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Abstract: In this paper, the behavior of a ferromagnetic material is considered in the framework of
microstructural modeling. The equations describing the behavior of such material in the magnetic field,
are constructed based on minimization of total magnetic energy with account of limitations imposed
on the spontaneous magnetization vector and scalar magnetic potential. This conditional extremum
problem is reduced to the unconditional extremum problem using the Lagrange multiplier. A variational
(weak) formulation is written down and linearization of the obtained equations is carried out. Based on
the derived relations a solution of a two-dimensional problem of magnetization of a unit cell (a grain of a
polycrystal or a single crystal of a ferromagnetic material) is developed using the finite element method.
The appearance of domain walls is demonstrated, their thickness is determined, and the history of their
movement and collision is described. The graphs of distributions of the magnetization vector in domains
and in domain walls in the external magnetic field directed at different angles to the anisotropy axis are
constructed and the magnetization curves for a macrospecimen are plotted. The results obtained in the
present paper (the thickness of the domain wall, the formation of a 360-degree wall) are in agreement
with the ones available in the current literature.

Keywords: ferromagnetic material; micromagnetism; variational formulation; finite element method

1. Introduction

The ferromagnetic Heusler alloy Ni2MnGa is of great interest due to its unique ability
to produce significant deformation (up to 6–10%) in the martensitic (low-temperature) state
under the action of a moderate magnetic field [1]. This deformation does not disappear
when the magnetic field is removed, but becomes reversible as the material is being
brought back to the austenitic (high-temperature) state (the effect of shape memory). Thus,
there exists a possibility of controlling the deformation behavior of the material using a
magnetic field. Moreover, the response of the material to the applied magnetic field is
almost instantaneous, which makes this control inertialess. In recent year, the Ni2MnGa
alloy has been the focus of extensive research aimed at designing new functional materials,
which change their shape and size under the action of an external magnetic field and
restore them as a result of reverse phase transition, which can also be controlled by the
magnetic field, yet of much higher magnitude.

If in the shape memory alloys (SMAs) or ferromagnetic shape memory alloys (FSMAs)
the forward first-order phase transition from the austenitic to the martensitic state (cooling)
is realized only due to temperature changes, in the martensitic state there may exist
several variants of martensite. Pairs of martensite variants form twinned structures, which
are so compatible that can experience only volume deformation of insignificant value.
The application of stress or an external magnetic field in this state causes traditional elastic
deformation in the SMA and insignificant magnetostriction deformation in the FSMA,
corresponding to the applied forces and magnetic field. Occurrence of these traditional
deformations is complemented by the process of structure detwinning, which leads to the
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development of significant deformation, 6–10 times higher than the elastic one. In the case
when in SMA or in FSMAs the forward phase transition proceeds under uniaxial tension
caused by the applied constant external force, in the martensitic state there is only one
variant of martensite (structure detwinning during phase transition) consistent with the
stress field in the specimen. Deformation developed in the single martensite variant is
the ordinary elastic deformation corresponding to the force applied to the material and
supplemented by phase deformation, which, as in the above case, is 6–10 times higher
than the elastic one. Since in this case detwinning of martensite structures accompanied
by large deformations takes place during phase transition, the application of stress or an
external magnetic field in the martensitic state cause only ordinary elastic deformation or
magnetostriction deformation.

In modern mechanics of a deformable solid, one can distinguish two fundamental
problems, which are directly associated with practical applications. The first problem is
the development of an approach to the construction of correct equations for treatment of
thermo-elastic-inelastic deformation behavior of complex media at finite deformations.
The correct equations are those equations that satisfy the principles of thermodynam-
ics and objectivity (material independence from the choice of reference system). Today,
the construction of such equations is rather the mastery. Therefore, it would be proper to
develop rules, i.e., a kind of operation algorithm, the result of which would be a correctly
formulated model, describing the behavior of the examined medium. The second problem
is the construction of models to describe the behavior of material based on its structure and
structural changes caused by force and/or thermal, and/or magnetic and other external
actions (physical or micromechanical models, or structural and analytical models according
to Likhachev’s nomenclature). Such models are required for adequate interpretation of
the behavior of materials, in which phase or structural transitions occur under the above
mentioned external actions, in particular, for shape memory alloys, including ferromagnetic
shape memory alloys (of Heusler type). Solution of the first problem allows one to correctly
describe the kinematics and construct the governing equations for each structural element
of such models (grains, which are single crystals in a polycrystalline material). Physical
(micromechanical) models, in contrast to the widespread phenomenological models, allow
us to explicitly consider the physical processes occurring in the structural elements of the
material. It makes possible to dispense with many of the hypotheses used to construct
phenomenological models, and to give a physically meaningful description of the behavior
of complex functional materials undergoing finite deformations and structural changes
under the action of temperature, force and magnetic fields.

One of the variants of solving the first problem is proposed in [2]. It is called a for-
malized approach to the construction of constitutive equations and describes the behavior
of complex media with finite deformations and structural changes in the material. This
approach was used in [3] for modeling the process of controlling the temperatures of
phase transition in FSMAs using a magnetic field. This field shifts these temperatures
according to the generalized Clausius-Clapeyron law, the form of which for the problems of
mechanics was also formulated in the above publication. In this study, the forward phase
transition was realized under the action of a constant uniaxial tensile force, which was
removed in the martensitic state. Such a process, as noted above, is not accompanied by the
formation of twins. So, the application of an external magnetic field in the martensitic state
leads only to a slight magnetostrictive deformation of the crystal cell. The reorientation of
martensite variants and their detwinning by means of a magnetic field, inducing significant
deformations (the main factor determining practical interest to these alloys), does not take
place in this process. Therefore, a natural continuation of work [3] is consideration of the
influence of the magnetic field on the reorientation of the martensite. The first thing to do
in this regard and the main objective of the present study is the construction of a model to
describe the behavior of polycrystalline material in an external magnetic field, taking into
account the motion of the boundaries of magnetic domains and the rotation of the magnetic
vector moment in each mesoelement, representing a grain of material. The above stated
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problems can be solved only within the framework of the microstructural approach [4,5],
which, in contrast to the widely widespread phenomenological models [6,7], allows us to
explicitly take into account the physical processes occurring in structural elements of the
material without recourse to the assumptions commonly used to construct phenomenolog-
ical models. In mechanics of deformable solids, which is the major focus of our research,
the magnetization vector in the existing microstructural models of thermo-magneto-elastic
behavior of shape memory alloys abruptly changes at the boundary of magnetic domains.
These models ignore the fact that the domain wall has a certain thickness and the mag-
netization vector continuously undergoes changes through thickness (see, for example,
works [8–10]). With that knowledge in mind, it is possible to refine the known microstruc-
tural models and substantiate the need for such refinement. This is what we plan to do
in the framework of deformable solid mechanics. In this respect, the present study is
a necessary step in this direction aimed to construct within only the framework of the
theory of magnetism a microstructural model, in which one of the structural elements is
a domain wall of a certain thickness. Initially, the domain wall in the sample has a zero
thickness. Minimizing the functional of magnetic energy in the absence of an external
magnetic field, we construct a domain wall of finite thickness and obtain the distribution
of the magnetization vector in it. Taking such a domain structure, we study its changes
(motion of domain walls and their interaction) under the action of an external magnetic
field applied in different directions.

