Magnetostructural Studies on zigzag One-Dimensional Coordination Polymers Formed by Tetraaminatodiruthenium(II,III) Paddlewheel Units Bridged by SCN Ligands

Sara Moreno-Da Silva¹, Patricia Delgado-Martínez², Miguel Cortijo¹, Rodrigo González-Prieto¹, José Luis Priego^{1,*}, Santiago Herrero¹, and Reyes Jiménez-Aparicio^{1,*}

- ¹ Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain.
- ² Centro de Asistencia a la Investigación Difracción de Rayos X, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
- * Correspondence: reyesja@quim.ucm.es (R.J.-A.)

Empirical formula $C_{40}H_{48}BF_4N_4O_6Ru_2$ Formula weight 969.77 Temperature/K 293(2)Crystal system triclinic **P-**1 Space group a/Å 10.4084(8) b/Å 10.9075(8) c/Å 11.2986(9) $\alpha/^{\circ}$ 67.0540(10) *β*/° 67.4970(10) $\gamma/^{\circ}$ 71.4570(10) Volume/Å³ 1069.59(14) Ζ 1 1.506 $\rho_{\rm calc} {\rm g/cm^3}$ μ/mm^{-1} 0.772 F(000) 493.0 Crystal size/mm³ $0.31 \times 0.23 \times 0.15$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 4.098 to 50.006 $-11 \le h \le 12, -12 \le k \le 12, -13 \le l \le 9$ Index ranges Reflections collected 8189 Independent reflections 3667 [Rint = 0.0285, Rsigma = 0.0300] Data/restraints/parameters 3667/2/238 Goodness-of-fit on F² 1.092 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0627, wR_2 = 0.1934$ Final R indexes [all data] $R_1 = 0.0695, wR_2 = 0.2034$ Largest diff. peak/hole / e Å⁻³ 2.57/-1.00

Table 1. Crystal data and structure refinement for complex 1.

Atoms	Length/Å	Atoms	Length/Å
C(1) C(2)	1.481(9)	C(14) C(15)	1.352(15)
$C(1) O(2)^1$	1.321(8)	C(17) C(18)	1.453(14)
C(1) N(1)	1.290(8)	C(17) O(3)	1.421(11)
C(2) C(3)	1.392(10)	C(18) C(19)	1.436(15)
C(2) C(7)	1.380(10)	C(19) C(20)	1.440(13)
C(3) C(4)	1.411(11)	C(20) O(3)	1.410(10)
C(3) C(8)	1.498(13)	$O(1) C(9)^1$	1.299(8)
C(4) C(5)	1.319(14)	O(1) Ru(1)	2.033(5)
C(5) C(6)	1.408(14)	$O(2) C(1)^1$	1.321(8)
C(6) C(7)	1.372(11)	O(2) Ru(1)	2.039(5)
C(9) C(10)	1.496(9)	N(1) Ru(1)	2.042(4)
$C(9) O(1)^1$	1.299(8)	N(2) Ru(1)	2.042(4)
C(9) N(2)	1.297(8)	O(3) Ru(1)	2.299(4)
C(10) C(11)	1.375(12)	$Ru(1) Ru(1)^1$	2.2794(8)
C(10) C(15)	1.424(12)	B(1) F(1)	1.410(5)
C(11) C(12)	1.441(14)	B(1) $F(1)^2$	1.410(5)
C(11) C(16)	1.434(15)	$B(1) F(2)^2$	1.434(5)
C(12) C(13)	1.325(18)	B(1) F(2)	1.434(5)
C(13) C(14)	1.355(19)		

 Table S2. Bond Lengths for complex 1.

