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Abstract: Single-molecule magnets involving monometallic 4f complexes have been investigated
extensively in last two decades to understand the factors that govern the slow magnetization relax-
ation behavior in these complexes and to establish a magneto-structural correlation. The prime goal
in this direction is to suppress the temperature independent quantum tunneling of magnetization
(QTM) effect via fine-tuning the coordination geometry/microenvironment. Among the various
coordination geometries that have been pursued, complexes containing high coordination number
around Ln(III) are sparse. Herein, we present a summary of the various synthetic strategies that were
used for the assembly of 10- and 12-coordinated Ln(III) complexes. The magnetic properties of such
complexes are also described.

Keywords: high-coordinate Ln(III) complexes; multi-dentate ligands; single-ion magnets; quantum
tunneling of magnetization

1. Introduction

The seminal discovery by Sessoli et al. that a Mn12 cluster can show slow relaxation of
magnetization reversal at very low temperatures has ignited the interest of both theoretical
and experimental researchers from disciplines such as coordination chemistry, molecular
magnetism and molecular materials [1]. This area of work, which is now very active,
includes different systems such as single-molecule magnets (SMMs), single-ion magnets
(SIMs) and single-chain magnets (SCMs). These systems are receiving attention due to
the possibility of their potential to be utilized in various areas including data storage,
quantum computation and spintronics [2–6]. In addition, the field of molecular magnetic
refrigerants based on the principle of magneto caloric effect (MCE) also has been receiving
wide research interest [7].

Single-molecule magnets (SMMs), of which SIMs are a sub-set, are characterized by
a well-defined magnetically bi-stable ground electronic state and can remain magnetized
below certain temperatures showing a slow relaxation of magnetization. Through experi-
mental and theoretical work carried out over several years it has now been established that
one of the characteristics of SMMs is the effective energy barrier (Ueff) that separates the
two lowest energy spin states. This is the energy required to flip the direction of the magne-
tization and has been shown in polynuclear transition metal complexes to be dependent on
the Ising type magnetic anisotropy as characterized by the zero-field splitting parameter,
D and the total spin: Ueff = |D|S2 for integer spin and |D|(S2− 1

4 ) for half-integer spin.
In contrast to what this relationship suggests—that increasing the total spin would contin-
uously cause an increase of Ueff—it has been shown that the magnetic anisotropy, in fact,
is more important. This has led to a focus on 4f metal complexes [8–10]. The 4f orbitals
of the lanthanide ions are deeply buried and therefore do not interact strongly with an
external ligand field. Thus, even in their complexes, lanthanide ions can possess large
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spin-orbit coupling due to the unquenched orbital angular momentum and therefore these
systems can be good candidates for molecular magnets. Ishikawa and co-workers were the
first to demonstrate slow relaxation of magnetization in Ln(III) sandwich complexes [11].
This has led to considerable research interest in Ln(III) complexes and tailoring of mag-
netic anisotropy through chemical and geometric modification around the paramagnetic
metal ion, particularly in mononuclear complexes, has become an important focus area.
These mononuclear complexes showing SMM properties are termed as single ion magnets
(SIMs) or mononuclear SMMs (MSMMs). All the lanthanides, except Gd(III) which is
completely isotropic, and Eu(III) which has a non-magnetic ground state (angular momen-
tum quantum number J = 0), are potential candidates in the assembly of SMMs. Again
among them, complexes of Dy(III) have been the most widely studied because Dy(III) has
a high J value of 15/2 and g value of 4/3 [12–17]. In addition, Dy(III) is a Kramers ion,
having an odd J value which results in a time-reversal symmetric degenerate MJ states.
On the other hand, for the non-Kramers ions, having an even J value, the MJ states are
not degenerate [18]. For a ligand electron, i, this crystal filed (CF) perturbation can be
expressed by the following one electron operator, uCF (i) as: [19]

u
CF (i) = −e

∫ ρ(R)
|R−rj |

dv
(1)

In this equation (R) is the potential generated by means of the charge distribution and
rj is the radial distance. Thus, the overall perturbation can be calculated by summation of
the one electron operators acting on all the electrons. However, the following Hamiltonian
best describes the overall crystal field perturbation through Wybourne formalism as: [20]

ĤCF = ∑
i,k,q

Bq
kC(i)q

k (2)

In the above equation, Bq
k is the crystal field (CF) coefficient and C(i)q

k represents a
one-electron operator acting on ith electron. For Ln(III) ions, the k and q values are limited
as: k ≤ 7 and −k ≤ q ≤ k and the even value of k are responsible for CF splitting, while the
odd k values are responsible for various spectroscopic transitions. These parameters can
be useful to understand the nature of the magnetic anisotropy of the lanthanide ions in
a certain ligand field (easy plane or easy axis) [21]. Rinehart et al. [22] and Jiang et al. [23]
have employed quadruple approximation and electrostatic models respectively for calcu-
lating basic shapes of the charge density distributions corresponding to various MJ states
for all Ln(III) ions. These studies allowed lanthanide ions to be classified into three types:
prolate ions having axially elongated 4f electron density, oblate ions having equatorially
expanded 4f electron density and isotropic ions of spherical electron density (see Figure 1).
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Figure 1. Electrostatic potential surfaces corresponding to the eigen states with different MJ values
for each Ln(III) ion. In the absence of a crystal-field all the eigen states with different MJ values are
degenerate for a particular Ln(III) ion. The shapes are evaluated with respect to the local reference
frame for the electrostatic potential surfaces corresponding to the eigen states with the maximum
MJ values. The figure and caption are reproduced from Reference [23] with permission from the
Royal Society of Chemistry.
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However, the MJ state with highest J value needs to be ground state, and at the same
time there should be a sufficiently large separation from its excited states to have a large
effective energy barrier. Ideally, in these situations, when the relaxations processes such as
Raman, direct (these promote relaxation of magnetization by the reversal of magnetization
orientation through virtual electronic states) and quantum tunneling of magnetization
(that enhance the rate of magnetization reversal through ground states without any energy
barrier)—which undercut the energy barrier (see Figure 2)—are absent in the system
and there is a sizable separation between the ground and the excited electronic states,
the maximum energy barrier for magnetization reversal can be observed.
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This maximum separation between the MJ states can be achieved by employing an
axially strong crystal field for an oblate ion and an equatorially strong ligand field for
prolate ions. In practice, Ln(III) ions have a very rich coordination chemistry with a
large coordination number variation that ranges from 3 to 14 [25]. In order to estimate
the effect of coordination geometry on the magnetic anisotropy for Dy(III) an extensive
calculation was carried out by Ungur et al. on a series of empirical complexes of the
common formula [DyFn]3−n (Figure 3). This study revealed that a maximum effective
energy barrier can be achieved for very low coordinated Dy(III) complexes [26]. In spite of
this theoretical insight, several lanthanide complexes of varying coordination geometry
have been studied. This article will review those complexes where the coordination number
around the lanthanide ions is greater than 9.
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Figure 3. Energy level splitting of MJ multiplets in a different coordination number in the hypothetical
complex [DyFn]3−n. The figure is reproduced from Reference [26] with permission from the American
Chemical Society copyright © 2015.