This work is an integral part of a more general study, the ultimate goal of which is to
describe the behavior of shape memory alloys both in terms of their magnetic properties
and mechanical ones. For this reason, we considered it necessary to give above a detailed
description of the whole problem to demonstrate the place, which the research, presented
in this paper, occupies in the entire problem. However, the approach developing in this
paper, which is based on minimizing the magnetic energy functional, is applicable not only
to shape memory alloys, but also to other magnetic materials.

2. Structure of a Shape-Memory Material Crystal Cell, Magnetic Domains

In the shape memory alloys such as NiTi alloy, in which the austenite crystal has
a body-centered cubic structure, the process of forward phase transition induced solely
by temperature variation (cooling) can give rise to about 12 variants of martensite with a
base-centered monoclinic for some alloys crystal structure of different spatial orientation
(Monoclinic crystal cell is an inclined parallelepiped with different edges a, b and c and a
rectangular base). This follows from the fact that the symmetry group (parity) of a cubic
lattice consists of 24 orthogonal tensors, which transform a cube into the same cube, and the
symmetry group of a monoclinic lattice, which is a subgroup of the first group, consists
of two orthogonal tensors transforming the inclined parallelepiped with different edges
and rectangular base into the same parallelepiped. The transformation of a cubic lattice
to a monoclinic one corresponds to the Bain strain tensor. Since there are 24 equivalent
cubic lattices, the number of different Bain tensors (different variants of martensite) can
also amounts to 24, but only 12 of them will be independent due to the indiscernibility of
two configurations of the monoclinic lattice. Each of the 12 variants of martensite has the
same Bain tensor referred to its own crystallographic axes, which are differently oriented
in the space.

In contrast to the NiTi shape memory alloy, in the Ni2MnGa FSMA, the cubic austen-
ite crystal is transformed during forward temperature-driven phase transition (without a
stress field) only into three variants of martensite with a tetragonal crystal cell, in which
a, a and c, a > c are the cell edges, with the short edge being directed parallel to the three
edges of the austenitic cube. Since the martensitic state temperature is much lower than
the Curie temperatures, the martensite variants are spontaneously magnetized even in the
absence of an external magnetic field. The local magnetization vector (magnetic moment)
in each variant of martensite is oriented along one of the crystallographic directions, called
the axis of easy magnetization, and can be directed both along this axis and against it. For a
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tetragonal crystal cell, this axis coincides with the short edge c. The regions composed of the
interconnected martensite variants, in which the magnetization vectors are oriented in one
direction, form magnetic domains. As a result, many magnetic domains with differently
directed magnetization vectors are formed in the martensitic state. For these domains it is
energetically favorable to be so compatible with each other that the total magnetization of
the material is zero (for more information about domains, see [11]). The application of an
external magnetic field set in motion the walls of magnetic domains, causes rotation of the
magnetization vectors and reorientation of martensite variants. The wall of the magnetic
domain has certain thickness. In this region the magnetization vector of one domain
gradually rotates until its direction coincides with the direction of the magnetization vector
of adjacent domain. Under the action of the applied magnetic field the domain, in which
the magnetization vector is more consistent with the field vector, begins to grow at the
expense of the adjacent domain, in which the magnetization vector is less consistent with
the direction of the applied field, i.e., the domain wall begins to move. When this mecha-
nism becomes exhausted, the magnetization vectors in the domains are set in rotational
motion in the direction of the applied magnetic field. These two mechanisms are inher-
ent in conventional ferromagnetic materials. They cause a certain, usually insignificant,
macrodeformation (magnetostriction), which disappears when the external magnetic field
is removed. The reorientation of martensite variants under the action of the magnetic field
is inherent only in FSMA and, in fact, is similar to reorientation and detwinning, occurring
in the SMA under the action of a force field. A cooperative movement of structural elements
of the material causes significant macrodeformations (6–10%), which do not disappear
after removing the magnetic field. In the event of realization of reverse phase transition
(heating of the material and its transition to the austenitic state), all accumulated strains
are cancelled out.

In the following sections, we model the behavior of such a material in an external
magnetic field using a microstructural approach. The need to use this approach is justified
in the introduction.

3. Magnetic Energy

According to [12], at a temperature much lower than the Curie temperature of the
material under consideration, the magnetization is described in terms of the time and
space dependent vector field of spontaneous magnetization M, such that |M| = Ms, where
Ms is the saturation magnetization. It is necessary to find the spatial distribution of the
magnetization vector M in the equilibrium state.

Let us introduce a unit vector m = M/Ms. Equilibrium in the “body—environment”
system is found by minimizing the magnetic energy, which can be represented as the sum
of four addends (see, for example, [8]):

ψ(p, m) = ψext(m) + ψdemag(m) + ψexch(m) + ψanis(p, m), (1)

where ψext(m) is the Zeeman energy, ψdemag(m) is the demagnetization energy, ψexch(m)
is the exchange energy, ψanis(p, m) is the magnetocrystalline anisotropy energy, p is the
anisotropy axis.

The Zeeman energy is a potential energy of the magnetized body in the external
magnetic field:

ψext(m) = −µ0Ms H0 ·m,

where µ0 is the magnetic constant, H0 is the strength of the external magnetic field. The Zee-
man energy causes the magnetization vector to be aligned with applied magnetic field.