¹1-X,1-Y,1-Z; ²1-X,1-Y,-Z

Atoms	Angle/°	Atoms	Angle/°
O(2)1 C(1) C(2)	120.4(6)	O(3) C(20)C(19)	109.3(7)
N(1) C(1) C(2)	119.1(5)	C(9)1 O(1) Ru(1)	121.1(5)
$N(1) C(1) O(2)^1$	120.6(6)	C(1)1 O(2) Ru(1)	121.0(5)
C(3) C(2) C(1)	121.9(7)	C(1) N(1) Ru(1)	118.7(4)
C(7) C(2) C(1)	118.5(6)	C(9) N(2) Ru(1)	118.3(4)
C(7) C(2) C(3)	119.6(7)	C(17) O(3) Ru(1)	126.9(5)
C(2) C(3) C(4)	117.4(8)	C(20) O(3) C(17)	108.8(6)
C(2) C(3) C(8)	121.5(7)	C(20) O(3) Ru(1)	123.8(5)
C(4) C(3) C(8)	121.0(8)	O(1) Ru(1) O(2)	89.0(2)
C(5) C(4) C(3)	122.8(8)	O(1) Ru(1) N(1)	90.9(2)
C(4) C(5) C(6)	119.9(8)	O(1) Ru(1) N(2)	179.32(16)
C(7) C(6) C(5)	118.6(9)	O(1) Ru(1) O(3)	92.5(2)
C(6) C(7) C(2)	121.6(8)	$O(1) Ru(1) Ru(1)^1$	88.53(15)
O(1)1 C(9) C(10)	120.8(6)	O(2) Ru(1) N(1)	179.66(17)
N(2) C(9) C(10)	118.0(5)	O(2) Ru(1) N(2)	90.6(2)
$N(2) C(9) O(1)^1$	121.1(6)	O(2) Ru(1) O(3)	94.1(2)
C(11) C(10) C(9)	120.7(7)	$O(2) Ru(1) Ru(1)^1$	88.39(15)
C(11) C(10) C(15)	121.2(8)	N(1) Ru(1) N(2)	89.57(18)
C(15) C(10) C(9)	118.1(8)	N(1) Ru(1) O(3)	86.20(18)
C(10) C(11) C(12)	115.8(10)	$N(1) Ru(1) Ru(1)^{1}$	91.29(12)
C(10) C(11) C(16)	121.1(8)	N(2) Ru(1) O(3)	88.00(17)
C(16) C(11) C(12)	123.1(10)	$N(2) Ru(1) Ru(1)^{1}$	90.94(12)
C(13) C(12) C(11)	120.9(12)	Ru(1)1 Ru(1) O(3)	177.28(13)
C(12) C(13) C(14)	123.2(12)	$F(1) B(1) F(1)^2$	180.0
C(15) C(14) C(13)	119.1(12)	F(1) B(1) F(2)	81.6(7)
C(14) C(15) C(10)	119.8(12)	$F(1)2 B(1) F(2)^2$	81.6(7)
O(3) C(17) C(18)	106.8(8)	$F(1) B(1) F(2)^2$	98.4(7)
C(19) C(18) C(17)	108.5(9)	F(1)2 B(1) F(2)	98.4(7)
C(18) C(19) C(20)	105.9(9)	F(2)2 B(1) F(2)	180.0

Table S3. Bond Angles for complex 1.

¹1-X,1-Y,1-Z; ²1-X,1-Y,-Z

Empirical formula	C33H32N5O4Ru2S
Formula weight	796.83
Temperature/K 2	96.15
Crystal system	triclinic
Space group	P-1
a/Å	11.4616(15)
b/Å	11.6233(15)
c/Å	14.6351(19)
α/°	99.536(2)
β°	106.323(2)
$\gamma/^{\circ}$	106.346(2)
Volume/Å ³	1730.9(4)
Ζ	2
$\rho \text{ calc g/cm}^3$	1.529
μ/mm^{-1}	0.975
F(000)	802.0
Crystal size/mm ³	$0.12 \times 0.11 \times 0.07$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	3.008 to 50.008
Index ranges	$-11 \le h \le 13, -13 \le k \le 13, -17 \le l \le 17$
Reflections collected	13179
Independent reflections	5918 [Rint = 0.0576, Rsigma = 0.0994]
Data/restraints/parameters	5918/119/322
Goodness-of-fit on F2	1.027
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0671, wR_2 = 0.1607$
Final R indexes [all data]	$R_1 = 0.1367, wR_2 = 0.2078$
Largest diff. peak/hole / e Å ⁻³	1.97/-1.33