2. High-Coordinate Ln(III) Complexes

The coordination chemistry of Ln(III) ions is dominated by coordination numbers 8 or
9 although the range of coordination numbers can be from 3–14 (see Figure 4). Among the
high-coordinate (C.N. > 9) Ln(III) complexes coordination number 10 is the most commonly
observed (see Figure 4) [27]. The second commonly observed high coordination numbers
are 11 and 12 [28] whereas the coordination numbers 13 and 14 are extremely rare [29].
Due to the inter-ligand repulsions (“first-order” effects), monodentate ligands could lead
to coordination numbers of only up to 8 and 9. Therefore, to synthesize high coordinate
(C.N. > 9) Ln(III) complexes, two different synthetic strategies are employed. The first one
is a multi-dentate ligand approach and the second one is a mixed ligand approach utilizing
a combination of multi-dentate ligand(s) and bidentate ligand(s). It is worth noting that
bidentate ligands such as the nitrate anion, have a small “bite angle” and therefore can
minimize the inter-ligand repulsions. Broadly, the mixed ligand approach appears to be the
more promising synthetic strategy for assembling high-coordinate lanthanide complexes.Magnetochemistry 2020, 6, x FOR PEER REVIEW 5 of 29 
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Unlike the reviews that have already been published, [8,24,30–34] herein, we review
the magnetic properties of high-coordinate (C.N. > 9) Ln(III) complexes. Only those that
have exhibited at least a field-dependent SMM behavior are discussed. Unfortunately,
there seem to be no examples of zero-field SMM behavior among high-coordinate lan-
thanide complexes.

2.1. Ten-Coordinate Ln(III) Complexes

Both the multi-dentate ligand approach and the mixed ligand approach have been used
to generate ten-coordinate Ln(III) complexes. In addition, the use of just the nitrate ligands
has also allowed the assembly of ten-coordinate Ln(III) complexes. These approaches are
discussed below.

2.1.1. Multi-Dentate Ligand Approach

Pentadentate chelating ligands are known to generate ten-coordinate Ln(III) com-
plexes [35–37]. Diacetylpyridine bishydrazone ligands can provide a rigid pentagonal
planar structure to Ln(III) ions and therefore coordination of two such ligands orthogonally
towards the Ln(III) metal center could result in a ten-coordinate structure. A bicapped
square antiprism (BSA) geometry is the preferred polyhedron for a mononuclear Ln(III)
complex chelated by two pentadentate ligands.

Mallah and co-workers synthesized two Dy(III) compounds, [Dy(H2dapbh)2](NO3)3
(1) and [Dy(H2dapbh)(Hdapbh)](NO3)2 (2) utilizing a pentadentate hydrazone ligand
(Figure 5a,b), H2dabph (H2dapbh = 2,6-diacetylpyridinebis(benzoic acid hydrazone))
to study the effect of chemical tuning on slow magnetic relaxation [38]. These complexes
were isolated by the reaction of two equivalents of H2dapbh with hydrated Dy(NO3)3 in
EtOH (for 1) and in EtOH-H2O (for 2). The molecular structures of the two complexes
were found to be similar although the formation of 2 involves a deprotonation of an amino
nitrogen in one of the dapbh ligands. Therefore, the tripositive charge of the Dy(III) ion
is balanced by three NO3

− counter anions in 1 while it is balanced by two NO3
− counter

anions in 2. In both cases, each multi-dentate ligand coordinates via the pyridyl nitrogen,
two hydrazone nitrogens, and two carbonyl oxygen atoms in an interlocked fashion re-
sulting in a ten-coordinate geometry. A C–O distance in the range 1.242–1.250 Å further
confirmed the carbonyl assignment. SHAPE [39] analysis confirmed a distorted bicapped
square antiprismatic geometry around the Dy(III) center with the pyridyl nitrogens being
the capping atoms. The “skew angles” for the two complexes are remarkably similar:
27◦ for 1 and 29◦ for 2 (for a perfect D4 symmetry it is 45◦). Both AC and DC magnetic
measurements were performed to probe the differences in the magnetic properties of 1
and 2. The dynamic alternating current (AC) magnetic measurements at zero applied field
did not reveal well-resolved maxima in the out-of-phase (χ”M) susceptibility component
for 1 and 2 even at low temperatures. After the application of an optimum DC field
of 1000 Oe strong frequency-dependent signals and maxima in both the in-phase (χ′M)
and out-of-phase (χ”M) components were observed (Figure 5c,d). Both the complexes
followed a thermally activated relaxation mechanism at temperatures above 4 K. Therefore,
the anisotropic barrier and the pre-exponential parameter was extracted from the ln(τ)
vs. 1/T plot by fitting the Arrhenius equation (τ = τ0 exp(Ueff/kBT)) which resulted in
Ueff = 32.4 K for 1 and ~19 K for 2, respectively. Below 4 K, the relaxation behavior was
dominated by the temperature independent QTM process. Micro-SQUID studies confirmed
the presence of an easy axis of magnetization in both 1 and 2. Both the complexes also
showed hysteresis loops confirming slow relaxation of magnetization although 2 showed
much faster relaxation. A larger structural distortion in 2 due to deprotonation was found
to be responsible for the faster relaxation of magnetization. To gain further insight, ab initio
calculations of the CASSCF/RASSI/SINGLE_ANISO type were carried out. The transverse
components of the g tensor (gx and gy) were found to be greater in 2 than in 1 in the ground
Kramer Doublet. This resulted in a large tunneling gap in 2 and therefore the complex
showed faster relaxation in the magnetic measurements. The ab initio calculated main
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magnetic axis (gz) of 1 was found to be oriented along the Dy–N(pyridyl) coordination
bonds which is linked to the idealized four-fold symmetry axis. On the other hand, depro-
tonation in 2 causes a rotation of the main magnetic axis at an angle of 60◦ towards the
Dy–O(carbonyl) bonds. The ab initio calculated crystal field parameters were also found to
be significantly different for the two complexes. This study revealed the sensitivity of the
magnetic anisotropy on the ligand field around the Dy(III) sites.
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Recently Vasiliev and co-workers isolated a series of neutral ten-coordinate mononu-
clear lanthanide complexes, [Ln(Hdapbh)(dapbh)] (Ln = Dy(III), 3; Ho(III), 4; Er(III), 5 and
Tb(III), 7) by the reaction of H2dapbh (2 equiv.) with hydrated LnCl3/Er(HCO3)3 salts in the
presence of 2 equivalents of NEt3 [40]. Following the same synthetic protocol, they isolated
another neutral ten-coordinate mononuclear Dy(III) derivative, [Dy(Hdapmbh)(dapmbh)]
(6) that involved a methoxy-substituted H2dapmbh ligand (H2dapmbh = 1,1′-(pyridine-2,6-
diyl)bis(ethan-1-yl-1-ylidene))di-4-methoxybenzohydrazine) [40]. All these complexes are
isostructural with 1 and 2 (Figure 6). Compared to 1 and 2 (vide supra), the multi-dentate
ligand in 3-7 acted both in a dianionic and a monoanionic manner. The free N-H group
of the monoanionic ligand was involved in hydrogen-bonding interactions with lattice
solvent molecules (H2O, MeOH and EtOH). The dihedral angles (Nimine–Npyridyl–Nimine)
of the Dy(III) derivatives were found to be similar (58.7◦ for 3 and 58.36◦ for 6) and lie
between the dihedral angles of non-deprotonated (57.17◦ for 1) and singly deprotonated
structures (59.43◦ for 2). The coordination polyhedra of the Ln(III) ions in 3–7 was found to
be a bicapped square antiprism with N(pyridyl) atoms at the capping positions.
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Figure 6. Molecular structure of 3 (left) and 6 (the two H’s at N are disordered with 50%
occupancy: (right). The structures are re-drawn from Reference [40] with permission
from MDPI.

