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Abstract: The fabrication of nanostructures with high resolution and precise control of the deposition
site makes Focused Electron Beam Induced Deposition (FEBID) a unique nanolithography process.
In the case of magnetic materials, apart from the FEBID potential in standard substrates for multiple
applications in data storage and logic, the use of this technology for the growth of nanomagnets on
different types of scanning probes opens new paths in magnetic sensing, becoming a benchmark
for magnetic functionalization. This work reviews the recent advances in the integration of FEBID
magnetic nanostructures onto cantilevers to produce advanced magnetic sensing devices with
unprecedented performance.

Keywords: nanomagnetism; focused electron beam induced deposition; nanofabrication; nanolithog-
raphy; magnetic nanowires; three-dimensional

1. Introduction to FEBID and MFM

Focused Electron Beam Induced Deposition (FEBID) is one of the most versatile and
promising technologies for the fabrication of nanostructures, emerging as a complemen-
tary technique to existing fabrication methods. This single-step nanolithography process,
first introduced by S. Matsui in 1984 [1], relies on the decomposition by a finely-focused
electron beam of the molecules of a precursor gas on a substrate, eventually producing a
solid deposit [2–5]. The precursor molecules are delivered locally over the substrate by a
gas injection system (GIS) and adsorbed on the surface, some of them being dissociated
by the electron beam into volatile and non-volatile parts. The non-volatile part of the
gas is deposited whereas the volatile one is pumped out of the working chamber. The
shape of the deposit is determined by the electron beam scan pattern, and the interactions
between the electron beam, substrate, precursor gas molecules, and the growing struc-
ture [6,7]. The diffusion, adsorption, and desorption phenomena of the gas molecules on
top of the substrate and the probability of the secondary electrons generated to break the
molecules bonds are crucial in this nanofabrication process. FEBID has demonstrated to
be remarkably successful in growing nanometer-scale objects and devices with 2D and
3D geometries [8–18], providing the possibility to pattern architectures with high lateral
resolution and on unconventional surfaces. The technique is nurtured by an extensive
catalogue of precursors that enable the deposition of an ever-growing number of materials
and compounds, with a great variety of physical properties, such as metallicity and mag-
netoresistance [2], insulating behavior [19], superconductivity [20], ferromagnetism and
superparamagnetism [21,22], or plasmonic behavior [23], among others.

Specifically, it is worth stressing the use of precursor gas molecules containing mag-
netic elements, such as Co, Fe and Ni [21,24–30], which has allowed a significant progress
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towards the growth of complex-shaped magnetic deposits with high metallic content
and magnetization, as recently reviewed [31,32]. This development has been focused on
the optimization of thin magnetic patterns in 2D. More recently, the investigation has
been extended to 3D FEBID magnetic deposits [33–35], spurred on by promising appli-
cations in scanning probe techniques, such as Magnetic Force Microscopy (MFM) [36]
and Magnetic Resonance Force Microscopy (MRFM) [37], racetrack-type magnetic memo-
ries [14], Hall sensors [11,22], nanomagnetic logic circuits [36,38], superconducting vortex
lattice pinning [39], remote magneto-mechanical actuation [40], etc. However, whereas
FEBID flexibility allows the production of challenging structures with sophisticated ge-
ometries [7,10,12], many applications can be based on the simplest objects, such as vertical
straight nanowires.

MFM is one of the most common techniques used in research and industry for the
characterization of magnetic properties at the nanoscale. To show the potential for the
integration of 3D FEBID ferromagnetic nanostructures in MFM probes, the use of verti-
cal magnetic nanowires [41,42] to functionalize Atomic Force Microscopy (AFM) tips is
reviewed here. Specifically, this combination has been found to improve the performance
of the standard magnetic tips and further progress could have a significant impact in this
field. Based on this concept, the utilization of nanometer-scale force transducers to map
with high resolution and sensitivity the magnetic fields of the sample (rather than magnetic
field gradients) in scanning nanowire magnetic force sensing [43,44] is also discussed.
Finally, the growth of magnetic nanocubes and nanospheres on AFM tips is analyzed as an
application to enhance the performance of MRFM measurements, taking advantage of the
tip–sample interaction for the investigation of spin dynamics [45].

