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Abstract: Tetranuclear MnII
2MnIII

2 complexes with 1,3-bis(5-bromo-3-metoxysalicylidenaminomethyl)-
2-propanol (H3bmsap) and 1,3-bis(5-chloro-3-methoxysalicylidenaminomethyl)-2-propanol
(H3cmsap), [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3) and [Mn4(cmsap)2(CH3CO2)3(CH3O)] (4),
were synthesized and characterized by elemental analysis, infrared and diffused reflectance
spectra and variable-temperature magnetic susceptibility measurements in the 2–300 K range.
The crystal structures of 3 and 4 revealed a Y-shaped tetranuclear manganese cluster formed
by the two Schiff-base ligands, three kinds of acetato ligands (bidentate, syn–anti-bridging,
and syn–syn-bridging), and µ-methoxido ligand. The magnetic data showed the magnetic
interactions among the four manganese atoms are antiferromagnetic as a whole within the
tetranuclear cluster.

Keywords: manganese complex; tetranuclear complex; mixed-valent complex; antiferromagnetic
interaction; spin coupling

1. Introduction

Within the search for new molecule-based devices, manganese complexes are interesting from
the viewpoint of both bioinorganic chemistry and material sciences [1–8]. Specifically, tetranuclear
manganese complexes have received considerable interest because the unique tetranuclear manganese
cluster structure with calcium ion was found in the PS-II in green plants [9–12]. Many kinds of
tetranuclear MnII

2MnIII
2 complexes have appeared in the literature, and butterfly-shaped tetranuclear

MnII
2MnIII

2 complexes have remarkable magnetic properties with ferromagnetic couplings and SMM
behavior [13–15]. Based on this background, we have focused on the synthesis of manganese
complexes with multidentate organic ligands [16–28]. We and other researchers have studied
coordination compounds based on a multidentate Schiff-base, 1,3-bis(salicylideneamino)-2-propanol,
as a dinucleating ligand to make mononuclear, dinuclear, tetranuclear, and polynuclear manganese
complexes [16,29–32]. Recently, we reported that tetranuclear manganese complexes with a Y-shaped
core can be formed by the reaction of a multidentate Schiff-base ligand which has a methoxy group as
a potential coordinating donor atom, 1,3-bis(3-methoxysalicylideneamino)-2-propanol (H3msap) [28].
The reaction with manganese(II) acetate and manganese(II) benzoate afforded tetranuclear
complexes, [Mn4(msap)2(CH3CO2)3(CH3O)(H2O)] (1) and [Mn4(msap)2(C6H5CO2)3(CH3O)] (2).
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This is an interesting feature of tetranuclear manganese complexes related to the PS-II model.
In order to increase the number of examples of this type of complexes, we introduced chloro-
and bromo-groups to the 3-methoxysalicylidenamino moieties of H3masp ligand to make
new Schiff-base ligands, 1,3-bis(5-bromo-3-methoxysalicylideneamino)-2-propanol (H3bmsap) and
1,3-bis(5-chloro-3-methoxysalicylideneamino)-2-propanol (H3cmsap) (Figure 1). These new ligands
have only one electron-withdrawing Br or Cl group for each benzene ring and we expected only a
small effect on the tetranuclear molecule, and thus we can extend the tetranuclear examples. In order
to construct tetranuclear complex, we used a similar method to make manganese complexes as that
for the acetate complex 1 [28] and isolated two new complexes, [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3)
and [Mn4(cmsap)2(CH3CO2)3(CH3O)] (4). We report here on the synthesis, magnetic properties, and
crystal structures of these tetranuclear complexes.
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Figure 1. Multidentate Schiff-base ligands, 1,3-bis(3-methoxysalicylideneamino)-2-propanol (H3msap;
X = H) and its 5-bromo and 5-chloro derivatives, 1,3-bis(5-bromo-3-methoxysalicylideneamino)-2-propanol
(H3bmsap; X = Br) and 1,3-bis(5-chloro-3-methoxysalicylideneamino)-2-propanol (H3cmsap; X = Cl).

2. Results and Discussion

2.1. Synthesis of Tetranuclear Manganese Complexes

The tetranuclear manganese complexes, [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3) and
[Mn4(cmsap)2(CH3CO2)3(CH3O)] (4), were synthesized by a 1:2 molar reaction of the Schiff-base ligand
and manganese(II) acetate according to a similar method for [Mn4(msap)2(CH3CO2)3(CH3O)(H2O)]·H2O
(1) [28]. Analytical C, H, and N data of the obtained complexes agree with the formulation of
tetranuclear manganese.

