)(

√
2

2 ge)+(c7c4+c8c5)(− 3
√

2
4 κ))2β2

E(0)
2 −E(0)

4

+

((c9c4+c10c5)(
√

2
2 ge)+(c10c4+c11c5)(− 3

√
2

4 κ))2β2

E(0)
2 −E(0)

5

+
(c4(

√
2

2 ge)+c5(− 3
√

2
4 κ))2β2

E(0)
2 −E(0)

8

(66)

E(2)
3,x =

((c3c4+c2c5)(
√

2
2 ge)+(c2c4+c1c5)(− 3

√
2

4 κ))2β2

E(0)
3 −E(0)

1

+
((c8c4+c7c5)(

√
2

2 ge)+(c7c4+c6c5)(− 3
√

2
4 κ))2β2

E(0)
3 −E(0)

4

+

((c11c4+c10c5)(
√

2
2 ge)+(c10c4+c9c5)(− 3

√
2

4 κ))2β2

E(0)
3 −E(0)

5

+
(c4(

√
2

2 ge)+c5(− 3
√

2
4 κ))2β2

E(0)
3 −E(0)

9

(67)

E(2)
4,x =

((c6c4+c2c5)(
√

2
2 ge)+(c7c4+c8c5)(− 3

√
2

4 κ))2β2

E(0)
4 −E(0)

2

+
((c8c4+c2c5)(

√
2

2 ge)+(c7c4+c6c5)(− 3
√

2
4 κ))2β2

E(0)
4 −E(0)

3

+

((c6c12+c7c13)(
√

2
2 ge)+(c7c12+c8c13)(− 3

√
2

4 κ))2β2

E(0)
4 −E(0)

6

+
((c8c12+c7c13)(

√
2

2 ge)+(c7c12+c6c13)(− 3
√

2
4 κ))2β2

E(0)
4 −E(0)

7

(68)
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E(2)
5,x =

((c9c4+c10c5)(
√

2
2 ge)+(c10c4+c11c5)(− 3

√
2

4 κ))2β2

E(0)
5 −E(0)

2

+
((c11c4+c10c5)(

√
2

2 ge)+(c10c4+c9c5)(− 3
√

2
4 κ))2β2

E(0)
5 −E(0)

3

+

((c9c12+c10c13)(
√

2
2 ge)+(c10c12+c11c13)(− 3

√
2

4 κ))2β2

E(0)
5 −E(0)

6

+
((c11c12+c10c13)(

√
2

2 ge)+(c10c12+c9c13)(− 3
√

2
4 κ))2β2

E(0)
5 −E(0)

7

(69)

E(2)
6,x =

((c1c12+c2c13)(
√

2
2 ge)+(c2c12+c3c13)(− 3

√
2

4 κ))2β2

E(0)
6 −E(0)

1

+
((c6c12+c7c13)(

√
2

2 ge)+(c7c12+c8c13)(− 3
√

2
4 κ))2β2

E(0)
6 −E(0)

4

+

((c9c12+c10c13)(
√

2
2 ge)+(c10c12+c11c13)(− 3

√
2

4 κ))2β2

E(0)
6 −E(0)

5

+
(c12(

√
2

2 ge)+c13(− 3
√

2
4 κ))2β2

E(0)
6 −E(0)

8

(70)

E(2)
7,x =

((c3c12+c2c13)(
√

2
2 ge)+(c2c12+c1c13)(− 3

√
2

4 κ))2β2

E(0)
7 −E(0)

1

+
((c8c12+c7c13)(

√
2

2 ge)+(c7c12+c6c13)(− 3
√

2
4 κ))2β2

E(0)
7 −E(0)

4

+

((c11c12+c10c13)(
√

2
2 ge)+(c10c12+c9c13)(− 3

√
2

4 κ))2β2

E(0)
7 −E(0)

5

+
(c12(

√
2

2 ge)+c13(− 3
√

2
4 κ))2β2

E(0)
7 −E(0)

9

(71)

E(2)
8,x =

(c4(
√

2
2 ge) + c5(− 3

√
2

4 κ))2β2

E(0)
8 − E(0)

2

+
(c12(

√
2

2 ge) + c13(− 3
√

2
4 κ))2β2

E(0)
8 − E(0)

6

(72)