MFM relies on the long-range magnetostatic force between a magnetic sample and
a magnetic probe [46]. The MFM contrast is proportional to the magnetic pole density
at the surface of the magnetic specimen. Therefore, samples with either perpendicular
or in-plane anisotropy can be studied, where the poles are located at the domains or at
the domain walls, respectively [46]. The sensitivity, defined by the minimum detectable
change of the frequency shift, ∆ f , [47] and the spatial resolution, which can reach values
of ~10 nm under optimum conditions [48,49], are limited by different factors such as
the tip–sample distance, the magnetized volume of the tip, the type of cantilever, the tip
magnetic moment, etc. To enhance the MFM performance, some technical limitations, such
as the non-magnetic interactions between the tip and the sample, should be considered in
order to ensure a high magnetic signal-to-noise ratio. Similarly, the characterization could
be improved by reducing the magnetic invasiveness. Additionally, improving the lateral
resolution obtained with the current MFM tips would lead to cutting-edge investigations
in magnetism.

Diverse approaches have been taken to improve the performance of MFM tips [50–52].
The coating with magnetic material of nano-objects located in the apex, such as C nan-
otubes [53], the growth of magnetic nanowires by electrodeposition [54], or the use of
nanoscale magnets sharpened by Focused Ion Beam milling [55] are strategies to reduce
the magnetic material of the probe and consequently optimize the MFM signal. However,
these procedures have not resulted in an improvement of the technique. In view of this,
the development of new systems or refinements of the current sensing devices [21,36] are
required to provide an upgraded and robust measurement method.

This situation has triggered the growth of materials in the form of vertical nanowires
by FEBID as magnetic probes onto AFM cantilevers. A proof-of-concept was demonstrated
for the first time by growing high-aspect-ratio ferromagnetic Co nanowires and analyzing
the tip performance in hard disks reference samples [21,56]. A few years later, the prevailing
spatial magnetic resolution of ~40 nm was improved down to 10 nm by growing higher
purity ferromagnetic Co-FEBID nanowires with thinner diameters [48]. Additionally, Fe-
based deposits were grown on AFM tips correcting the angle formed with respect to the
target sample, inducing an accurate MFM measurement of 3D nanomagnet logic arrays [36].
These pioneering studies pointed out that, due to the high aspect ratio, high coercivity,
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small lateral dimensions, and the precise control of the deposition location, magnetic FEBID
nanowires grown on standard AFM probes are perfect candidates for working as MFM
tips [54,57].

Further efforts to optimize their performance have been reported [58]. In particular,
3D Co and Fe nanowires were grown on various kinds of tips and under different growth
conditions, characterized magnetically, and tested in different environments to compare
their operational performance with that of commercial MFM probes. It was recently shown
that tailored FEBID tips are superior to standard MFM ones in certain applications and can
give rise to a new generation of commercial MFM tips [41]. Furthermore, the use of these
refined MFM tips for studies in non-standard environments such as liquid media could
actively prompt the detection of new phenomena [47]. Moreover, FEBID tips may even be
used in self-sensing cantilevers, which integrate piezoresistors for non-optical detection
that would suffer from electrical shortcut due to magnetic coating [59].

2. Magnetic Force Microscopy Using Tips Grown by FEBID
2.1. Growth and Properties of MFM Tips Grown by FEBID

The different geometries of the commercial probes—the most typical ones being
pyramidal and cone-shaped— require a very sharp tip, i.e., a small radius of curvature
at the apex, to ensure a good spatial resolution both in AFM and MFM measurements.
Although the sensitivity and resolution are also limited by the mechanical properties of the
cantilever and the control electronics, in the MFM case, the magnetic stray field of the tip is
a key parameter. This can be controlled by the modification of the final architecture of the
probes, customizing their magnetic behavior. Particularly, the modulation of the general
aspect ratio and the diameter and shape of the 3D ferromagnetic nanowires at the very end
of the nanowire tip can be carried out by FEBID. This possibility breaks new ground in the
degree of control in the functionalization of MFM probes.