The energy of demagnetization takes into account the interactions of all local magnetic
moments in the system and is determined by the following relation:

ψdemag(m) = −1
2

µ0Ms Hdemag ·m.
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Here Hdemag is the demagnetizing field strength. As a result, the strength of the
operating field is H = H0 + Hdemag. This field in the absence of electric currents must be
vortex-free ∇×H = 0, which for constant H0 reduces to the equality ∇×Hdemag = 0,
which will always be true, if we assume that Hdemag = −∇ϕ, where ϕ = ϕ(x) is the scalar
dependent on the vector coordinate x (the minus sign in front of the scalar potential ϕ is
used to show that the demagnetizing field reduces the magnetic field inside the specimen
H = H0−∇ϕ). The magnetic field inductance B, which must satisfy the equation∇·B = 0,
is introduced by the relation B(x) = µ0 (H+ Ms m), for x ∈ Ω(in), where Ω(in) is the region
occupied by the body, and B(x) = µ0 H for x ∈ Ω(ex), where Ω(ex) is the region occupied
by the surrounding medium. With account of the above representations for H, Hdemag and
the constancy of H0, this yields for the function ϕ both the Poisson equation

∇ · ∇ϕ = Ms∇ ·m ∀x ∈ Ω(in),

where it is assumed that Ms = const, which holds true if only at the examined struc-
tural level the body is considered to be formed of one and the same material, and the
Laplace equation

∇ · ∇ϕ = 0 ∀x ∈ Ω(ex).

The natural requirement, which the function ϕ must obey, is

ϕ→ 0 at x→ ∞.

On the surface Γ, which separates the body from the surrounding medium,

ϕ(in)|Γ = ϕ(ex)|Γ,

where index (in) refers to the body and (ex) – to its exterior domain. Other boundary
conditions specified for the function ϕ are related to the behavior of the vectors H and B
on the surface Γ:

(H(in) −H(ex))|Γ · τ = 0, (B(in) − B(ex))|Γ · n = 0,

where τ and n are the unit tangent and normal (from the body toward the surrounding
space). From the first equality it follows that

(∇ϕ(in) −∇ϕ(ex))|Γ · τ = 0,

and from the second equality we get

(∇ϕ(in) −∇ϕ(ex))|Γ · n = Ms m · n. (2)

The exchange energy is a phenomenological continual description of exchange inter-
action in quantum mechanics:

ψexch(m) = Aexch |∇m|2 = Aexch ((∇mx)
2 + (∇my)

2 + (∇mz)
2),

where Aexch is the exchange constant, mx, my, mz are the components of m. The exchange
energy tends to contribute to configurations, in which magnetization changes slowly
throughout the specimen. This energy is minimized when the magnetization is perfectly ho-
mogeneous.

Magnetocrystalline anisotropy takes into account the dependence of the local magne-
tization on the directions of the preferred magnetization. The easy axes of local martensitic
variants are oriented in different directions, so this energy depends on the relative orienta-
tion of m and easy axis. We restrict our consideration to the uniaxial case, when there is
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only one easy axis in a variant. For the α variant, the magnetocrystalline anisotropy energy
is written as

ψα
anis(p

α, m) = Kanis (1− (m · pα)2),

where Kanis is the anisotropy constant, pα is the direction of the easy axis of the α vari-
ant. The anisotropy energy tends to create the magnetic configurations, in which the
magnetization is aligned along the easy axis.

Thus, the magnetic energy (1) is represented as follows:

ψ(m) = −µ0Ms H0 ·m−
1
2

µ0Ms Hdemag ·m+

Aexch ((∇mx)
2 + (∇my)

2 + (∇mz)
2) + Kanis (1− (m · pα)2). (3)

4. Statement of the Problem

In 1907, Weiss, on the assumption of the existence of magnetic domains in ferromag-
nets, developed the domain theory of ferromagnetism. Landau and Lifshitz [13] suggested
an idea that the domain structure of the material minimizes its Gibbs free energy. Brown
put together the concepts previously developed by Weiss, Landau and Lifshitz, and created
a unified continuous theory for ferro- and ferrimagnetic systems, which he designated
micromagnetism [12]. In this paper, the study of the dynamics of magnetic inhomogeneities
(domain boundaries, domains, magnetic vortices, etc.) is carried out within the frame-
work of this general micromagnetic theory. In this approach, the analysis is performed
at intermediate scale, which, on the one hand, is small enough to capture the details of
the structure of transition regions between the domains, and, on the other hand, is suf-
ficiently large to make use of a continuous magnetization vector, rather than individual
atomic spins. The description of magnetization dynamics and the study of the structural
evolution of domain walls, as well as their dynamic behavior is conventionally performed
in the framework of the Stoner–Wohlfarth model or the nonlinear Landau–Lifshitz vector
equation. The Stoner–Wohlfarth model is a widely used model for the magnetization of
single-domain ferromagnets [14]. In this model, the magnetization does not vary within
the ferromagnet and is represented by a vector M, which rotates as the magnetic field H
changes. The energy of the system is represented as the sum of two terms: the first term
is the magnetic anisotropy and the second one is the energy of coupling with the applied
field (the Zeeman energy). The nonlinear Landau–Lifshitz vector equation is based on the
fundamental law of mechanics—the law of variation of the angular momentum [12,15].
Being a solution of this equation, a solitary 180-degree domain boundary (N-degree do-
main boundary is a transition layer between the adjacent domains A and B with opposite
or coinciding directions of the magnetization vectors mA and mB, in which the magnetic
moment gradually changes its direction from mA to mB. If, in this case, the rotation of the
magnetization vector occurs in the plane coinciding with the plane of the wall, the bound-
ary is called a Bloch boundary, if this occurs in the plane perpendicular to the plane of the
wall, then the boundary is called a Neel boundary [15].) is a one-soliton formation called a
kink or topological soliton. Two strongly interacting domain walls are called a two-soliton
formation. Such formations include spatially localized magnetic inhomogeneities in the
form of a dynamic, zero-degree domain wall and a dynamic 360-degree domain wall [15].
However, the Stoner–Wohlfarth model and the Landau–Lifshitz equation are not the only
tool for describing the dynamics of magnetization and the evolution of the domain wall
structure. This can also be done based on the condition of the extremum of the total
magnetic energy [15] by performing a stepwise loading procedure. This approach is most
convenient, bearing in mind that the final aim of our study is to describe the behavior of
shape memory alloys not only in terms of their magnetic properties, but also mechanical
ones. This generates a need for constructing a model of material behavior, which can
readily incorporate the relations describing elastic and inelastic (phase) strains within the
framework of finite deformations. Because of the specific character of the examined prob-
lem, the application of the standard micromagnetic packages (OOMMF, MuMax, Magpar,
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nmag) for its solution has proved to be unjustified. The numerical simulations made in
the context of this problem were implemented using the universal computing platform for
solving partial differential equations. For this reason, the focus of the study that follows
is the construction of the functional, its minimization, and the derivation of variational
equations, which are solved numerically by the finite element method in Section 4.