DC magnetic measurements on 3–6 revealed the χMT products to be close to the
respective free-ion approximation values, i.e., 14.17 (Dy(III), 6H15/2), 14.07 (Ho(III), 5I8)
and 11.48 (Er(III), 4I15/2) cm3 K mol−1 at 300 K. The temperature-dependent DC data
was analyzed to extract the crystal field parameters. All the complexes showed less than
400 cm−1 of crystal field splitting energy in the calculated crystal field energy spectrum
for the lowest J-multiplets. In addition, the calculated g-tensors in the ground and the
first excited Kramer doublets in 6 exhibited stronger Ising-type magnetic anisotropy with
gz = 19.000 (ground state) and gz = 17.310 (first excited state) respectively. The transverse
g components, gx = 0.082 and gy = 0.581 for 6 were also found to be smaller among all.
The first excited CF state of 6 was found lying at 39 cm−1 from the ground state which is the
highest among all the complexes. To probe the slow relaxation behavior in 3–6, dynamic
AC magnetic measurements were performed (Figure 7). At zero DC field, none of the
complexes showed signals in the frequency-dependent out-of-phase (χ”) susceptibility.
Upon application of an external biased field 3 (HDC = 800 Oe), 5 (HDC = 1500 Oe) and 6
(HDC = 300 Oe) showed frequency-dependent AC signals in both the in-phase (χ′) and out-
of-phase (χ”) susceptibility components due to the suppression of QTM. The SMM-silent
behavior of the non-Kramer Ho(III) derivative (4) is primarily due to the non-magnetic
character of the ground state. The temperature dependence of relaxation times in case of 4
was analyzed considering the equation, τ−1 = τ−1

QTM + AT + BTn + τ0
−1exp(–Ueff/kBT)

corresponding to the contributions from quantum tunneling of magnetization (QTM)
effects (first term), direct relaxation (second term), Raman process (third term) and the
Orbach process (fourth term). The best fit yielded C = 1.2·s−1, n = 6.1, Ueff = 87 K and
τ0 = 4 × 10−12 s, τQTM = 4.4 × 10−3 s and A = 0. The experimental Ueff = 87 K was found
to be considerably higher than that of the first excited CF state at 23 cm−1 (33 K) which is
close to the second excited CF state at 75 cm−1 (108 K) as extracted from the DC data of
5. The χ′ ′(ν) and Cole–Cole plots (α1 = 0.6–0.45 and α2 = 0.41–0.56) revealed two distinct
maxima at 2–2.45 K representing two different relaxation processes that could be resulting
from two independent molecules present in the unit cell of 3. Fitting ln(τ) vs. T plot with
the Arrhenius equation in the temperature range 4.4–5 K afforded the values of the effective
energy barrier and the time constant: Ueff = 29 K and τ0 = 8.3 × 10−8 s. The experimental
value of Ueff nicely co-related to the theoretical value (Ucal = 23 cm−1 (first excited state)).
On the other hand, the temperature dependence of relaxation times in the case of 6 was
analyzed considering combined Orbach and Raman processes and the best fit yielded
C = 4.2 s−1, n = 4.8 (for Raman process), Ueff = 70 K, τ0 = 2.2 × 10−11 s (for Orbach process).
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HDC = 800 Oe, and 6 (c) under HDC = 300 Oe. The figures are reproduced from Reference [40] with permission from MDPI.

Unlike the (3N2O)2 coordination environment discussed above, a flexible (N5)2 co-
ordination resulted in a spherical LnN10 coordination geometry. Tong and co-workers
synthesized two Ln(III) complexes of the formula, [Ln(N5)2](CF3SO3)3 (Ln = Dy (8) and Er
(9)) by the reaction of Ln(CF3SO3)3 with two equivalents of N5 (2,6-diacetylpyridinebis(2′-
pyridylhydrazone) in CH3CN [41]. The ten-coordinate low symmetry polyhedron in these
complexes resulted from the coordination of two N5 ligands interlocked by the central
metal ion (Figure 8). The average Ln–N distances in 8 and 9 differed only slightly (2.566 Å
for 8 and 2.543 Å for 9). SHAPE analysis revealed a very close resemblance between the bi-
capped square antiprism geometry (D4d) and the sphenocorona (C2v) geometry confirming
a spherical coordination environment in both cases. Quantitative information on energy-
levels and eigenstates was extracted from the DC magnetic measurements. The ground
eigen doublet state of 8 was found to be mixed with the components being ∓1/2 (79%),
±3/2 (17%) and ∓5/2 (3%) mJ states, respectively. On the other hand, for the prolate
Er(III) ion in 9 the ground doublet state was found to be mixed with the components being
±15/2 (46%), ±11/2 (44%) and ±7/2 (10%) mJ states respectively. To probe the dynamics
of magnetization, AC magnetic measurements were performed under the zero DC field
(Figure 8). None of these complexes showed a clear maximum in the out-of-phase (χ”M)
AC component in the temperature range of 2–10 K (1.8–7 K for 9). This behavior has been
explained as due to the QTM effects resulting from the admixture of the different mJ states
in the ground state. However, for both the complexes, at an optimum field of 1200 Oe
QTM was suppressed and a set of strong frequency-dependent peaks in the χ”M AC com-
ponent indicative of the slow magnetic relaxation was observed. Cole–Cole plots with
quasi-semi-circular features also revealed a narrow-to-moderate distribution of relaxation
times with α = 0.04–0.25 (for 8) and 0.04–0.18 (for 9) respectively (the generalized Debye
function was used for fitting). The ln(τ) vs. T−1 plot was fitted considering the equation,
τ−1 = AT + BTn + τ0

−1exp(–Ueff/kBT) where the first, second, and third terms represent
direct, Raman, and Orbach relaxation process, respectively. In the high temperature regime,
the Arrhenius law fit resulted in an effective anisotropic barrier of magnitude Ueff = 79(4)
K (τ0 = 2.9 × 10−8 s) for 8 and 59(4) K (τ0 = 6.9 × 10−11 s) for 9 which are comparable to
each other. To gain further insight, a log(τ) vs. log(T) was plotted which showed that τ
obeys the T−n behavior with n = 6 for 8 and 9.2 for 9. In addition, consideration of both the
direct and Raman processes to fit the τ versus T plot also verified the admixture of these
two types of spin-lattice interaction mechanisms. The magnetic properties of the above
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two complexes revealed that a spherically symmetric coordination geometry could be an
effective strategy to develop SIMs with mixed mJ states.Magnetochemistry 2020, 6, x FOR PEER REVIEW 9 of 29 
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2.1.2. Mixed Ligand Approach
Crown Ether Ligands

Multi-dentate crown ether ligands provide an excellent opportunity to produce
mononuclear ten-coordinate Ln(III) complexes in association with the coordinating ni-
trate anions. Crown ether ligands having small cavity size such as 12-crown-4-ether
(12-crown-4 = 1,4,7,10-tetraoxacyclododecane) could form half-sandwich type mononu-
clear lanthanide complexes of the formula [Ln(12-crown-4)(NO3)3] (Ln = Dy(III) (10),
Tb(III) (11), Ho(III) (12) Er(III) (13)) [42]. These highly crystalline complexes were easily
prepared by the reaction of an equimolar mixture of the hydrated lanthanide nitrate salts
and 12-crown-4 ether in acetonitrile solvent. The half-sandwich structure around the
Ln(III) ion comprise of one 12-crown-4 ether ligand on one side and three bidentate NO3