2.2. Infrared Spectra of Tetranuclear Manganese Complexes

Infrared spectra of the present complexes 3 and 4 are shown with those of the complexes
1 and 2 in Figure 2. The fingerprint features are similar to each other, suggesting a similarity
of the molecular structures of these complexes. The present complexes showed a C=N
stretching band characteristic to the Schiff base ligands at 1619 cm−1, which is definitely shifted
to the lower frequency side, compared with those of the free Schiff-base ligands, H3bmsap
(1624 cm−1) and H3cmsap (1640 cm−1), suggesting the coordination of the imino-nitrogen atoms
to metal atoms. The complexes also showed two COO stretching bands at 1587–1534 and
1460–1396 cm−1 with the frequency difference characteristic of syn–syn-bridging, syn–anti-bridging,
and bidentate carboxylato as similar to the tetranuclear complexes 1 and 2 [28]. The frequency
separation between the antisymmetric and symmetric COO stretching bands can be deduced as
∆ = νas(COO) − νs(COO): 1587 − 1396 = 191 cm−1, 1555 − 1417 = 138 cm−1, 1534 − 1449 = 85 cm−1

for 3; 1579 − 1407 = 172 cm−1, 1545 − 1439 = 106 cm−1, 1534 − 1460 = 74 cm−1 for 4., corresponding
to those of syn–syn-bridging, syn–anti-bridging, and bidentate acetato ligands [33,34].
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Figure 2. Infrared spectra of [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3) and [Mn4(cmsap)2(CH3CO2)3(CH3O)] (4)
compared with those of [Mn4(msap)2(CH3CO2)3(CH3O)(H2O)]·H2O (1) and [Mn4(msap)2(C6H5CO2)3(CH3O)] (2).

2.3. Electronic Spectra of Tetranuclear Manganese Complexes

The diffused reflectance spectra of the present complexes (Figure S1) may be characterized as
broad spectral features with some peaks in the UV-vis–NIR region, as previously reported for 1 and
2 [28]. The LMCT (Ligand-to-Metal Charge Transfer) bands may be responsible for the high-intensity
absorptions in the UV region. In particular, the absorption band at the near-UV region (434sh nm for 3;
442sh for 4) can be assumed as a characteristic LMCT band of phenolato-oxygen to manganese(III) as
found in some Schiff-base manganese(III) complexes [24,35]. Furthermore, d-d bands due to six- or
five-coordinated manganese(III) ions appeared and hid behind the strong near-UV bands in the visible
and NIR regions until around 1000 nm [35].

2.4. Crystal Structures of Tetranuclear Manganese Complexes

Single crystals suitable for X-ray diffraction work were obtained for complexes 3 and 4, although
the crystals of the latter complex were twinned. Crystal data and refinement parameters are given
in Table 1. Selected bond lengths and angles are given in Tables 2 and 3. An ORTEP (Oak Ridge
Thermal Ellipsoid Plot) drawing of the molecular structure of 3 is shown in Figure 3. One Schiff-base
bmsap3– ligand binds the Mn1, Mn2, and Mn3 atoms by the O1, N1, and O3 atoms, the O4, N2, and O3
atoms, and the O3 atom, respectively, with a folding structure of the Schiff-base ligand. On the other
hand, the other bmsap3− ligand binds the Mn1, Mn3, and Mn4 atoms by the O6, N3, and O8 atoms,
the O8, N4, and O9 atoms, and the O9 and O10 atoms, respectively. The Mn1 atom is six-coordinated
by the N2O4 donor set from the two Schiff-base ligands in an elongated octahedral geometry with
the longer O1-Mn1-O3 axis. The Mn2 atom is five-coordinated by the NO4 donor set from one
Schiff-base, one methoxido-oxygen, and one acetato-oxygen atom in a distorted square-pyramidal
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geometry, having the τ value of 0.217 around the Mn2 atom [36]. The Mn3 atom is six-coordinated
by the NO5 donor set from two Schiff-base, one methoxido-oxygen atom, and one acetato-oxygen
atom in a distorted octahedral geometry with relatively long bond distances. The Mn4 atom is also
six-coordinated by the O6 donor set from one Schiff-base and four acetato-oxygen atoms in a distorted
octahedron with longer Mn-O bonds. The charge balance and bond parameters around the manganese
centers suggested the Mn1 and Mn2 atoms should be in a Mn(III) oxidation state, whereas the Mn3
and Mn4 atoms should be in a Mn(II) oxidation state. The bond valence sum calculation supported
this mixed-valent formula [37,38]. The four manganese atoms are located at the corners of a Y-shaped
core with distances between the four manganese atoms of 3.530(2) Å for Mn1···Mn2, 3.237(1) Å for
Mn2···Mn3, 3.466(2) Å for Mn1···Mn3, and 3.494(2) Å for Mn3···Mn4, respectively, where the Mn1
and Mn2 atoms are bridged by the µ3-O3 alkoxido-oxygen atom of the Schiff-base ligand, the Mn1
and Mn3 atoms are bridged by the µ3-O3 alkoxido-oxygen atom and µ-O8 alkoxido-oxygen atom of
the Schiff-base ligand, the Mn2 and Mn3 atoms are bridged by the µ3-O3 alkoxido-oxygen atom and
methoxido-oxygen O17 atom, the Mn2 and Mn4 atoms are bridged by the acetato ligand, and the Mn3
and Mn4 atoms are bridged by the phenoxido-oxygen O9 atom and acetato ligand. It is to be noted that
three kinds of coordination modes of acetato ligands, syn–syn-bridging, syn–anti-bridging, and bidentate,
are found in the same molecule. A similar feature was observed in the hexanuclear copper(II) complex
with 1,4,8,11-tetrakis(3-methoxysalicylideneaminoethyl)-1,4,8,11-tetraazacycloteradecane (H4tmsaec),
[Cu6(CH3CO2)8(tmsaec)], where monodentate, syn–syn-bridging, and bidentate modes were found for
the acetato ligands [34]. The molecular structure is similar to that of 1, but there is no coordinating water
molecule nor monodentate acetato-ligand here. This structure is almost the same as that of 2. A packing
diagram of 3 is shown in Figure 4. The tetranuclear molecules are separated each other in the crystal.