Let us consider a ferromagnetic specimen occupying the region Ω(in), in which it is
necessary to determine the spatial distribution of unit magnetization vector m (only its
direction) from the condition of functional minimum

Ψ(m(t)) =
∫

Ω(in)
ψ(m(t)) dΩ(in), (4)

where ψ(m) is defined by relation (3) under the following constraints:

Hdemag = −∇ϕ;

∇ · ∇ϕ = Ms∇ ·m ∀x ∈ Ω(in);

∇ · ∇ϕ = 0 ∀x ∈ Ω(ex);

m2
x + m2

y + m2
z = 1.

The conditional extremum problem (3), (4) is reduced to a problem of an unconditional
extremum using the method of Lagrange multipliers

ΨL(m(t), ϕ, λ1, λ2, λ3) =
∫

Ω(in)
[−µ0 Ms H0 ·m +

1
2

µ0 Ms∇ϕ ·m+

+ Aexch ((∇mx)
2 + (∇my)

2 + (∇mz)
2) + Kanis (1− (m · pα)2)] dΩ(in)+

+
∫

Ω(in)
λ1(x)(∇ · ∇ϕ−Ms∇ ·m) dΩ(in) +

∫
Ω(ex)

λ2(x)∇ · ∇ϕ dΩ(ex)+

+
∫

Ω(in)
λ3(x)(m2

x + m2
y + m2

z − 1) dΩ(in).

Variation of this functional is carried out with respect to the quantities m, ϕ and λi
(i = 1, 2, 3), which depend on time t and spatial coordinate x. As a result, we have

δΨL =
∫

Ω(in)
[(−µ0 Ms H0 +

1
2

µ0 Ms∇ϕ− 2 Kanis (m · pα)pα − λ1(x)Ms∇) · δm+

+ 2 Aexch ((∇mx) · (∇δmx) + (∇my) · (∇δmy) + (∇mz) · (∇δmz))+

+ 2 λ3(x)(mxδmx + myδmy + mzδmz)] dΩ(in)+

+
∫

Ω(in)
(

1
2

µ0 Ms m + λ1(x)∇) · ∇ δϕ dΩ(in) +
∫

Ω(ex)
λ2(x)∇ · ∇δϕ dΩ(ex)+

+
∫

Ω(in)
(∇ · ∇ϕ−Ms∇ ·m) δλ1(x) dΩ(in) +

∫
Ω(ex)
∇ · ∇ϕ δλ2(x) dΩ(ex)+

+
∫

Ω(in)
(m2

x + m2
y + m2

z − 1) δλ3(x) dΩ(in) = 0. (5)

Here, the fourth and fifth lines contain the second derivatives of δϕ and ϕ with respect
to coordinates, which in the numerical simulation requires that the approximation used
for these quantities should be not lower than the quadratic one. Taking into account the
readily proved equality

∇ · (α b) = b · (∇α) + α (∇ · b), (6)

where α and b are the arbitrary scalar and vector, this requirement can be significantly
weakened by using the so-called weak formulation (Weak formulation does not imply
that instead of differential relations we use equations written in the variational form
after applying to them the Galerkin method. This means that the equation obtained as
a result of this procedure can be transformed to a form that significantly reduces the
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smoothness requirements, and differentiability of the sought solution in comparison with
the differential formulation).

Bearing in mind the fact that the Lagrange multiplier λ1(x) acts in the domain Ω(in),
and the multiplier λ2(x) acts in the domain Ω(ex), and these regions do not intersect
(Ω(in) ∩Ω(ex) = 0), we can change the above situation, using instead of two Lagrange
multipliers, a single one, which acts in the combined domain Ω(in) ∪Ω(ex) and is continuous
on the surface Γ separating these domains. Then, the fourth line in (5) can be represented as∫

Ω(in)
(

1
2

µ0 Ms m + λ(x)∇) · ∇ δϕ dΩ(in) +
∫

Ω(ex)
λ(x)∇ · ∇δϕ dΩ(ex),

which after applying the equality (6) is written as follows:

∫
Ω(in)

(
1
2

µ0 Ms m · ∇ δϕ +∇ · (λ(x)∇ δϕ)− (∇ δϕ) · (∇ λ)) dΩ(in)+

+
∫

Ω(ex)
(∇ · (λ(x)∇ δϕ)− (∇ δϕ) · (∇ λ)) dΩ(ex).

From this expression, in view of the Ostrogradsky–Gauss theorem, we get

∫
Γ

λ(x)(n(in) · ∇ δϕ(in)) dΓ +
∫

Ω(in)
(

1
2

µ0 Ms m−∇λ) · ∇ δϕ dΩ(in)+

+
∫

Γ∪Γ∞
λ(x)(n(ex) · ∇ δϕ(ex)) dΓ−

∫
Ω(ex)

(∇ δϕ) · (∇λ) dΩ(ex). (7)

Here, n(in) and n(ex) are the unit normals to the surfaces bounding the domains Ω(in)

and Ω(ex), respectively, which are directed outward, Γ is the surface separating these
regions. By imposing the condition ϕ→ 0 on Γ∞ on the function ϕ, taking into account the
notation of the normal n(in) (n(in) = n) and the relationship between n(in) and n(ex) on Γ,
we can transform the expression (7) to

∫
Γ

λ(x) n · (∇ δϕ(in) −∇ δϕ(ex)) dΓ +
∫

Ω(in)

1
2

µ0 Ms m · ∇ δϕ dΩ(in)−

−
∫

Ω(in)∪Ω(ex)
(∇ δϕ) · (∇λ) dΩ, (8)

in which the integrals over the common surface Γ are grouped together. Finally, with ac-
count of equality (2), the expressions (8) take the following form∫

Γ
λ(x)n ·Ms δm dΓ +

∫
Ω(in)

1
2

µ0 Ms m · ∇ δϕ dΩ(in) −
∫

Ω(in)∪Ω(ex)
(∇ δϕ) · (∇λ) dΩ. (9)

Handling the integrals in the next to last line of relation (5) in a similar way, we
arrive at∫

Ω(in)
(∇ · ∇ϕ−Ms∇ ·m) δλ dΩ(in) +

∫
Ω(ex)
∇ · ∇ϕ δλ dΩ(ex) ⇒

⇒
∫

Ω(in)
∇ · ∇ϕ δλ dΩ(in) +

∫
Ω(ex)
∇ · ∇ϕ δλ dΩ(ex) −Ms

∫
Ω(in)

(∇ ·m) δλ dΩ(in)

Using the equality (6), we transform the above expression to

∫
Ω(in)