−

ligands on the other side giving rise to a ten-coordinate sphenocorona (SPC, C2v) geometry
(Figure 9). It is important to note that the reaction of an equimolar mixture of 12-crown-4
ether and 15-crown-5 ether with hydrated lanthanide perchlorate in acetonitrile resulted in
a sandwich-type complex of the formula, [Dy(12-crown-4)(15-crown-5)(CH3CN)][Dy(12-
crown-4)(15-crown-5)]2(CH3CN)2(ClO4)9 having mixed coordination numbers (10 and 9).
Dynamic AC magnetic measurements were performed on 10–13 to assess the SIM proper-
ties. None of these complexes showed well-resolved peaks in the frequency-dependent
out-of-phase (χ”) AC susceptibility measurements at zero biased field. However, the ap-
plication of a DC biased field to suppress the QTM partially or fully resulted in strong
signals in the frequency-dependent out-of-phase (χ”) AC susceptibility only in the case
of the Dy(III) derivative confirming the presence of slow relaxation of magnetization
(Figure 9). From the ln(τ) vs. T−1 plot at high temperature the following parameters
could be extracted: Ueff = 76 K (τ0 = 6.8 × 10−11 s) at HDC = 500 Oe [42] and Ueff = 68 K
(τ0 = 2.07 × 10−10) at HDC = 1000 Oe [43] respectively. The non-Kramer Tb(III) and Ho(III)
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ions did not show this behavior because of the large energy gap between the ground and
first excited states and the presence of low symmetry ligand field (sphenocorona, C2v)
around the metal ion. On the other hand, the Kramer ion, Er(III) did not show non-zero
AC signals probably due to the existence of strong QTM or a non Ising ground state.
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Figure 9. (a) Molecular structure of 10, (b) sphenocona coordination geometry around the central
Dy(III) ion, and (c) frequency-dependent in-phase (χ’) and out-of-phase (χ”) AC susceptibilities from
2.0 to 5.5 K for 10 under HDC = 500 Oe. Figures and captions are reproduced from Reference [42]
with permission from the Royal Society of Chemistry.

A larger cavity sized crown ether ligand such as 18-crown-6 ether can accommodate
only one Ln(III) ion inside its cavity and therefore serves as a flexible equatorial ligand.
Zheng and co-workers synthesized two isostructural ten-coordinate complexes of the
formula [Dy(18-crown-6)(NO3)2]ClO4 (14) and [Dy(18-crown-6)(NO3)2]BPh4 (15) by em-
ploying two different charge balancing counter anions [43]. The cationic unit in both the
complexes, i.e., [Dy(18-C-6)(NO3)2]+ were similar (Figure 10). The Dy–O bond lengths aris-
ing from the two nitrate ligands are comparatively shorter (Dy–O range 2.402(3)–2.439(3)
Å) than the Dy–O bond lengths of the 18-crown-6 ligand (Dy–O range 2.450(5)–2.562(3)
Å) in both the complexes. The crown ether ligand in 15 was found to be more distorted
than that in 14. All these structural differences resulted in different coordination poly-
hedra in 14 and 15 namely sphenocorona (CShM = 2.28) for 14 and bicapped square
antiprism (CShM = 3.10) for 15. None of the two complexes showed out-of-phase (χ”) AC
magnetic susceptibility signals in the dynamic AC magnetic measurements under zero
field. However, at an optimum external DC field of 1000 Oe, both the complexes showed
strong frequency-dependent in-phase (χ’) and out-of-phase (χ”) AC susceptibility signals.
The analysis of this data afforded the following parameters: Ueff = 63 K (HDC = 1000 Oe)
and τ0 = 1.02 × 10−8 s for 14 and Ueff = 43 K (HDC = 1000 Oe) and τ0 = 1.37 × 10−6 s
for 15 respectively (Figure 10). Irrespective of the structural similarity in the cationic part
of 14 and 15, the significant difference in the anisotropic barriers solely resulted from
the geometrical perturbations around the Dy(III) center. In the low temperature regime,
the Raman relaxation process was found to be the dominant relaxation process. This study
concludes that 18-crown-6 crown ether ligand could play an important role as a ligand for
designing axially tuned high-performance SMMs in the future.
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Figure 10. Scheme sketch (a), for side view (b) for 14 and (c) for 15) of [Dy(18-crown-
6)(NO3)2]+ cation. Inset: dihedral angles for apical bidentate nitrate anions, (d) and
(e) Temperature-dependence of the in-phase (χ’) and out-of-phase (χ”) AC susceptibility
signals under 1000 Oe DC field at the indicated frequencies for complexes 14 and 15.
Lines are visual guides only. Figures and captions are reproduced from Reference [43]
with permission from the Royal Society of Chemistry.

Bidentate N,N-Donor Ligands

Bidentate N,N-donor ligands such as phenanthroline (phen) and bipyridine (bipy) in
combination with chelating nitrate ligands are known to produce mononuclear ten-coordinate
Ln(III) complexes of the formula [Ln(L)2(NO3)3] (where L is phen and bipy). Liang and co-
workers synthesized a mononuclear ten-coordination complex [Dy(phen)2(NO3)3] (16) by the
reaction of 1,10-phenanthroline and Dy(NO3)3·6H2O under solvothermal conditions [44].
A perspective view of 16 is shown in Figure 11. The coordination of two phen and three NO3

−

ligands resulted in two symmetrical 5-membered rings (DyN2C2) and three 4-membered
rings (DyO2N) in 16. This complex did not show any peaks in the dynamic AC magnetic
measurements performed under the zero DC field. Under an applied DC field of 1500 Oe 16
showed significant dependence on both frequency and temperature in the out-of-phase (χ”)
AC susceptibility components in the temperature range 2–10 K revealing its field-induced
slow magnetic relaxation characteristics (Figure 11). The complex 16 also exhibited a red
emission (~630 nm) corresponding to the 4F9/2 → 6H13/2 transition. Investigation of such
dual properties in a single complex is currently in vogue in the field of molecular magnetism.
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Korolkov and co-workers introduced a chiral (–)-menthol fragment in the ortho
position of phenanthroline resulting in a new chiral ligand, 2-((1S,2R,5S)-2-isopropyl-5-
methylcyclohexyl)-1,10-phenanthroline (L1). Further, L1 was utilized to synthesize a series
of mononuclear ten-coordinate Ln(III) complexes, [Ln(L1)2(NO3)3] (Ln = Eu; (17), Gd;
(18), Tb;(19), Dy;(20)) [45]. The molecular structure analysis revealed the presence of a
2-fold rotational axis passing through the metal center and the N–O bond of a coordinated
nitrate ligand (Figure 12). It is to be noted that the chair conformation of the 6-membered
carbocycle belonging to the menthol moiety did not change upon coordination by L1.
A comparison of the crystal parameters of the Tb(III) derivative with its achiral analogue,
[Tb(phen)2(NO3)3] (21) [46] revealed that the presence of the chiral ligand changes the unit
cell parameters and the space group (centrosymmetric (C2/c) in 21 to non-centrosymmetric
(P41212) in 19). The temperature-dependent µeff (effective magnetic moment) values for 17–
20 agree well with the achiral analogue [Ln(phen)2(NO3)3] [47] which suggests that the high
temperature µeff values are not affected by the replacement of phen by L1. None of these
complexes showed any peaks in the frequency-dependent out-of-phase (χ”) AC magnetic
measurements at 2 K even at high frequency.
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Modifying the phenanthroline backbone Lau and co-workers synthesized a
phenanthroline-amide ligand, N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide (L2) [48].
In comparison to the ligands discussed above, L2 is now a tetradentate ligand symmetrically
substituted by amide functionalities at the 2 and 9 positions of the phenanthroline moiety.
The reaction of L2 with Ln(NO3)3·6H2O in MeOH in the presence of NaClO4·H2O afforded
three isostructural mononuclear complexes, [Ln(L2)2(NO3)](ClO4)2 (Ln = Eu (22), Sm (23),
Tb (24) and Dy (25)) [48]. The ten-coordinate geometry of Ln(III) in 22-25 resulted from the
coordination of four N atoms and four O atoms from two L2 ligands, and two O atoms
from a κ2O-nitrate (Figure 13). All the complexes exhibited sphenocorona coordination
geometries with an approximate C2v symmetry. The presence of bulky ClO4