E(2)
9,x =

(c4(
√

2
2 ge) + c5(− 3

√
2

4 κ))2β2

E(0)
9 − E(0)

3

+
(c12(

√
2

2 ge) + c13(− 3
√

2
4 κ))2β2

E(0)
9 − E(0)

7

(73)

Using the above zero-field energy equations, the v (= ∆
κλ ) dependence of the nine levels are

calculated as shown in Figure 1. When ∆ is zero, the 3T1(g) term splits into three states: a singlet state
(Ψ1), a triplet state (Ψ2, Ψ3, Ψ4), and a quintet state (Ψ5, Ψ6, Ψ7, Ψ8, Ψ9). When ∆ is not zero, the 3T1(g)
term splits into three doublet states [(Ψ2, Ψ3), (Ψ6, Ψ7), and (Ψ8, Ψ9)] and three singlet states [Ψ1, Ψ4,
and Ψ5]. When the λ value is positive, the Ψ1 state is the highest, but when the λ value is negative, the
Ψ1 state is the lowest.

Figure 1. Energy diagram of the nine states of the 3T1(g) term (λ = 100 cm−1, κ = 1).

2.2. Magnetic Susceptibility and Magnetization Equations

The temperature dependence of the magnetic susceptibility χ can be obtained by the Van Vleck
formula [12], using the above energy equations and the Zeeman coefficients, where k represents the
Boltzmann constatnt. This is a zero-field susuceptibility equation.

χ =
χz + 2χx

3
(74)



Magnetochemistry 2019, 5, 17 7 of 10

χz(x) =

N ∑9
i=1

(
E(1)

i,z(x)

2

kT − 2E(2)
i,z(x)

)
exp

(
−E(0)

i
kT

)
∑9

i=1 exp
(
−E(0)

i
kT

) (75)

The field-dependent magnetic susceptibility equation can be expressed as follows, where Hz(x)
represents the magnetic field. This equation is valid when the magnetic field is not so large.

χz(x) =

N ∑9
i=1

(
−

E(1)
i,z(x)

Hz(x)
− 2E(2)

i,z(x)

)
exp

(−Ei,z(x)
kT

)
∑9

i=1 exp
(−Ei,z(x)

kT

) (76)

Ei,z(x) = E(0)
i + E(1)

i,z(x)Hz(x) + E(2)
i,z(x)H2

z(x) (77)

The magnetization for the z and x directions, Mz and Mx, are expressed as follows, where Hz(x)
represents the magnetic field.

Mz(x) =
N ∑9

i=1

(
−E(1)

i,z(x) − 2E(2)
i,z(x)Hz(x)

)
exp

(−Ei,z(x)
kT

)
∑9

i=1 exp
(−Ei,z(x)

kT

) (78)

Ei,z(x) = E(0)
i + E(1)

i,z(x)Hz(x) + E(2)
i,z(x)H2

z(x) (79)

The powder average of the magnetization is generally expressed by the following equation.

Mav = (4π)−1
∫ 2π

0

∫ π

0
M(θ, φ) sin θdθdφ (80)

When the symmetry is axial (x = y), the above equation can be expanded by calculating the
integrals to obtain the following powder average equation.

Mav = lim
m→∞

m

∑
j=1

M


(

j− 45
m

)
π

180

[cos
(j− 1)π

180
− cos

jπ
180

]
(81)

M(θ) =
N ∑9

i=1

(
−E(1)

i,θ − 2E(2)
i,θ Hθ

)
exp

(
−Ei,θ

kT

)
∑9

i=1 exp
(
−Ei,θ

kT

) (82)

Practically, the following equation, with Equation (82), is good enough to calculate the powder
average of magnetization, if m is large enough.

Mav =
m

∑
j=1

M


(

j− 45
m

)
π

180

[cos
(j− 1)π

180
− cos

jπ
180

]
(83)

2.3. Magnetic Simulation

Using the closed-form equations for zero-field energies and Zeeman coefficients, magnetic
simulation is possible. Such simulation was performed for the 4T1g-ground-term complexes [5–7],
and is expected to be possible also for the 3T1(g)-ground-term complexes if the equations derived in
this study are used. Two of the examples are going to shown here. The first one is for a tetrahedral
nickekel(II) complex, possessing 3T1 ground term (Figure 2). Such simulation and analysis were
conducted earlier [3], and the present simulation was consistent with the earlier ones. Since the
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nickel(II) ion has a d8 electronic configuration, the λ has a negative value. In this simulation, the λ

and κ were fixed to the often observed values. When the tetrahedral coordination geometry around
nickel(II) ion is distorted, the v generally takes the negative values, but the simulation was also
performed for the positive v values. With the variation of v, the χT curves systematically change. That
is because the ground state is Ψ1 and unchanged.