Table 1. Crystallographic data and refinement parameters of 3 and 4.

3 4

Empirical formula C45H46Br4Mn4N4O17 C48.3H54.2Cl4Mn4N7O18.3
Formula weight 1454.26 1359.12
Temperature/K 90 90

Crystal dimensions/mm 0.23 × 0.12 × 0.08 0.08 × 0.15 × 0.35
Crystal system monoclinic triclinic

Space group C2/c P
_
1

a/Å 32.754(9) 12.5259(14)
b/Å 15.121(4) 15.5053(17)
c/Å 29.893(13) 16.8716(18)
α/o 90 102.278(2)
β/o 117.132(3) 104.869(2)
γ/o 90 110.789(2)

V/Å3 13176(8) 2788.6(5)
Z 8 2

dcalcd./g·cm−3 1.466 1.619
µ/mm−1 3.234 1.153

F(000) 5760 1387
Reflections collected 41795 12414

Independent reflections 16231 12414
θ range for data collection 1.397 to 28.715◦ 2.569 to 27.496◦

Data/restraints/parameters 16231/0/675 12414/0/744
R1, wR2 [I > 2σ(I)] a 0.0785, 0.1756 0.0725, 0.1432
R1, wR2 (all data) a 0.1798, 0.2135 0.1252, 0.1593

Goodness-of-fit on F2 0.976 0.979
CCDC (The Cambridge

Crystallographic Data Centren) number 1887620 1887482

a R1 = Σ||Fo| − |Fc||/Σ|Fo|; wR2 = [Σw(Fo
2 − Fc

2)2/Σw(Fo
2)2]1/2.
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Table 2. Selected bond lengths (Å) and bond angles (◦) for complex 3.

[Mn4(bmsap)2(CH3CO2)3(CH3O)] (3)
Bond Bond Length/Å Bond Bond Angle/◦

Mn1···Mn2 3.530(2) Mn1-O3-Mn2 110.2(3)
Mn2···Mn3 3.237(1) Mn2-O3-Mn3 99.9(2)
Mn3···Mn1 3.466(2) Mn1-O3-Mn3 94.4(2)
Mn4···Mn3 3.494(2) Mn2-O17-Mn3 105.1(2)