− anions and
the butyl groups ensured well-separated magnetic centers with large M···M separations in
the range of 10.8–11.1 Å. Dynamic AC magnetic measurements were performed to probe
the SIM behavior in the Tb(III) and Dy(III) derivatives. Both did not show peaks in the
out-of-phase(χ”) susceptibility under a zero biased DC field revealing significant QTM in
the ground state. Application of an external DC field (1500 Oe for 24 and 1000 Oe for 25)
caused the QTM to be suppressed and a clear maxima in the frequency-dependent in-phase
and out-of-phase AC components to be observed (Figure 13). It was surprising that complex
24 showed two maxima in the out-of-phase(χ”) susceptibility component below 3 K while
only one maximum was observed in the temperature range 3 to 5.5 K. The double relaxation
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behavior was further confirmed in the Cole-Cole plots with two obvious semicircles. The com-
plex relaxation behavior of 24 was analyzed considering three relaxation processes namely
Raman, Orbach, and quantum tunneling, following the equation, τ−1 = CTn + τ0

−1exp(–
Ueff/kBT) + τQTM which resulted in Ueff = 76.0 K, τ0 = 1.35 × 10−11 s, C = 3.27 K−4.72 s−1,
n = 4.72, and τQTM = 3.93 × 10−4 s respectively. Although the Dy(III) derivative is isostruc-
tural with the Tb(III) derivative only one relaxation process was observed in this case as
confirmed by the Cole-Cole plots. The temperature-dependent relaxation times of 25 were
analyzed considering the Raman and Orbach relaxation mechanisms (first two terms in
the previous equation) and an energy barrier Ueff = 44.3 K and pre-exponential parameter
τ0 = 5.17 × 10−7 s, respectively was extracted. Also, the Raman relaxation parameters C and
n were found to be 0.475 K−4.29 s−1 and 4.29, respectively.
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bidentate nitrate ligands and one water molecule. The polyhedral geometry could be described as 
distorted bicapped square antiprism with two nitrato O atoms in the capping positions. Static 
magnetic susceptibility measurement revealed a χMT value of 0.55 emu K mol−1 at room temperature 
which is slightly lower than the theoretical value of 0.80 emu K mol−1 for a Ce(III) (2F5/2, S = 1/2; L = 3, 
g = 0.857) for the monomeric structure. Field-dependent magnetization measurements with the non-
saturation of magnetization even at high fields revealed the presence of magnetic anisotropy in 26. 

Figure 13. (a,b) Perspective viewings for the cationic structures of 24 and 25, (c,d) frequency depen-
dence of in-phase (χ′) and out-of-phase (χ”) AC magnetic susceptibility for 24 and 25 under a 1.5 kOe
(for 24) and 1.0 kOe (for 25) DC field, and (e,f) the ln(τ) vs. T−1 plots for 24 and 25 (red lines are the
best fits). Figures and captions are reproduced from Reference [48] with permission from the Royal
Society of Chemistry.
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Terpyridyl Ligand

Terpyridine ligands are known to produce stable mononuclear complexes with 4f ions.
Wand and co-workers synthesized a ten-coordinate Ce(III) complex, [Ce(Fcterpy)(NO3)3(H2O)]
(26) with a ferrocene-based terpyridine ligand (Figure 14), 4′-ferrocenyl-2,2′:6′,2”-terpyridine
(Fcterpy) [49]. The deca-coordination around the Ce(III) ion resulted from the coordination of
one Fcterpy, three bidentate nitrate ligands and one water molecule. The polyhedral geometry
could be described as distorted bicapped square antiprism with two nitrato O atoms in
the capping positions. Static magnetic susceptibility measurement revealed a χMT value of
0.55 emu K mol−1 at room temperature which is slightly lower than the theoretical value of
0.80 emu K mol−1 for a Ce(III) (2F5/2, S = 1/2; L = 3, g = 0.857) for the monomeric structure.
Field-dependent magnetization measurements with the non-saturation of magnetization
even at high fields revealed the presence of magnetic anisotropy in 26. The experimental
susceptibility data was modelled [50] and gCe = 0.686 and D = 0.04 cm−1 was extracted from
the best fit. The lower value of the obtained zero-field splitting parameter (D) represents
a small magnetic anisotropy in 26. AC magnetic measurements did not show peaks in the
out-of-phase (χ”M) susceptibility component under zero biased field. Under an applied DC
field of 2000 Oe, strong frequency-dependent maxima in the out-of-phase (χ”M) susceptibility
with peak maxima shifting towards lower frequencies verified the slow relaxation of the
magnetization in 26. The Cole-Cole plots also revealed a narrow distribution of relaxation
times with α = 0.05–0.11 (2–3 K) (Figure 14).
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Schiff Base and Semicarbazone Ligands