(∇ · (δλ∇ϕ)−∇ϕ · ∇δλ) dΩ(in) +
∫

Ω(ex)
(∇ · (δλ∇ϕ)−∇ϕ · ∇δλ) dΩ(ex)−

−Ms

∫
Ω(in)

(∇ · (m δλ)−m · ∇δλ) dΩ(in),
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where, following the Ostrogradsky–Gauss theorem, the first terms in each of the volume
integrals is reduced to the integrals over the corresponding surfaces

∫
Γ

n(in) · (δλ∇ϕ(in)) dΓ +
∫

Γ∪Γ∞
n(ex) · (δλ∇ϕ(ex)) dΓ−

−
∫

Ω(in)∪Ω(ex)
∇ϕ · ∇δλ dΩ−Ms

∫
Γ

n(in) ·m δλ dΓ + Ms

∫
Ω(in)

m · ∇δλ dΩ(in). (10)

In view of the relationship between the normal n(in) and n(ex) and the behavior of the
function ϕ on Γ∞, the expression (10) takes the following form:

∫
Γ

n · (δλ∇ϕ(in)) dΓ−
∫

Γ
n · (δλ∇ϕ(ex)) dΓ−

−
∫

Ω(in)∪Ω(ex)
∇ϕ · ∇δλ dΩ−Ms

∫
Γ

n ·m δλ dΓ + Ms

∫
Ω(in)

m · ∇δλ dΩ(in)

or, combining the integrals over the surface Γ, we get the expression

∫
Γ
((∇ϕ(in) −∇ϕ(ex) −Ms m) · n) δλ dΓ−

−
∫

Ω(in)∪Ω(ex)
∇ϕ · ∇δλ dΩ + Ms

∫
Ω(in)

m · ∇δλ dΩ(in),

which takes into account the continuity of δλ(in)|Γ = δλ
(ex)
Γ = δλ|Γ . As a result, with ac-

count of condition (2), we finally obtain

−
∫

Ω(in)∪Ω(ex)
∇ϕ · ∇δλ dΩ + Ms

∫
Ω(in)

m · ∇δλ dΩ(in) (11)

and the variational Equation (5), in view of (9) and (11), takes the following form:

δΨL =
∫

Ω(in)
[(−µ0 Ms H0 +

1
2

µ0 Ms∇ϕ− 2 Kanis (m · pα)pα − λ(x)Ms∇) · δm+

+ 2 Aexch ((∇mx) · (∇δmx) + (∇my) · (∇δmy) + (∇mz) · (∇δmz))+

+ 2 λ3(x)(mxδmx + myδmy + mzδmz)] dΩ(in) +
∫

Γ
λ(x)n ·Ms δm dΓ+

+
∫

Ω(in)

1
2

µ0 Ms m · ∇ δϕ dΩ(in) −
∫

Ω(in)∪Ω(ex)
(∇ δϕ) · (∇λ) dΩ−

−
∫

Ω(in)∪Ω(ex)
∇ϕ · ∇δλ dΩ + Ms

∫
Ω(in)

m · ∇δλ dΩ(in)+

+
∫

Ω(in)
(m2

x + m2
y + m2

z − 1) δλ3(x) dΩ(in) = 0. (12)

Here, the first three lines are the equation at δm (three equations at δmx, δmy and δmz,
each of which is equal to zero due to the arbitrariness of these variations and all others).
These equations are nonlinear with respect to the sought variables, due to the first term in
the third line. The integrals in the fourth line are an equation at δϕ, which is linear with
respect to the unknowns and equal to zero taking into account the aforesaid. The last two
lines are two equations equal to zero at the corresponding δλ and δλ3, the last of which
is non-linear.

The iterative methods for solving nonlinear equations essentially depend on the
chosen initial approximation. If this initial approximation belongs to a neighborhood of
two admissible solutions of a nonlinear equation, it is unclear to what solution the iterative
procedure converges. These questions do not arise if we consider the history of the loading
process (performing linearization, stepwise loading) which we are going to implement for
the variational equation constructed above.



Magnetochemistry 2021, 7, 7 10 of 19

Let the variable quantities entering into (12) be represented in terms of their values at
time t∗ (below we will denote them by “∗”) and small increments appearing as a result of
transition from time t∗ to the nearest current time t: ∆t = t− t∗ is a sufficiently small value.
Then, we get

H0 = H∗0 + ε h0, m = m∗ + ε µ, ϕ = ϕ∗ + ε ψ, λ = λ∗ + ε γ, λ3 = λ∗3 + ε γ3,

where ε is a small parameter (positive value) formalizing the concept of proximity of states
at times t and t∗. Then, bearing in mind that

δm = ε δµ, δϕ = ε δψ, δλ = ε δγ, δλ3 = ε δγ3

and retaining in (12) only the terms of the first and second orders of smallness with respect
to ε (so that the variational equation will be linear in the unknowns), we obtain

• variational equation at µ:

ε
( ∫

Ω(in)
[(−µ0 Ms H∗0 +

1
2

µ0 Ms∇ϕ∗ − 2 Kanis (m∗ · pα)pα − λ∗(x)Ms∇) · δµ+

+ 2 Aexch ((∇m∗x) · (∇δµx) + (∇m∗y) · (∇δµy) + (∇m∗z ) · (∇δµz))+

+ 2 λ∗3(x)(m
∗
xδµx + m∗yδµy + m∗z δµz)] dΩ(in) +

∫
Γ

λ∗(x)n ·Ms δµ dΓ
)
+

ε2
( ∫

Ω(in)
[(−µ0 Ms h0 +

1
2

µ0 Ms∇ψ− 2 Kanis (µ · pα)pα − γ(x)Ms∇) · δµ+

+ 2 Aexch ((∇µx) · (∇δµx) + (∇µy) · (∇δµy) + (∇µz) · (∇δµz))+

+ 2 λ∗3(x)(µxδµx + µyδµy + µzδµz)] dΩ(in)+

+ 2 γ∗3(x)(m
∗
xδµx + m∗yδµy + m∗z δµz)] dΩ(in) +

∫
Γ

γ∗(x)n ·Ms δµ dΓ
)
= 0;

• variational equation at ψ:

ε
( ∫

Ω(in)

1
2

µ0 Ms m∗ · ∇ δψ dΩ(in) −
∫

Ω(in)∪Ω(ex)
(∇ δψ) · (∇λ∗) dΩ

)
+

+ ε2
( ∫

Ω(in)

1
2

µ0 Ms µ · ∇ δψ dΩ(in) −
∫

Ω(in)∪Ω(ex)
(∇ δψ) · (∇γ) dΩ

)
= 0;

• variational equation at γ:

ε
( ∫

Ω(in)∪Ω(ex)
∇ϕ∗ · ∇δγ dΩ−Ms

∫
Ω(in)

m∗ · ∇δγ dΩ(in)
)
+

+ ε2
( ∫

Ω(in)∪Ω(ex)
∇γ · ∇δγ dΩ−Ms

∫
Ω(in)

µ · ∇δγ dΩ(in)
)
= 0;

• variational equation at γ3:

ε
( ∫

Ω(in)
((m∗x)

2 + (m∗y)
2 + (m∗z )

2 − 1) δγ3(x) dΩ(in)
)
+

+ ε2
( ∫

Ω(in)
(m∗x µx + m∗y µy + m∗z µz) δγ3(x) dΩ(in)

)
= 0.