 Table S4. Crystal data and structure refinement for complex 2

Atoms	Length/Å	Atoms	Length/Å
C(1) C(2)	1.496(12)	C(21) C(22)	1.3900
C(1) N(2)1	1.297(14)	C(22) C(23)	1.3900
C(1) O(1)	1.285(13)	C(23) C(24)	1.3900
C(2) C(3)	1.3900	C(26) C(27)	1.480(15)
C(2) C(7)	1.3900	$C(26) N(3)^2$	1.319(15)
C(3) C(4)	1.3900	C(26) O(4)	1.280(14)
C(3) C(8)	1.50(2)	C(27) C(28)	1.3900
C(4) C(5)	1.3900	C(27) C(32)	1.3900
C(5) C(6)	1.3900	C(28) C(29)	1.3900
C(6) C(7)	1.3900	C(28) C(33)	1.468(17)
C(9) C(10)	1.464(12)	C(29) C(30)	1.3900
$C(9) N(1)^1$	1.308(13)	C(30) C(31)	1.3900
C(9) O(2)	1.284(12)	C(31) C(32)	1.3900
C(10)C(11)	1.3900	N(1) C(9) ¹	1.307(13)
C(10) C(15)	1.3900	N(1) Ru(1)	2.037(8)
C(11) C(12)	1.3900	N(2) C(1) ¹	1.297(14)
C(11) C(16)	1.37(2)	N(2) Ru(1)	2.019(9)
C(12) C(13)	1.3900	N(5) Ru(2)	2.237(10)
C(13) C(14)	1.3900	N(4) C(18)2	1.268(16)
C(14) C(15)	1.3900	N(4) Ru(2)	2.042(9)
C(17) N(5)	1.156(13)	N(3) C(26)2	1.319(15)
C(17) S(1)	1.633(11)	N(3) Ru(2)	2.022(10)
C(18) C(19)	1.496(15)	O(1) Ru(1)	2.040(8)
$C(18) N(4)^2$	1.268(16)	O(2) Ru(1)	2.039(7)
C(18) O(3)	1.291(16)	O(3) Ru(2)	2.049(8)
C(19) C(20)	1.3900	O(4) Ru(2)	2.059(9)
C(19) C(24)	1.3900	$Ru(1) Ru(1)^1$	2.3099(18)
C(20) C(21)	1.3900	Ru(1) S(1)	2.621(3)
C(20) C(25)	1.39(3)	$Ru(2) Ru(2)^2$	2.2954(18)

 Table S5. Bond Lengths for complex 2

¹1-X,1-Y,1-Z; ²-X,-Y,-Z

Atom	Angle/°	Atom	Angle/°
N(2)1 C(1) C(2)	121.0(11)	C(29) C(28) C(27)	120.0
O(1) C(1) C(2)	117.8(10)	C(29) C(28) C(33)	117.7(10)
$O(1) C(1) N(2)^1$	121.1(10)	C(28) C(29) C(30)	120.0
C(3) C(2) C(1)	120.4(8)	C(29) C(30) C(31)	120.0
C(3) C(2) C(7)	120.0	C(32) C(31) C(30)	120.0
C(7) C(2) C(1)	119.6(8)	C(31) C(32) C(27)	120.0
C(2) C(3) C(4)	120.0	C(9)1 N(1) Ru(1)	122.8(7)
C(2) C(3) C(8)	123.8(11)	C(1)1 N(2) Ru(1)	121.5(8)
C(4) C(3) C(8)	115.6(11)	C(17) N(5) Ru(2)	169.3(10)
C(3) C(4) C(5)	120.0	C(18)2 N(4) Ru(2)	122.0(9)
C(6) C(5) C(4)	120.0	C(26)2 N(3) Ru(2)	121.7(8)
C(5) C(6) C(7)	120.0	C(1) O(1) Ru(1)	119.1(7)
C(6) C(7) C(2)	120.0	C(9) O(2) Ru(1)	117.9(7)
N(1)1 C(9) C(10)	120.9(10)	C(18) O(3) Ru(2)	118.2(8)
O(2) C(9) C(10)	118.3(10)	C(26) O(4) Ru(2)	119.4(8)
$O(2) C(9) N(1)^1$	120.9(10)	N(1) Ru(1) O(1)	90.5(3)
C(11) C(10) C(9)	118.0(8)	N(1) Ru(1) O(2)	178.3(3)
C(11) C(10) C(15)	120.0	N(1) Ru(1) Ru(1) ¹	86.5(3)
C(15) C(10) C(9)	121.9(8)	N(1) Ru(1) S(1)	95.9(3)
C(12) C(11) C(10)	120.0	N(2) Ru(1) N(1)	90.6(4)
C(16) C(11) C(10)	123.4(12)	N(2) Ru(1) O(1)	177.9(3)
C(16) C(11) C(12)	115.7(12)	N(2) Ru(1) O(2)	90.0(3)
C(13) C(12) C(11)	120.0	$N(2) Ru(1) Ru(1)^{1}$	88.4(3)
C(12) C(13) C(14)	120.0	N(2) Ru(1) S(1)	91.9(3)
C(15) C(14) C(13)	120.0	$O(1) Ru(1) Ru(1)^1$	89.9(2)
C(14) C(15) C(10)	120.0	O(1) Ru(1) S(1)	89.8(2)
N(5) C(17) S(1)	178.0(11)	O(2) Ru(1) O(1)	88.9(3)
N(4)2 C(18) C(19)	122.4(13)	$O(2) Ru(1) Ru(1)^1$	91.9(2)
N(4)2 C(18) O(3)	121.5(12)	O(2) Ru(1) S(1)	85.7(2)
O(3) C(18) C(19)	116.0(13)	Ru(1)1 Ru(1) S(1)	177.57(9)
C(20) C(19) C(18)	122.2(11)	$N(5) Ru(2) Ru(2)^2$	176.6(3)
C(20) C(19) C(24)	120.0	N(4) Ru(2) N(5)	88.9(4)
C(24) C(19) C(18)	117.8(11)	N(4) Ru(2) O(3)	177.7(4)
C(19) C(20) C(25)	123.4(13)	N(4) Ru(2) O(4)	91.9(4)
C(21) C(20) C(19)	120.0	$N(4) Ru(2) Ru(2)^2$	87.7(3)
C(21) C(20) C(25)	116.6(13)	N(3) Ru(2) N(5)	90.9(4)
C(20) C(21) C(22)	120.0	N(3) Ru(2) N(4)	89.4(4)
C(23) C(22) C(21)	120.0	N(3) Ru(2) O(3)	89.1(4)
C(24) C(23) C(22)	120.0	N(3) Ru(2) O(4)	178.1(3)
C(23) C(24) C(19)	120.0	$N(3) Ru(2) Ru(2)^2$	88.6(3)