Hetero donor Schiff base ligands are widely used as compartmental ligands to as-
semble a variety of homo- and heterometallic complexes with different nuclearity [51–53].
Shanmugam and co-workers synthesized a couple of ten-coordinated Ln(III) complexes of
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the common formula [Ln(HL3)2(NO3)3] (where Ln is Dy(III) (27); Pr(III) (28) and HL3 = 2-
methoxy-6-[(E)-phenyliminomethyl]phenol) (Figure 15) [54]. The central Ln(III) in both
the complexes is present in a distorted bicapped square anti-prism geometry. Interestingly,
in these complexes the donor N atom of the ligand does not take part in coordination.
Rather, it accepts the acidic proton from the phenolic -OH group of the ligand. This depro-
tonated phenolic group with another -OMe group of two participating ligands provides
four coordinating atoms to the Ln(III) ion. The remaining coordination sites are occu-
pied by three chelating nitrate ions which also provide charge neutrality to the complex.
Interestingly, complex 27 (Dy(III) analogue) has been found to be co-crystalized with an-
other geometric isomer with the same molecular formula with a different orientation of
the coordinated nitrate groups. The room temperature χMT values for Dy(III) analogue
(14.06 cm3Kmol−1) and the Pr(III) analogue (1.61 cm3 K mol−1) are consistent with the
theoretically expected values. Dynamic magnetization studies revealed that the Dy(III)
analogue was a field-induced SMM at an optimum field of 2 kOe. From the Cole-Cole plot
(Figure 16), two types of closely spaced relaxation dynamics were detected. These were
rationalized as occurring due to the presence of two geometrical isomers in the crystal
structure of 27. The extracted effective energy barriers from Arrhenius equation were found
as 16.6 cm−1 (τ0 = 2.47 × 10−6 s) and 15.8 cm−1 (τ0 = 3.6 × 10−7 s).Magnetochemistry 2020, 6, x FOR PEER REVIEW 15 of 29 
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Ab initio CASSCF SINGLE_ANISO calculations on the Dy(III) analogue were per-
formed by taking the two distinct geometrical isomers separately to ascertain the origin of
the magnetic relaxation (Figure 17). In both the isomers, although the ground Kramer’s dou-
blet is computed to be ±15/2 a significant multiconfigurational wave nature of the ground
state was observed which opened the channel for ground state QTM which accounted for
the absence of SMM behavior in zero field.
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A subcomponent self-assembly strategy was employed by Mallah and co-workers
to synthesize a series of mononuclear ten-coordinate complexes, [Ln(L4)(NO3)2](NO3)
where Ln(III) = Dy, (29); Tb, (30); Ho, (31); Er, (32); Y, (33) and L4 = N,N′-bis-pyridin-2-yl-
methelene-1,8-diamino-3,6-dioxaoctane (Figure 18) [55]. The Ln(III) ion in these complexes
served as a template around which the ligands were organized. The deca-coordination
around the Ln(III) ions resulted from the coordination of L4 with N4O2 coordination sites
in an equatorial plane and four O atoms from two NO3

− ligands from above and below
this plane. The equatorial plane comprising the L4 ligand was highly distorted due to
the steric bulk of the pyridine rings. The LnN4O6 polyhedron in these complexes has
been described as very distorted bicapped square antiprism. To probe the SMM properties
in 29−32, dynamic AC magnetic measurements were performed. Under zero DC field,
only the complexes 29 (Dy) and 30 (Tb) showed frequency-dependent out-of-phase (χ”)
susceptibility signals, but without any clear maxima. This behavior was attributed to a fast
QTM. Upon application of an optimal biased field of 1000 Oe both frequency-dependent
AC signals (in-phase and out-of-phase) were observed for 29 and 30 below 10 K though
only 29 (Dy) showed a clear maxima (Figure 18). The ln(τ) vs. 1/T plots were fitted with
the Arrhenius law which resulted in Ueff = 50 K and τ0 = 6.80× 10−7 s. The Cole-Cole plots
with semi-circular curves confirmed a single relaxation time with α parameter close to zero
though at low temperature the appearance of a second semicircle can be seen. Both the
complexes revealed hysteresis loops in the micro-SQUID measurements at varying sweep
rates. The Dy(III) derivative showed step-like features signifying QTM at the level crossing
while the Tb derivative did not.
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Semicarbazone based ligands have been widely used in coordination chemistry includ-
ing in the formation of lanthanide complexes. Nunes and co-workers used a semicarbazone
based Schiff base ligand 1-((E)-2-pyridinylmethylidene)semicarbazone), Hscpy, to prepare
mononuclear complexes, [Ln(Hscpy)2 (NO3)2]NO3·MeOH (Ln(III) = Gd (34) and Tb (35))
(Figure 19) [56].Magnetochemistry 2020, 6, x FOR PEER REVIEW 17 of 29 
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of the formula [Ln(ntbi)(NO3)3] (Ln = Dy (36) and Ho (37)) (Figure 21). It is to be noted that changing 
the metal precursor to Ln(III) chlorides resulted in eight-coordinate mononuclear complexes where 
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around the Ln(III) ions resulted from the coordination of four N atoms from the ntbi ligand and six 

Figure 19. Molecular structure of complex 35. The figure is reproduced from Reference [56] with
permission from the Elsevier Ltd.

The two ligands provided a 4N,2O coordination environment while the remaining four
sites were occupied by the nitrate ions. In the AC susceptibility measurements, the complex
35 (Tb(III) derivative) did not show any out-of-phase susceptibility peak maxima. However,
upon applying a static field of 1kOe and then further 1.5 kOe, fast relaxation was stopped
which allowed a peak maxima to be observed (Figure 20). The extraction of the data by
fitting the extended Debye model followed by utilizing the Arrhenius equation produced
the following parameters, τ0 = 2.6(1)× 10−6 s, ∆ = 7.6(2) cm−1 and τQTM = 2.60(3)× 104 Hz
for the applied field of 1 kOe and τ0 = 8.3(5) × 10−7 s, ∆ = 21.9(4) cm−1 and τQTM = 1.92(1)
× 104 Hz for applied of 1.5 kOe.
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Tripodal Ligands

Konar and co-workers utilized a tripodal ligand, tris(2-benzimidazoylmethyl)amine
(ntbi) having bulky benzimidazole arms to capture a single Ln(III) ion into its cavity [57].
Therefore, the reaction of ntbi with hydrated Ln(III) nitrate salts afforded mononuclear
ten-coordinate complexes of the formula [Ln(ntbi)(NO3)3] (Ln = Dy (36) and Ho (37))
(Figure 21). It is to be noted that changing the metal precursor to Ln(III) chlorides resulted
in eight-coordinate mononuclear complexes where two ntbi ligands chelate one Ln(III)
ion. The ten-coordinate sphenocorona polyhedron (CShM = 3.655) around the Ln(III) ions
resulted from the coordination of four N atoms from the ntbi ligand and six O atoms from
the three NO3

− ligands. The three free NH groups corresponding to the benzimidazole
ligands of the ntbi ligand were further involved in H-bonding interactions with a nitrate
group of neighboring [Ln(ntbi)(NO3)3] molecule resulting in undulating 1D chains along
the crystallographic c axis. Further, the N–H···O hydrogen-bonding links could be arranged
in 2D grid-like layers and 3D supramolecular cubic framework structures. Dynamic AC
magnetic measurements were performed to assess the SIM properties in these complexes
(Figure 21). Under zero applied DC field none of them showed clear maxima in the out-of-
phase AC susceptibility above 2 K due to fast QTM. However, under an optimum biased
field of 1200 Oe distinct peaks were observed (Ueff = 53.4 K and τ0 = 1.6 × 10−12 s).
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of relaxation time (τ) as a function of temperature (T) for 36 at 1200 Oe. Figures and captions are
reproduced from Reference [57] with permission from the Wiley-VCH.
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Glycol Ligand

Triethylene glycol (H2TEG) ligands are rich in O donor atoms and therefore exhibit
high affinity towards the Ln(III) ions. Li and co-workers synthesized a ten-coordinate
mononuclear Dy(III) complex, [Dy(H2TEG)(NO3)3]·[18-crown-6] (37) utilizing the H2TEG
ligand in combination with a 18-crown-6 ligand (Figure 22) [58]. Here the crown ether
ligand does not coordinate to the metal center but merely acts as a promoter in crystallizing
the complex. The ten-coordinate tetradecahedron geometry of the Dy(III) ion resulted
from the cumulative coordination of one H2TEG ligand and three NO3