Mn1-O1 2.067(5) Mn3-O9-Mn4 110.2(2)
Mn1-O3 2.399(4) Mn1-O8-Mn3 113.0(2)
Mn1-O6 1.911(5) - -
Mn1-O8 1.889(5) - -
Mn1-N1 2.056(6) - -
Mn1-N3 1.993(5) - -
Mn2-O3 1.891(4) - -
Mn2-O4 1.881(4) - -
Mn2-O11 2.085(5) - -
Mn2-O17 1.872(5) - -
Mn2-N2 1.981(6) - -
Mn3-O3 2.324(4) - -
Mn3-O8 2.261(5) - -
Mn3-O9 2.162(5) - -
Mn3-O13 2.080(4) - -
Mn3-O17 2.196(4) - -
Mn3-N4 2.241(6) - -
Mn4-O9 2.098(5) - -
Mn4-O10 2.343(7) - -
Mn4-O12 2.123(5) - -
Mn4-O14 2.081(6) - -
Mn4-O15 2.310(6) - -
Mn4-O16 2.196(5) - -

Table 3. Selected bond lengths (Å) and bond angles (◦) for complex 4.

[Mn4(cmsap)2(CH3CO2)3(CH3O)] (4)
Bond Bond Length/Å Bond Bond Angle/◦

Mn1···Mn2 3.590(1) Mn1-O5-Mn2 113.8(2)
Mn2···Mn3 3.181(1) Mn2-O5-Mn3 99.4(1)
Mn3···Mn1 3.391(1) Mn1-O5-Mn3 93.3(1)
Mn4···Mn3 3.562(1) Mn2-O6-Mn3 100.8(2)

Mn1-O1 2.041(3) Mn3-O11-Mn4 113.0(2)
Mn1-O5 2.387(3) Mn1-O7-Mn3 108.6(2)
Mn1-O7 1.892(3) - -
Mn1-O8 1.885(3) - -
Mn1-N1 2.064(4) - -
Mn1-N3 2.000(4) - -
Mn2-O4 1.860(3) - -
Mn2-O5 1.885(3) - -
Mn2-O6 1.877(3) - -
Mn2-O15 2.100(3) - -
Mn2-N2 1.975(4) - -
Mn3-O5 2.273(3) - -
Mn3-O6 2.240(3) - -
Mn3-O7 2.275(3) - -
Mn3-O11 2.125(3) - -
Mn3-O17 2.086(3) - -
Mn3-N4 2.210(4) - -
Mn4-O10 2.336(3) - -
Mn4-O11 2.148(3) - -
Mn4-O12 2.306(4) - -
Mn4-O13 2.262(4) - -
Mn4-O14 2.166(3) - -
Mn4-O16 2.094(4) - -
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Figure 4. Packing diagram for [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3).

An ORTEP drawing of the molecular structure of 4 is shown in Figure 5. The molecular structure
is almost the same as that of 3. The four manganese atoms occupied the four corners of a Y-shaped core
with the distances of 3.590(1) Å for Mn1···Mn2, 3.181(1) Å for Mn2···Mn3, 3.391(1) Å for Mn1···Mn3,
and 3.562(1) Å for Mn3···Mn4, respectively, where the Mn1 and Mn2 atoms are bridged by the µ3-O5
alkoxido-oxygen atom of the Schiff-base ligand, the Mn1 and Mn3 atoms are bridged by the µ3-O5
alkoxido-oxygen atom and µ-O7 alkoxido-oxygen atom of the Schiff-base ligand, the Mn2 and Mn3
atoms are bridged by the µ3-O5 alkoxido-oxygen atom and methoxido-oxygen O6 atom, the Mn2 and
Mn4 atoms are bridged by the syn–anti-acetato ligand, and the Mn3 and Mn4 atoms are bridged by
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the phenoxido-oxygen O11 atom and syn–syn-acetato ligand. The packing diagram of 4 is depicted in
Figure 6. We can see that the tetranuclear molecules are separated well in the crystal.Magnetochemistry 2018, 4, x FOR PEER REVIEW - 7 of 12 
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2.5. Magnetic Data of Tetranuclear Manganese Complexes

The magnetic properties for the tetranuclear manganese complexes 3 and 4 are displayed in
Figure 7 as the temperature variations of χMT in the temperature range of 2–300 K. The effective
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magnetic moments of 3 and 4 are 9.77 µB and 10.17 µB, respectively, per MnII
2MnIII

2 unit at 300 K,
and a little lower than the theoretical value at room temperature. The calculated spin-only value
is 10.86 µB for non-interacting two S = 5/2 spins and two S = 2 spins. When cooling, the magnetic
moments of 3 and 4 steadily decrease from 300 K to around 100 K, and then abruptly diminish to a
value of approximately 3.13 µB and 1.91 µB at 2 K, respectively. Overall, each tetranuclear manganese
complex including 1 and 2 shows a similar pattern of magnetic moment decreasing with the lowering
of temperature, suggesting that the magnetic coupling is antiferromagnetic as a whole. Therefore,
the magnetic properties of the present complexes were described by the following model, taking
account of the magnetic exchange interactions: J1 (MnIII-MnIII bridged by µ3-alkoxido-oxygen), J2