Table S6. Bond Angles for complex 2

N(3)2 C(26) C(27)	120.2(11)	O(3) Ru(2) N(5)	92.8(4)
O(4) C(26) C(27)	119.7(11)	O(3) Ru(2) O(4)	89.5(4)
O(4) C(26) N(3)2	120.0(12)	$O(3) Ru(2) Ru(2)^2$	90.6(2)
C(28) C(27) C(26)	122.9(8)	O(4) Ru(2) N(5)	90.5(4)
C(28) C(27) C(32)	120.0	$O(4) Ru(2) Ru(2)^2$	90.1(2)
C(32) C(27) C(26)	117.0(8)	C(17) S(1) Ru(1)	98.9(4)
C(27) C(28) C(33)	122.3(10)		

¹1-X,1-Y,1-Z; ²-X,-Y,-Z

Empirical formula	C ₃₃ H ₂₈ N ₅ O ₄ Ru ₂ S
Formula weight	792.80
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	11.158(3)
b/Å	12.746(3)
c/Å	14.768(3)
α/°	66.649(4)
β°	75.001(4)
$\gamma/^{\circ}$	69.244(4)
Volume/Å ³	1785.9(7)
Ζ	2
$\rho \text{calcg/cm}^3$	1.474
μ/mm^{-1}	0.945
F(000)	794.0
Crystal size/mm ³	0.2 imes 0.11 imes 0.04
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	3.032 to 57.93
Index ranges	$-15 \le h \le 15, -17 \le k \le 17, -20 \le l \le 19$
Reflections collected	18810
Independent reflections	8502 [Rint = 0.0660, Rsigma = 0.1250]
Data/restraints/parameters	8502/0/410
Goodness-of-fit on F ²	1.005
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0740, wR_2 = 0.2101$
Final R indexes [all data]	$R_1 = 0.1611, wR_2 = 0.2722$
Largest diff. peak/hole / e Å ⁻³	1.39/-1.55