− anions. The field
dependence of magnetization measurements using a sweeping magnetic field (sweep rate of
50 Oe/s) at 2 K did not reveal any hysteresis loops confirming fast magnetization relaxation
in 37. To probe the relaxation dynamics, AC magnetic measurements were performed.
At zero field no maximum was observed in the out-of-phase (χ”M) AC susceptibility
component above 2 K. Upon application of an optimum DC field of 1000 Oe, strong χ”M
signals with clear maxima were observed (Figure 22c). The frequency-dependent χ”M AC
component showed two maxima indicating the possibility of two relaxation processes in
37. This was further confirmed in the Cole-Cole plots which showed two semi-circular
shapes with α1 = 0.21–0.42 and α2 = 0.11–0.38. The temperature dependence of relaxation
times was fitted with the Arrhenius equation and an energy barrier, Ueff = 28 K with
τ0 = 2.49 × 10−9 s was obtained.Magnetochemistry 2020, 6, x FOR PEER REVIEW 19 of 29 
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anisotropy of both Dy(III) (oblate) and Er(III) (prolate) ions simultaneously. The complexes were 
synthesized by the reactions of hydrated Ln(NO3)3 with appropriate equivalents of AgNO3 and 
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Radical Ligand

A ten-coordinate Pr(III) complex of the formula [Pr(NIT2Py)2(NO3)3] (38; NIT2Py =
2-(2′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was synthesized utilizing a
chelating nitronyl nitroxide radical ligand (Figure 23) [59]. The Pr(III) was coordinated by
two N,O-chelating NIT2Py radicals and six O atoms from the three nitrato groups in a κ2O
chelating coordination mode. The ONCNO fragment of the nitronyl nitroxide moiety was
found to be almost planar indicating the delocalization of the free electron in this fragment.
The dihedral angles between the pyridyl and the nitronyl nitroxide moieties were found
to be 38.2◦ and 35.2◦ for the two NIT2Py ligands. Static magnetic measurements revealed
a χMT value of 1.99 cm3 mol−1 K at 300 K which is lower than the expected theoretical
χMT = 2.36 cm3 mol−1 K for two radical and one Pr(III) ion (3H4 ground state (gJ = 4/5)).
Upon cooling the system to 77 K, the χMT value slowly decreased which has been attributed
as resulting from the magnetic anisotropy of the Pr(III) ion. Dynamic magnetization studies
were not carried out on this system.
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2.1.3. Penta-Nitrate Ln(III) Complexes

In addition to the synthetic approaches discussed above, Song and co-workers pursued
a spherical ligand field around the Ln(III) ions and in this pursuit they synthesized two
isostructural ten-coordinate mononuclear complexes of the formula, (nBu4N)2[Ln(NO3)5]
(Ln = Dy (39) and Er (40)) (Figure 24) [60]. As discussed previously, a spherical ligand field
could stabilize the magnetic anisotropy of both Dy(III) (oblate) and Er(III) (prolate) ions
simultaneously. The complexes were synthesized by the reactions of hydrated Ln(NO3)3
with appropriate equivalents of AgNO3 and nBu4NBr in ethanolic medium. The small
“bite angle” of the NO3

− anion resulted in the high coordinate geometry with a 10O
coordination [61,62]. The tetradecahedron (C2v symmetry) geometry around the Ln(III) ions
resulted from the simultaneous coordination of five nitrate ligands of which three nitrates
formed an equatorial plane while the other two nitrates coordinated perpendicularly from
above and below this equatorial plane. The Dy–O distances in the (DyO10) coordination
geometry differs only slightly (0.03 Å) suggesting symmetrical binding nature of the NO3

−

ligands. The presence of bulky [nBu4N]+ cations ensured large distances between the Ln(III)
ions. Both DC and AC magnetic measurements were performed on 39 and 40. The crystal
field parameters were obtained from the static magnetic measurements which revealed
impure eigenstates in both ground and the excited states of 39. Accordingly, the latter
does not exhibit the typical Ising behavior. On the other hand, the ground doublet of
40 was found to be the mJ = ±11/2 state while the first excited state was found to be an
admixture of mJ = ±9/2 and mJ = ±13/2 doublet states representing a typical Ising type
anisotropy in 40. The relatively larger electron density in the equatorial plane provided by
the three NO3

− ligands is particularly suited for the prolate Er(III) ion and is responsible
for the Ising behavior in 40. To probe the relaxation dynamics, AC magnetic measurements
were performed under zero biased field. None of the complexes showed peaks in the
out-of-phase AC susceptibility (χ”M)—even at low temperature—presumably because
of significant QTM in the ground state. Upon application of an optimum DC field, both
the complexes showed clear maxima in the temperature- and frequency-dependent in-
phase (χ′M) and out-of-phase (χ”M) susceptibilities (Figure 24). The Cole-Cole plots with
small values of α parameters (0.15–0.22 for 39 and 0.08–0.22 for 40) implied a narrow
distribution of relaxation times in both the complexes. The temperature dependence of
relaxation times were fitted by the Arrhenius equation and the effective energy barriers,
Ueff = 24.3 K (C = 3.40 × 10−9 s; HDC = 500 Oe) for 39 and Ueff = 22.3 K (τ0 = 3.06 × 10−7 s;
HDC = 1000 Oe) for 40 were obtained. An analysis of the experimental data supported
by theoretical calculations suggested that magnetization relaxation occurred through an
intermediate state between the ground and first excited states.
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from the Royal Society of Chemistry.

3. Twelve-Coordinate Ln(III) Complexes

Although twelve-coordination is known for lanthanide ions in a few heterometallic
3d-4f complexes, such a behavior among mono nuclear Ln(III) complexes is quite sparse.

Mixed Ligand Approach

Kajiwara and co-workers reported a series of mononuclear Ln(III) systems hav-
ing dodeca coordination by following the mixed ligand approach [63]. The complexes,
[Ln(NO3)3(18-crown-6)] (Ln = Ce (41), Pr (42), and Nd (43)) and [Ln(NO3)3(1,10-diaza-18-
crown-6)] (Ln = Ce (44), Pr (45), and Nd (46)) were synthesized by employing 18-crown-
6 and 1,10-diaza-18-crown-6 systems respectively along with chelating nitrate ligands
(Figure 25). For the first set of complexes having 18-crown-6 as the main ligand, the six O
donor atoms of the ligand coordinates to the metal ion equatorially while the three nitrate
ions chelating the metal ion from above and below complete the coordination environment
as well as provide charge neutrality to the system. On the other hand, for the other set of
molecules consisting 1,10-diaza-18-crown-6 as the ligand, the coordination action of the
ligand remains similar but the overall chemical environment around the Ln(III) changes to
10O,2N. The geometry around the Ln(III) ion is found to be distorted icosahedron but the
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magnitude of distortion from the ideal geometry is found to be more for the case of 12O
coordination (vide infra).
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Figure 25. Molecular structure of 41 (left); Icosahedron coordination geometry around the
Ce(III) ion (middle); and molecular structure of 44 (right). The structures are re-drawn
from Reference [63] with permission from the American Chemical Society © 2016.

DC susceptibility measurements revealed that the room temperature χMT values for
the complexes 41 to 46 were found to be 0.76, 1.52, 1.41, 0.68, 1.48, and 1.60 emu K mol−1

respectively which are in good agreement with the theoretical values. However, unlike the
other complexes, at lower temperatures the χMT values for the two Pr(III) analogues
sharply decreased and reached almost to the diamagnetic limit. This has been attributed to
the rapid depopulation of the low lying Jz sublevels.