Here, the expressions in curly brackets with ε are the variational equations correspond-
ing to the previous step, and in the case of exact solution, they are equal to zero. Therefore,
some authors exclude these terms from the following discussion. Others, on the contrary,
are of the opinion that as a result of an inaccurate solution of the problem at the previous
step, these terms are nonzero and must be taken into account to refine the solution at
the current step. We are not aware of any theoretical estimates concerning this issue or
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comparative numerical calculations made with or without consideration of these terms,
and in our calculations (given below) these terms are taken into account.

The above approach to solving problems describing the behavior of magnetic materials
in a magnetic field, based on minimizing the functional of the total magnetic energy, as well
as the obtained variational equations are verified on the benchmark problem, which is
discussed in the Appendix A.

5. Results of Numerical Simulation

Let us take a grain of a polycrystal or a single crystal Ni2MnGa as a ferromagnetic ma-
terial. Since the characteristic dimensions of large grains are 100–200 microns, and of small
grains are 1–5 microns, we choose a computational region in the form of a L× L square,
where L = 100 nm (two-dimensional formulation) and set periodic boundary conditions

ϕ|Γ+
1
= ϕ|Γ−3 , ϕ|Γ−2 = ϕ|Γ+

4
;

m|Γ+
1
= m|Γ−3 , m|Γ−2 = m|Γ+

4
;

λ|Γ+
1
= λ|Γ−3 , λ|Γ−2 = λ|Γ+

4
;

λ3|Γ+
1
= λ3|Γ−3 , λ3|Γ−2 = λ3|Γ+

4
.

Here,

Γ1 : x = 0, 0 ≤ y ≤ L; Γ2 : y = L, 0 ≤ x ≤ L;

Γ3 : x = L, 0 ≤ y ≤ L; Γ4 : y = 0, 0 ≤ x ≤ L.

The examined region measuring 100 nm × 100 nm is a unit cell, which is duplicated
along the x and y axes, see Figure 1 (white square—unit cell). Arrows are used to represent
the initial distribution of the magnetization vector (average value in the domain), such that
the sample is not magnetized in the absence of an external magnetic field.

�

�

Figure 1. Computational domain is a white square duplicated along the x and y axes.

For Ni2MnGa, saturation magnetization is Ms = 6.015× 105 A/m, magnetocrystalline
anisotropy constant is Kanis = 2.5× 105 J/m 3 [8,16], and the exchange constant is Aexch =
2× 10−11 J/m [8,17].

As noted in [15], the concept of domain wall thickness is a somewhat conditional one,
because it is impossible to precisely determine this thickness due to a smooth change of
magnetization in this area. The order of thickness is determined by the relation (see [12])
δ ≈ √Aexch/Kanis, and for the above material parameters δ ≈ 9 nm. The thickness by itself,
∆, is determined for a 180-degree wall in two ways (see [15]): by the Lilly method ∆L = π δ
and by the Landau–Lifshitz method ∆L−L = 2 δ, which, with account of the above value of
δ, gives ∆L ≈ 28 nm and ∆L−L ≈ 18 nm.
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Let us introduce dimensionless quantities using the characteristic size l0 = 1 nm
(so that there are nine characteristic dimensions per one domain wall) and energy ψ0 =
µ0 M2

s = 4.55× 105 J/m 3. As a result, we get the following dimensionless parameters:

M̃s = 1, K̃anis = Kanis/ψ0 = 0.54, Ãexch = Aexch/(ψ0 l2
0) = 40.

The external magnetic field is H̃0 = H0/Ms.
The problem was solved for a unit 100 nm × 100 nm cell (white square in the Figure 1)

by the finite element method on a regular triangular grid including 10,816 finite elements
(The white square in the Figure 1 was divided into 2704 equal squares, each of which is
divided by diagonals into four identical triangles with two equal sides). The sufficiency
of such number of elements for convergence of the solution was determined from the
numerical experiments. For the vector m we used a quadratic approximation, for ϕ and λ—
a linear approximation, and for λ3—a constant one.

To obtain the distribution of the magnetization vector in the absence of an external
magnetic field, we solved the variational equations only for m and γ3, with the initial
distribution of magnetization being correspondent to the distribution shown in Figure 1.
In 10 steps the accuracy of the solution was 10−4.

To obtain the distribution of the magnetization vector in a magnetic field, we set at each
step an increment of the external magnetic field h0 = 0.01 (modulo) and realized a stepwise
loading. An external magnetic field was applied along the y axis, along the x axis and at
an angle 45◦ to the axes x and y in accordance with the scheme (a)→ (b)→ (c)→ (b)→
(a)→ (d)→ (e)→ (d)→ (a), where (a) is the absence of an external magnetic field, (b)—the
magnetic field is H̃0 = 0.4, (c)—H̃0 = 2, (d)—H̃0 = −0.4, (e)—H̃0 = −2. Figures 2–4 show
the distributions of the vector m in the cell, consisting of two elementary ones, with the
anisotropy axis p directed along the y axis. Red arrows show the characteristic direction of
the magnetization vector in the corresponding region.

Figure 2. Distribution of the magnetization vector m in a magnetic field applied along the y axis:
(a)— H̃0 = 0, (b)—H̃0 = 0.4, (c)—H̃0 = 2, (d)—H̃0 = −0.4, (e)—H̃0 = −2.