Table S7. Crystal data and structure refinement for complex 3

Atoms	Length/Å	Atoms	Length/Å
Ru(1) Ru(1)1	2.3131(15)	C(22) C(40)	1.407(15)
Ru(1) S(3)	2.643(3)	C(22) C(42)	1.407(14)
Ru(1) O(6)	2.076(6)	C(22) C(9)	1.504(13)
$Ru(1) O(1)^1$	2.039(7)	C(23) C(33)	1.390(15)
Ru(1) N(5)	2.031(7)	C(26) C(45)	1.440(15)
Ru(1) N(6)1	2.055(7)	C(27) C(31)	1.405(15)
$Ru(2) Ru(2)^2$.2956(15)	C(29) C(31)	1.369(17)
Ru(2) O(7)	2.042(7)	C(29) C(41)	1.360(18)
Ru(2) N(12)	2.253(8)	C(31) C(62)	1.493(17)
Ru(2) O(2)	2.045(6)	C(33) C(36)	1.372(17)
Ru(2) N(3)2	2.038(7)	C(33) C(50)	1.543(17)
Ru(2) N(1)2	2.048(7)	C(35) C(47)	1.388(17)
S(3) C(16)	1.640(10)	C(35) C(51)	1.40(2)
O(6) C(15)	1.295(11)	C(36) C(12)	1.39(2)
O(7) C(14)	1.310(11)	C(38) C(41)	1.379(15)
N(12) C(16)	1.145(11)	C(39) C(12)	1.338(17)
C(14) C(20)	1.488(14)	C(40) C(55)	1.404(17)
C(14) N(3)	1.286(12)	C(42) C(46)	1.388(15)
C(15) C(21)	1.490(13)	C(45) C(51)	1.368(18)
C(15) N(6)	1.292(12)	C(45) C(13)	1.423(19)
C(17) C(18)	1.500(13)	C(46) C(49)	1.371(19)
C(17) O(1)	1.298(11)	C(46) C(0AA)	1.486(18)
C(17) N(5)	1.279(11)	C(49) C(55)	1.367(19)
C(18) C(26)	1.345(15)	$O(1) Ru(1)^1$	2.039(7)
C(18) C(47)	1.415(16)	O(2) C(9)	1.321(12)
C(20) C(23)	1.387(14)	$N(3) Ru(2)^2$	2.038(7)
C(20) C(39)	1.386(14)	$N(6) Ru(1)^1$	2.055(7)
C(21) C(27)	1.379(14)	C(9) N(1)	1.265(12)
C(21) C(38)	1.373(14)	$N(1) Ru(2)^2$	2.048(7)