(MnIII-MnII bridged by µ3-alkoxido-oxygen and µ-methoxido-oxygen), J3 (MnIII-MnII bridged by
µ3-alkoxido-oxygen and µ-alkoxido-oxygen), J4 (MnII-MnII bridged by µ-phenoxido-oxygen and
µ-acetato), J5 (MnIII-MnII bridged by µ-acetato), and J6 (MnIII-MnII without bridge) as shown in
Figure 8. To determine the J1, J2, J3, J4, J5, and J6 values, the χMT versus T data for 1, 2, 3, and 4, were
fit to the theoretical expression based on the isotropic Heisenberg spin model given by Equation (1),
using the program PHI [39].
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2 complexes.

H = −2J1S(MnIII)·S(MnIII) − 2J2S(MnIII)·S(MnII) − 2J3S(MnIII)·S(MnII) −

2J4S(MnII)·S(MnII) − 2J5S(MnIII)·S(MnII) − 2J6S(MnIII)·S(MnII)
(1)

In order to avoid overparameterization, the g values of the four manganese atoms were fixed to
be 2.00 and J6 was set to be 0 cm−1 because of there being no intervening bridging group between
these Mn atoms. Good fits were obtained for all four complexes, and the results are shown as solid
lines in Figure 7. The fitting parameters are listed in Table 4. All of the J values except for J5 are
negative, in accord with overall antiferromagnetic couplings in 1, 2, 3, and 4. Larger −J1 values are
understandable, because antiferromagnetic coupling between MnIII and MnIII is usually stronger than
that between MnII and MnIII or MnII [17,19]. A ferromagnetic coupling was observed for J5. This may
come from magnetic interaction via the syn–anti-bridging acetato ligand.

Table 4. Fitting parameters for tetranuclar manganese complexes 1–4.

Complex 1 Complex 2 Complex 3 Complex 4

J1 −4.91 cm−1 −7.43 cm−1 −10.78 cm−1 −5.36 cm−1

J2 −1.77 cm−1 −2.56 cm−1 −7.01 cm−1 −2.30 cm−1

J3 −0.75 cm−1 −2.63 cm−1 −5.19 cm−1 −2.99 cm−1

J4 −2.20 cm−1 −2.07 cm−1 −2.14 cm−1 −3.29 cm−1

J5 7.84 cm−1 2.33 cm−1 0.61 cm−1 1.69 cm−1

J6 0 cm−1 0 cm−1 0 cm−1 0 cm−1

3. Materials and Methods

All the chemicals were commercial products and were used as supplied. The Schiff-base ligands
H3bmsap and H3cmsp were prepared according to a method reported for H3msap in the literature [28].

3.1. Synthesis of 1,3-Bis(5-bromo-3-methoxysalicylideneamino)-2-propanol (H3bmsap)

1,3-Diamino-2-propanol (100 mg, 0.1 mmol) and 5-bromo-3-methoxysalicylaldehyde (500 mg,
0.2 mmol) were dissolved in ethanol (30 cm3). The mixture solution was refluxed for 3 h. The resulting
yellow precipitate was filtered off and washed with ethanol. Yield: 460 mg (75%). Anal. found: C,
44.42; H, 3.99; N, 5.42%. Calcd for C19H20Br2N2O5: C, 44.21; H, 3.91; N, 5.43%. IR (KBr): υ(OH) 3219,
υ(C=N) 1624 cm−1. 1H NMR (400 MHz, Chloroform-d): δ 13.61 (s, 2H, -OH), 8.42 (s, 2H, -N=CH-),
7.06–6.98 (m, 4H, aryl-H), 4.27 (m, 1H, -CH-), 3.90 (s, 6H, -CH3), 3.91–3.87 (m, 2H, -CH2-), 3.78–3.74 (m,
2H, -CH2), 1.99 (s, 1H, -OH).
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3.2. Synthesis of 1,3-Bis(5-chloro-3-methoxysalicylideneamino)-2-propanol (H3cmsap)

H3cmsap was prepared as for H3bmsap using 5-chloro-3-methoxysalicylaldehyde in place
of 5-bromo-3-methoxysalicylaldehyde.