The current magnetic state of a ferromagnetic material is characterized by its specific
magnetic domain structure. It varies as a result of the displacement of domain walls,
the growth of some domains at the expense of others, as well as the rotation of the mag-
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netization vector in the domains under the action of an external magnetic field. These
changes depend on the values of the quantities determining the magnetic state of the
material at the current time, as well as on their values at the previous instant of time (on
the history of the process). A strong dependence on the history of the process leads to
a strong magnetic hysteresis. The Ni2MnGa alloy has a weakly pronounced magnetic
hysteresis loop (according to [18], the coercive field strength corresponding to this material
is HC = 20.4 kA/m), i.e., a weak dependence of the current magnetic state on the previous
magnetic history. Therefore, in this work, we do not take it into account and do not dif-
ferentiate magnetization between the points of application of the external magnetic field
(a), (b), (c), and others when performing forward and backward passing through these
points. In the figures given below, the positions (a), (b), (c), etc. are consistent both with the
forward and backward paths of the process (coincide).

Here, in all figures in the absence of an external magnetic field one can observe the
formation of the Neel walls between the domains (a different situation is hardly to be
expected in the case of a two-dimensional formulation). On the average, the specimen
is not magnetized. Under the applied external magnetic field, the magnetization vectors
try to line up with the field, which causes the motion of the magnetic domain walls. As a
result, the specimen acquires magnetization along the applied field.

In Figure 2, corresponding to the case when an external magnetic field is applied
along the p anisotropy axis in the forward or backward direction, the two 180-degree Neel
domain walls of different polarity and oriented parallel to the field meet (see positions (b)
and (c)), which results in the formation of 360-degree wall, in the middle of which there
is a small region of former domains with the magnetization antiparallel to the external
magnetic field. This region serves as a nucleus of magnetization reversal [15] (see path
(c)→ (b)→ (a)→ (d)→ (e)). As a result of magnetization reversal, the two 180-degree Neel
domain walls on the path (d)→ (e), showing different polarity and being parallel to the
field meet again forming a 360-degree wall. They are located elsewhere and have the
polarity opposite to the previous ones. In the middle of this 360-degree wall there is also
a region with a magnetization antiparallel to the external magnetic field, which is now
oriented in the opposite direction (compared to the previous case). This region will also
serve as a nucleus of the next magnetization reversal.

As follows from Figure 2, the 180-degree domain wall has a thickness of∼ 19÷ 22 nm,
which corresponds to the values of estimates obtained above.

In Figure 3, corresponding to the case when an external magnetic field is applied
perpendicular to the anisotropy axis p, one can observe meeting of three Neel domain
walls perpendicular to the field: 90-degree, 180-degree and again 90-degree (90-degree
walls are of the same polarity, and 180-degree wall of a different polarity, see position (c)),
forming, as in the previous case, a 360-degree wall. Under magnetization reversal these
walls, while remaining perpendicular to the field, are displaced (arise at a different place)
and their polarity is opposite to the previous ones (see position (e)). Here, the 90-degree
walls are ∼ 20 nm thick, and the 180-degree walls are ∼ 12 nm thick.

In Figure 4, corresponding to the case when an external magnetic field is applied at
an angle 45◦ to the anisotropy axis p, one can observe a convergence of the 135-degree
and 225-degree Neel domain walls located at the same angle to the field, (see position (c)),
forming, as in the previous cases, a 360-degree wall. During magnetization reversal, these
walls, while remaining at an angle of 45◦ to the field, are displaced (arise at a different
place) and their polarity is opposite to the previous ones (see item (e)). The thickness of the
135-degree wall is ∼ 12 nm, and the 225-degree wall is ∼ 22 nm.
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Figure 3. Distribution of the magnetization vector m in the magnetic field applied along the x axis:
(a)—H̃0 = 0, (b)—H̃0 = 0.4, (c)—H̃0 = 2, (d)—H̃0 = −0.4, (e)—H̃0 = −2.

Figure 4. Distribution of the magnetization vector m in a magnetic field applied at an angle 45◦ to
the x and y axes: (a)—H̃0 = 0, (b)—H̃0 = 0.4, (c)—H̃0 = 2, (d)—H̃0 = −0.4, (e)—H̃0 = −2.

The results obtained using this approach such as the thickness of the domain wall
and the formation of a 360-degree wall are in complete agreement with the known ones
presented, for example, in [12,15,19–22].

As macroscopic parameters, we consider the mean value of the projection of the
magnetization onto the axis along which the external magnetic field H̃0 is applied:

< m|| >= 1/S
∫

Ω
m|| dΩ,
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and the mean value of the projection of magnetization onto the anisotropy axis p, which is
directed along the y axis:

< my >= 1/S
∫

Ω
my dΩ,

where S is the area of the computational domain.
Figures 5 and 6 show the dependences of < m|| > and < my > on the modulus of the

applied magnetic field H̃0.

−2 −1 0 1 2

−0.5

0.0

0.5

along p

45◦ to p

perpend. to p

H̃0

〈m||〉

Figure 5. Curves of magnetization along the external magnetic field.
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−0.5
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0.5
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H̃0

〈my〉

Figure 6. Curves of magnetization along the anisotropy axis.

The case when the external field is directed along the anisotropy axis p (along the
y axis) is denoted by the blue curve, at an angle 45◦ to the axis of anisotropy p—by the
red curve and perpendicular to the anisotropy axis p (along the x axis)—by the green
curve. From these figures it is evident that the magnetic susceptibility (slope of the curve)
is the greater, the smaller is the angle between the axis of anisotropy and the direction
of the applied magnetic field. The hysteresis–free magnetization curve obtained for the
examined material under the action of the external field directed along the anisotropy axis
(blue curve), agrees well with the weakly hysteretic experimental curve given in [18].

6. Conclusions

In this work, a model of the behavior of a ferromagnetic material in an external
magnetic field was developed within the framework of micromagnetism. Minimizing the
magnetic energy functional, we constructed the nonlinear variational equations, which
were numerically implemented by the finite element method using a step-by-step solution
procedure. Initially, the model was applied to adjacent magnetic domains, when the
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domain wall has a zero thickness. This allowed us to describe the formation of the Neel
domain wall of finite thickness between the domains and construct the distribution of the
magnetization vector in it in the absence of an external magnetic field. In this case the
specimen is not magnetized on the average. Taking such domain structure as the initial one,
we investigated its behavior (motion of domain walls and their interaction) and constructed
the averaged magnetization curves under the action of an external magnetic field applied
in different directions. When an external magnetic field is applied, the sample acquires
magnetization along this field. In the case when an external magnetic field is applied along
the anisotropy axis sequentially in the forward or backward direction, the two 180-degree
Neel domain walls meet. They are oriented parallel to the applied external magnetic field,
have a different polarity and forming the 360-degree wall. In the middle of this 360-degree
wall there is a small region of former domains with the magnetization antiparallel to the
external magnetic field. This region serves as a nucleus of magnetization reversal. In the
case when an external magnetic field is applied perpendicular to the anisotropy axis, one
can observe meeting of three Neel domain walls perpendicular to the field: 90-degree,
180-degree and again 90-degree. 90-degree walls are of the same polarity, and 180-degree
wall is of a different polarity. As in the previous case, these walls form a 360-degree wall.
In the case when an external magnetic field is applied at an angle 45◦ to the anisotropy
axis, one can observe a convergence of the 135-degree and 225-degree Neel domain walls.
These walls are located at the same angle to the field and form, as in the previous cases,
a 360-degree wall. Under magnetization reversal these walls are displaced (arise at a
different place) and their polarity is opposite to the previous ones. The results obtained
with this approach (the thickness of the domain wall, the formation of a 360-degree wall)
are in agreement with the ones available in the current literature. This and the verification
performed on the standard problem confirm the adequacy of the approach developed in
the article to solving problems describing the behavior of magnetic materials in a magnetic
field, as well as the correctness of the obtained variational equations.
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Appendix A