In the AC susceptibility measurements, none of the complexes were found to be
showing out-of-phase susceptibility peak maxima. But in the presence of 1000 Oe of
applied magnetic field complexes 41, 43, 44, 46 showed both distinct in-phase and out-of-
phase peak maxima (Figure 26).

An analysis of the data suggested the presence of multiple relaxation pathways
(Figure 27). The best fit parameters were extracted considering Raman and Orbach process
which are summarized in Table 1.
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Figure 27. (A–D) Arrhenius plots for complexes 41, 43, 44, and 46 respectively measured under a
1000 Oe bias field. Solid lines and dotted curves represent theoretical fitting taking into account the
TA-QTM process (black), the TA-QTM and the Raman processes with n = 5 (blue), and the TA-QTM
and the Raman processes with n = 9 (red). Figures and caption are reproduced from Reference [63]
with permission from the American Chemical Society © 2016.

Table 1. Best fitted parameters of Arrhenius equation.

Relaxation Parameters 41 43 44 46

n is fixed at 5
∆E kB

−1/K 30.3(3) 30.9(4) 45(2) 55(4)
τ0/ns 220(17) 2.2(3) 26(7) 2.6(1.9)

C/s−1 K−5 0.108(10) 4.1(3) 0.52(4) 0.050(12)

n is fixed at 9
∆E kB

−1/K 25.6(7) 33.4(5) 23(1) 73(2)
τ0/ns 9(2) × 102 1.6(2) 6(2) × 103 0.14(6)

C/s−1 K−5 16(4) 0.350(11) 22(9) 10.7(4)

4. Magneto-Structural Correlation

As is evident from the above survey that ten-coordination is the most abundant among
the higher coordinated Dy(III) complexes with three possible geometries: sphenocorona,
tetradecahedron and bicapped square antiprism (see Table 2). A variety of synthetic
approaches involving different types of ligands have been employed to synthesize high
coordinated complexes. Although none of the high coordinated complexes exhibited
zero field SMM behavior, many revealed a field-induced SMM behavior. The highest
effective energy barrier was found when the coordination environment around the Dy(III)
was either 10N or 10O rather than the mixed 6N4O or 4N6O environments. The 10N
coordination was achieved only from the multidentate Schiff base ligands whereas the
10O coordination could be achieved by many ligand systems. However, the mixed ligand
approach involving the crown ether ligand appeared to be most effective in generating
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complexes that possessed high effective energy barriers. Further, it has been observed that
the effective energy barrier is not only dependent on the coordination environment but
also seems to be dependent on the extent of distortion from regular geometry In Figure 28 a
correlation of observed effective energy barrier (Ueff) with geometry and the magnitude of
distortion from ideal geometry has been plotted. It is evident from this plot that in [DyO10]
systems high Ueff is possible when the geometry is bicapped square antiprism with high
distortion. But when the geometry is sphenocorona the distortion should be low for getting
high Ueff.

Table 2. A summary of the magnetic properties of all ten-coordinate Dy(III) and two dodeca-coordinated Ce(III)complexes.

Sl.
No. Formula (Complex Number) Co-Ordination

Environment

Geometry
Around
Metal *

ChSM
Value

Ueff, τ0
(Hdc) Ref

1 [Dy(H2dapbh)2](NO3)3 (1) 4O6N BSA 2.840 32.4 K
(1000 Oe) [38]

2 [Dy(N5)2](CF3SO3)3 (8) 10N BSA 3.335
79 K,

2.9 × 10−8 s,
1200 Oe

[36]

3 [Dy(12-crown-4)(NO3)3] (10) 10O
SPC 2.837 68 K, 2.07 × 10−10 s (1000

Oe) 75.92 K, 6.8 × 10−11 s
(500 Oe)

[37]
BSA 20.899

4 [Dy(18-crown-6)(NO3)2]ClO4
(14) 10O BSA 3.101 63 K, 1.02 × 10−8 s (1000 Oe) [38]

5 [Dy(L2)2(NO3)](ClO4)2 (25) 6O4N SPC 3.223
44.3 K,

5.17 × 10−7 s
(1000 Oe)

[42]

6 [Dy(HL3)2(NO3)3] (27) 10O BSA 3.148 23.9 K, 2.47 × 10−6 s
(2000 Oe)

[48]

7 [Dy(L4)(NO3)2](NO3) (29) 6O4N SPC 21.104
50 K,

6.80 × 10−7 s,
(1000 Oe)

[49]

8 [Dy(ntbi)(NO3)3] (36) 4O6N SPC 3.655 53.4 K, 1.6 × 10−12 s
(1200 Oe)

[51]

9
[Dy(H2TEG)(NO3)3]·[18-

crown-6]
(37)

10O TDH 3.292
28 K,

2.49 × 10−9 s
(1000 Oe)

[52]

10 (nBu4N)2[Dy(NO3)5] (39) 10O TDH 1.513
24.3 K,

3.40 × 10−9 s,
(500 Oe)

[54]

11 [CeNO3)3(18-crown-6)] (41) 12O IC 1.862
30.3 K,

2.20 × 10−7 s
(1000 Oe)

[57]

12
[Ce(NO3)3(1,10-diaza-18-

crown-6)]
(44)

10O2N IC 1.765
44 K,

2.3 × 10−8 s
(1000 Oe)

[57]

* BSA = bicapped square antiprism; TDH = tetradecahedron; SPC = sphenocorona; IC = icosahedron.

On the other hand, when the decacoordination is fulfilled by mixed donor atoms
(O and N) only two types of geometries are observed, sphenocorona and bicapped square
antiprism (Figure 28). However, for (DyO6N4) systems only sphenocorona geometry is
reported and the higher Ueff is seen when distortion is higher while for (DyO4N6) systems
higher Ueff is found in sphenocorona geometry.
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5. Summary

In this article we have tried to summarize the status on high-coordinate lanthanide
complexes that show a field-dependent single-molecule magnet behavior. We considered
coordination numbers above nine for this purpose. Although, coordination numbers 10–14
are possible for lanthanide ions, our survey indicated that given the constraint that such
complexes should show slow relaxation of magnetization, only those possessing coordina-
tion numbers 10 and 12 are of interest. Such complexes have been assembled by utilizing a
variety of synthetic methodologies involving an array of ligand systems including mixed
ligands. Our review of such high-coordinate complexes reveals that they display very
low site symmetry which enables quantum tunneling of magnetization. Because of this
none of the complexes discussed in this review have been found to show zero-field SMM
behavior. On the other hand, application of appropriate small DC field seems to alleviate
some of these problems with the realization of slow relaxation of magnetization under
such conditions. A qualitative structure-property correlation reveals the dependence of
local coordination geometry and the magnitude of distortion from regular geometry on the
magnetic properties including the effective energy barrier for the reversal of magnetization.

6. Future Direction

There are several examples of heterometallic 3d-4f complexes featuring ten- and
twelve-coordinate lanthanide sites where good exchange interaction (between the 3d and
4f metal ions) could play a crucial role to suppress QTM. Thus, while it appears from
the above survey that high-coordinate lanthanide complexes by themselves might not
be attractive candidates for assembling molecular magnets, incorporating such sites in
heterometallic complexes might be a fruitful endeavor.
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