3.3. Synthesis of [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3)

To an acetonitrile solution (2 cm3) of H3bmsap (52 mg, 0.1 mmol), a mixed solution of
manganese(II) acetate tetrahydrate (50 mg, 0.2 mmol) in acetonitrile (1 cm3)—methanol (1 cm3)
solution was added, and then three drops of triethylamine were added to this solution. After the
reaction mixture was stirred for 1h, the mixture was filtered. Diethyl ether was layered on the filtrate
and left for several days at room temperature. The deposited crystals were filtered off and desiccated
in vacuo. Yield: 33 mg, 44% (based on the Schiff-base ligand). Found C 35.73, H 3.32, N 3.71%. Calcd
for C45H52Br4Mn4N4O20 (3·3H2O): C 35.83, H 3.47, N 3.71%. IR (KBr): υ(OH) 3329, υ(C=N) 1619,
υas(CO2

−) 1587, 1555, 1534, υs(CO2
−) 1449, 1417, 1396 cm−1. Diffuse reflectance spectrum: λmax 236,

276, 370, 434sh, 540sh, 660sh, 840sh nm.

3.4. Synthesis of [Mn4(cmsap)2(CH3CO2)3(CH3O)] (4)

To an acetonitrile solution (2 cm3) of H3cmsap (22 mg, 0.05 mmol), a methanol solution (1 cm3) of
manganese(II) acetate tetrahydrate (24 mg, 0.1 mmol) was added, and then three drops of triethylamine
were added to this solution. After the reaction mixture was stirred for 1 h, the mixture was filtrated.
Diethyl ether was layered on the filtrate and left for several days at 5 ◦C. The deposited crystals were
filtered off and desiccated in vacuo. Yield: 6 mg, 36% (based on the Schiff-base ligand). Found C
41.72, H 3.76, N 4.34%. Calcd for C45H48Cl4Mn4N4O18 (4·H2O): C 41.75, H 3.74, N 4.33%. IR (KBr):
υ(OH) 3369, υ(C=N) 1619, υas(CO2

−) 1577, 1545, 1534sh, υs(CO2
−) 1460sh, 1439, 1407sh cm−1. Diffuse

reflectance spectrum: λmax 302sh, 362, 386, 442sh, 550sh, 650sh, 850sh nm.
Analyses of C, H, and N of the ligands and complexes were carried out with a Thermo-Finnigan

FLASH EA1112 series CHNO-S analyzer (Thermo-Finnigan, USA). Infrared spectra were recorded on
KBr pellets in the range 4000–600 cm−1, with a JASCO MFT-2000 FT-IR Spectrophotometer (JASCO,
Japan). Diffused reflectance spectrum was taken with a Shimadzu UV-vis-NIR Spectrophotometer
Model UV-3100 (Shimadzu, Japan) in the range 200–1500 nm. Variable-temperature magnetic data
(2–300 K) were obtained using a Quantum Design MPMS-XL7 SQUID magnetometer (Quantum
Design, USA).

The crystal data of 3 and 4 were collected with a Bruker CCD diffractometer Smart APEX (Bruker,
USA) fitted with Mo Kα radiation and a graphite monochromator. The structure of 3 was solved by an
intrinsic phasing method, and refined by full-matrix least-squares methods. The structure of 4 was
solved by an intrinsic method as a 2-component twin with only the non-overlapping reflections of
component 1. The structure was refined using the hklf 5 routine with all reflections of component 1
(including the overlapping ones). The hydrogen atoms were included in idealized positions based on a
riding model. All calculations were performed using the SHELXT-2014/4 and SHELXTL-2014/7 [40,41].
The CCDC numbers of 3 and 4 are 1887620 and 1887482, respectively.

4. Conclusions

In this study, two tetranuclear manganese complexes, [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3) and
[Mn4(cmsap)2(CH3CO2)3(CH3O)] (4), were prepared in a satisfactory yield as well as characterized.
As we expected, the bromo- and chloro-substituent groups of the present ligands did not affect
the tetranuclear features and the crystal structures of these complexes revealed that the present
Schiff-base ligands also work with three kinds of acetato ligands (bidentate, syn–anti-bridging,
and syn–syn-bridging), and µ-methoxido ligand to construct a Y-shaped tetranuclear arrangement.
The magnetic exchange interactions via the bridging ligands were found to be generally weak and
mostly antiferromagnetic.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/
1/8/s1, Figure S1: Diffused reflectance spectra of [Mn4(bmsap)2(CH3CO2)3(CH3O)] (3) (upper) and
[Mn4(cmsap)2(CH3CO2)3(CH3O)] (4) (lower).
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