Table S8. Bond Lengths for complex 3

¹1-X,1-Y,1-Z; ²2-X,1-Y,-Z

Table S9. Bond	Angles for complex 3

Atoms	Angle/°	Atoms	Angle/°
$Ru(1)^1 Ru(1) S(3)$	175.80(9)	C(23) C(20) C(14)	120.3(9)
O(6) Ru(1) Ru(1)1	90.81(19)	C(39) C(20) C(14)	120.8(10)
O(6) Ru(1) S(3)	92.6(2)	C(39) C(20) C(23)	118.8(10)
$O(1)^1 \operatorname{Ru}(1) \operatorname{Ru}(1)^1$	90.1(2)	C(27) C(21) C(15)	119.0(9)
$O(1)^1 Ru(1) S(3)$	87.6(2)	C(38) C(21) C(15)	121.2(9)
$O(1)^1 Ru(1) O(6)$	87.8(3)	C(38) C(21) C(27)	119.8(10)
$O(1)^1 \operatorname{Ru}(1) \operatorname{N}(6)^1$	91.7(3)	C(40) C(22) C(9)	120.3(10)
$N(5) Ru(1) Ru(1)^{1}$	88.1(2)	C(42) C(22) C(40)	118.2(10)
N(5) Ru(1) S(3)	94.1(2)	C(42) C(22) C(9)	121.5(9)
N(5) Ru(1) O(6)	92.9(3)	C(20) C(23) C(33)	120.5(11)
$N(5) Ru(1) O(1)^1$	178.0(3)	C(18) C(26) C(45)	121.1(11)
$N(5) Ru(1) N(6)^{1}$	87.5(3)	C(21) C(27) C(31)	120.2(11)
$N(6)^1 Ru(1) Ru(1)^1$	87.8(2)	C(41) C(29) C(31)	119.5(12)
$N(6)^1 Ru(1) S(3)$	88.8(2)	C(27) C(31) C(62)	118.3(12)
$N(6)^1 Ru(1) O(6)$	178.5(3)	C(29) C(31) C(27)	119.3(12)
O(7) Ru(2) Ru(2)2	88.0(2)	C(29) C(31) C(62)	122.3(12)
O(7) Ru(2) N(12)	90.5(3)	C(23) C(33) C(50)	119.5(12)
O(7) Ru(2) O(2)	89.8(3)	C(36) C(33) C(23)	118.2(12)
$O(7) Ru(2) N(1)^2$	91.1(3)	C(36) C(33) C(50)	122.3(13)
$N(12) Ru(2) Ru(2)^2$	175.9(2)	C(47) C(35) C(51)	119.4(13)
$O(2) Ru(2) Ru(2)^2$	91.5(2)	C(33) C(36) C(12)	121.4(13)
O(2) Ru(2) N(12)	92.3(3)	C(21) C(38) C(41)	119.0(12)
$O(2) Ru(2) N(1)^2$	178.9(3)	C(12) C(39) C(20)	121.4(12)
$N(3)^2 Ru(2) Ru(2)^2$	90.60(19)	C(55) C(40) C(22)	119.2(13)
$N(3)^2 Ru(2) O(7)$	178.4(3)	C(29) C(41) C(38)	122.1(12)
$N(3)^2 Ru(2) N(12)$	90.9(3)	C(46) C(42) C(22)	121.8(12)
$N(3)^2 Ru(2) O(2)$	89.4(3)	C(51) C(45) C(26)	117.0(12)
$N(3)^2 Ru(2) N(1)^2$	89.7(3)	C(51) C(45) C(13)	122.6(14)
$N(1)^2 Ru(2) Ru(2)^2$	87.7(2)	C(13) C(45) C(26)	120.2(14)
$N(1)^2 Ru(2) N(12)$	88.5(3)	C(42) C(46) C(0AA)	120.2(14)
C(16) S(3) Ru(1)	98.0(3)	C(49) C(46) C(42)	118.2(13)
C(15) O(6) Ru(1)	117.4(6)	C(49) C(46) C(0AA)	121.6(12)
C(14) O(7) Ru(2)	121.7(6)	C(35) C(47) C(18)	118.7(12)
C(16) N(12) Ru(2)	159.3(8)	C(55) C(49) C(46)	122.4(12)
O(7) C(14) C(20)	120.7(9)	C(45) C(51) C(35)	122.6(12)
N(3) C(14) O(7)	119.8(9)	C(49) C(55) C(40)	120.2(13)
N(3) C(14) C(20)	119.4(9)	$C(17) O(1) Ru(1)^{1}$	118.5(6)
O(6) C(15) C(21)	118.4(8)	C(9) O(2) Ru(2)	116.5(6)
N(6) C(15) O(6)	122.1(9)	$C(14) N(3) Ru(2)^2$	119.9(6)
N(6) C(15) C(21)	119.6(8)	C(17) N(5) Ru(1)	121.4(6)

N(12) C(16) S(3)	178.3(10)	$C(15) N(6) Ru(1)^1$	121.6(6)
O(1) C(17) C(18)	116.4(8)	O(2) C(9) C(22)	115.1(9)
N(5) C(17) C(18)	122.0(8)	N(1) C(9) C(22)	122.2(9)
N(5) C(17) O(1)	121.5(9)	N(1) C(9) O(2)	122.6(8)
C(26) C(18) C(17)	120.8(10)	C(39) C(12) C(36)	119.5(13)
C(26) C(18) C(47)	121.2(10)	$C(9) N(1) Ru(2)^2$	121.6(6)
C(47) C(18) C(17)	117.9(10)		

¹1-X,1-Y,1-Z; ²2-X,1-Y,-Z

Figure S1. Representation showing the asymetric unit (top) and the dimetallic unit (bottom) of **1**.

Figure S2. Representation of the asymetric unit (top) and the dimetallic units (bottom) that form **2**.

Figure S3. Representation of the asymetric unit (top) and the dimetallic units (bottom) that form

Figure S4. Representation of the π - π stacking observed in the structure of complex **1**.

Figure S5. Magnetic molar susceptibility (circles) and magnetic moment (triangles) *vs.* temperature for compound **2**. Solid lines represent the best fit obtained using the model explained in the text.

Figure S6. Magnetic molar susceptibility (circles) and magnetic moment (triangles) *vs.* temperature for compound **3**. Solid lines represent the best fit obtained using the model explained in the text.