Figure 2. Theoretical χT versus T plot for tetrahedral nickel(II) complexes (λ = −100 cm−1, κ = 0.9, v =
−10, −5, 0, 5, and 10).

The other simulation example is for the positive λ case (Figure 3). This case corresponds to
the octahedral vanadium(III) complexes with d2 electronic configuraions and octahedral low-spin
manganese(III) and octahedral low-spin chromium(II) complexes with d4 electronic configurations.
In these cases, λ takes positive values, since the metal ion has less than five d-electrons. With the
variation of v, the χT curves drastically change. This is because the ground state changes from a
doubly degenerate (Ψ8, Ψ9) state (v < 0) to a non-degenerate Ψ5 state (v > 0).

Figure 3. Theoretical χT versus T plot for octahedral low-spin manganese(III) complexes (λ = 100 cm−1,
κ = 0.9, v = −10, −5, 0, 5, and 10).

3. Discussion

In order to obtain magnetic susceptibility and magnetization equations for the metal complexes
with 3T1(g) ground terms, the zero-field energies and Zeeman coefficients were obtained in closed
form by solving the secular matrices. Fortunately, the resulting equations do not contain the imaginary
part. Therefore, the equations can be easily handled, and anyone who wants to obtain Zeeman energy
values and so on can calculate them without any specific programs. Using the equations, magnetic
susceptibility and magnetization can be calculated simply by substituting the values of the parameters
into the equations.

The metal complexes with 3T1(g) ground terms include octahedral vanadium(III) complexes with
d2 electronic configurations, octahedral low-spin manganese(III) and chromium(II) complexes with
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d4 electronic configurations, and tetrahedral nickel(II) complexes with d8 electronic configurations.
Although any new data were not analyzed in this study, the equations obtained in this study are
expected to be useful in analyzing the magnetic data of the 3T1(g) complexes, as well as the the 4T1g
expressions utilized in magnetic analyses [5–7].

The magnetic susceptibility and magnetization equations require three independent parameters,
the axial splitting parameter, ∆, the spin-orbit coupling parameter, λ, and the effective orbital reduction
factor, κ. These three parameters are important in considering T-term magnetism. On the other hand,
when the zero-field splitting is treated, the zero-field splitting parameter, D, is used. Since the normal
zero-field splitting occurs as the result of the spin-spin interaction in the S ≥ 1 system, this interaction
is different from the spin-orbit interaction. Therefore, the different parameter system was used in this
study. Of course, [λ, κ, v (= ∆

κλ )] is also a good parameter set for the T-term magnetism.

4. Materials and Methods

The procedure of handling the wave functions of the 4T1g term was well described by Kahn [11] to
obtain zero-field energies and Zeeman coefficients. His method was basically used for the 3T1(g) term
in this study, obtaining zero-field energies and Zeeman coefficients. Therefore, the detailed method is
described in reference [11]. The only difference is the definition of ”v”. That is, Kahn defined v = ∆/|λ|,
while v was defined as ∆

κλ in this study. Fortunately, there was no difficulty in solving the matrices in closed
form. The code including the obtained equations was written on REALbasic software [13]. Calculations
were conducted by MagSaki(3T1) ver.0.0.1 software developed using REALbasic software [13].

5. Conclusions

The zero-field energies and Zeeman coefficients were obtained in closed form for the distorted
metal complexes with 3T1(g) ground term. The magnetic susceptibility and magnetization equations
were also obtained. Using the equations, magnetic susceptibility and magnetization can be
calculated simply by substituting the values of the parameters into the equations. The equations
are useful for 3T1(g)-ground-term complexes, including octahedral vanadium(III), octahedral low-spin
manganese(III), octahedral low-spin chromium(II), and tetrahedral nickel(II) complexes.
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