Verification of the approach to solving problems describing the behavior of magnetic
materials in a magnetic field, based on minimizing the functional of the total magnetic energy,
as well as the obtained variational equations, is carried out on the benchmark problem muMag
Standard Problem #1 (https://www.ctcms.nist.gov/~rdm/stdprob_1.html).

A rectangular plate with dimensions of 1 × 2 microns and a thickness of 20 nm
made of permalloy is considered. The material parameters were as follows: Aexch =
1.3× 10−11 J/m, Ms = 8.0× 105 A/m, Kanis = 5× 102 J/m 3 (for notation, see the beginning
of Section 4). The easy axes of local material elements (grains) are oriented in the same
direction throughout the material and nominally parallel to the long edges of the rectangle.
At the initial moment of time, the sample is magnetized uniformly along its easy axis.

In this problem, the scalar potential is a continuous function over the entire computa-
tional domain containing a finite-size plate and its surrounding medium, at the boundary
of which ϕ = 0. The magnetic field vector H is discontinuous in the direction normal to
the plate boundary, while its tangential component remains continuous. In contrast to the
field H, the discontinuity in B occurs in the direction tangential to the interface of the plate

https://www.ctcms.nist.gov/~rdm/stdprob_1.html
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and the surrounding medium, while the normal component remains a continuous quantity.
The internal magnetic field, induced in the material, disturbs the external magnetic field,
and this was taken into account when solving the problem.

In the numerical solution of the problem by the finite element method, the area
occupied by the sample and a part of the external space that is 10 times larger than
the sample size were considered. The 2D grid is irregular, denser in the sample and
sparse in the outer space. The number of grid points in the sample is 5987 (11,672 fi-
nite elements), in the external space is 1125. Average cell dimensions is 16 nm × 16 nm.
The problem is solved when the field is applied parallel to the long axis of the rectangle
and when it is applied along the short axis. Figures A1 and A2 show the distribution
of the remanent magnetization vectors in comparison with the results given in lu96a
(https://www.ctcms.nist.gov/~rdm/std1/lu96/lu96a.html#Top). In Figure A1 an exter-
nal magnetic field was applied horizontally from right to left, changes from 0 mT to 50 mT
and back to 0 mT, and distribution of the remanent magnetization vectors corresponds
to the last state. Here there is a quite satisfactory correspondence of our results with the
results given in lu96a.

(a) (b)

Figure A1. Distribution of the remanent magnetization vector after applying the magnetic field
parallel to the long axis: (a) obtained by us, (b) lu96a.

In Figure A2 an external magnetic field was applied vertically from top to bottom,
changes from 0 mT to 50 mT and back to 0 mT, and distribution of the remanent magneti-
zation vectors corresponds to this last state.

Here, in general, there is a correspondence in the distribution of the remanent mag-
netization vectors, but not so satisfactory. We can explain this by the different number of
grid elements in the sample (we used 11,672 while lu96a—1800). In addition, as far as we
understand, lu96a does not take into account the influence of the internal magnetic field,
induced in the material, on the external one.

(a) (b)

Figure A2. Distribution of the remanent magnetization vector after applying the magnetic field along
the short axis: (a) obtained by us, (b) lu96a.

As noted on the site https://www.ctcms.nist.gov/~rdm/stdprob_1.html, applied
above term “nominally parallel” is used to describe the orientation of fields, anisotropy
axes, and sample edges. Since the domain structure can change significantly when the
orientation is changed by just one degree or less, the results of micromagnetic modeling will

https://www.ctcms.nist.gov/~rdm/std1/lu96/lu96a.html#Top
https://www.ctcms.nist.gov/~rdm/stdprob_1.html
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strongly depend on this and can only be experimentally confirmed if the actual orientation
is taken into account. Today, we cannot explain the origin of this instability. This is, most
probably, not a physical phenomenon, but a purely mathematical one—the instability
of the procedure used for numerical implementation of the problem relative to its input
parameters, and this has yet to be dealt with. The differences in the results of solving the
problem under consideration are clearly shown in the table on the site https://www.ctcms.
nist.gov/~rdm/mumag.org.html. This table gives some basic quantities that characterize
the magnetization process, which are obtained for eight different implementations of the
problem under consideration. Our results are closest to those of lu96a (https://www.ctcms.
nist.gov/~rdm/std1/lu96/lu96a.html#Top), both in the description of the distribution
of the remanent magnetization vectors, what was noted above, and in the values of the
remanent magnetization of the entire sample after saturation along the long and short
axes. The table, presented below (Table A1), shows the average values of the components
of the remanent magnetization vectors, and also the values of the coercive forces given
by lu96a and obtained by us. To calculate the coercive forces, the external magnetic field
changed from 0 mT to +50 mT, then from +50 mT to −50 mT and returned back to 0 mT.
As the table shows, the differences between our results and those given in lu96a are not so
significant and can be explained by incomplete correspondence in the problem statement
and different accuracy in its numerical implementation. We believe that the comparative
results presented in Figures A1 and A2 and in the table fully confirm the adequacy of the
approach developed in the article to solving problems describing the behavior of magnetic
materials in a magnetic field, as well as the correctness of the obtained variational equations.

Table A1. Comparison of the obtained values.

Remanent Magnetization Remanent Magnetization Coercive Force Coercive Force
(Long Axis) (Short Axis) (Long Axis) (Short Axis)

lu96a (−0.013, 0.999, 0) (−0.987, 0.152, 0) 329 Oe 97.5 Oe
obtained by us (−0.0095, 0.933, 0) (−0.862, 0.0217, 0) 307 Oe 78 Oe
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