The growth of FEBID nano-objects on the apex of AFM tips requires an accurate
electron beam aberration correction, and a proper charge dissipation during FEBID growth
on the tips would be advisable. For instance, Nanoworld ArrowTM EFM, Budget Sensors®

ElectriMulti75-G, and Bruker probes, as well as tips with strong charging effect such as
Olympus BioLever mini have been proven to be useful, as reported by Jaafar et al. [41]. The
small deposition surface compared to conventional flat substrates reduces the number of
molecules available for decomposition. Under this situation, the angle of the GIS needle
with respect to the horizontal axis becomes increasingly important as it determines the gas
flow quantity [60]. Furthermore, the probe geometry also has a negative impact on heat
dissipation, promoting greater nanowire diameters as the temperature increases, especially
when working at low voltages (~3–5 kV). Nonetheless, this factor also contributes to
increase the metallic purity up to 80 at. % in Co and Fe deposits. Likewise, the control of
the length and the diameter is entirely possible while keeping the voltage constant, mainly
through the deposition time and the electron beam current. Specifically, the reduction of
the nanowire diameter is linked to a decrease of the beam current. Figure 1d–f illustrates
the growth of 3D Co and Fe nanowires at low voltages on different types of probes with
diameters ranging from 40 nm to 90 nm. Even though Scanning Electron Microscopy (SEM)
lateral resolution is below 1 nm, FEBID deposits with such dimensions cannot be fabricated
due to the much larger interaction volume generated by the electron beam. As a result,
nanostructures with sub-100 nm resolution are typically achieved.

The coercive field of the FEBID tips reaches 55–60 mT, under external magnetic fields
applied parallel to the nanowire long axis. In comparison, the commercial MFM tips show
experimental values of 20 mT (Team Nanotec) and 35 mT (Budget Sensors®). Hence, FEBID
tips are more robust upon contrast inversion due to magnetization reversal of the tip caused
by the stray magnetic field generated by the sample.

On the other hand, the sensitivity and image contrast can be compared using a high-
density hard disk as a reference sample. Figure 2 shows similar performance for commercial
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and FEBID tips [41]. However, it should be emphasized that the possibility of tuning the
magnetic properties of FEBID tips is an advantage for high-performance MFM operation.

Magnetochemistry 2021, 7, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. SEM images of (a) Nanoworld ArrowTM EFM, (b) Budget Sensors® and (c) Olympus BioLever 
mini AFM probes, with their corresponding (d,f) Fe and (e) Co nanowires. (a–c,f) adapted from [61] 
and (d,e) reproduced from [41] with permission from the Royal Society of Chemistry. 

The coercive field of the FEBID tips reaches 55–60 mT, under external magnetic fields 
applied parallel to the nanowire long axis. In comparison, the commercial MFM tips show 
experimental values of 20 mT (Team Nanotec) and 35 mT (Budget Sensors®). Hence, FEBID 
tips are more robust upon contrast inversion due to magnetization reversal of the tip 
caused by the stray magnetic field generated by the sample. 

On the other hand, the sensitivity and image contrast can be compared using a high-
density hard disk as a reference sample. Figure 2 shows similar performance for commercial 
and FEBID tips [41]. However, it should be emphasized that the possibility of tuning the 
magnetic properties of FEBID tips is an advantage for high-performance MFM operation. 

Figure 1. SEM images of (a) Nanoworld ArrowTM EFM, (b) Budget Sensors® and (c) Olympus BioLever
mini AFM probes, with their corresponding (d,f) Fe and (e) Co nanowires. (a–c,f) adapted from [61]
and (d,e) reproduced from [41] with permission from the Royal Society of Chemistry.

As illustrated in Figure 3, FEBID nanowires with different properties can be grown
onto AFM probes. For example, either nanowires with extremely thin diameter or very
sharp tip ends [42] or core-shell architectures to avoid the surface oxidation of the mag-
netic core to a non-ferromagnetic material, which degrades the magnetic properties [62].
Nonetheless, achieving the narrowest diameters with high metallic content (and magne-
tization) is not possible, being necessary to reach a trade-off between dimensions and
composition [63]. Indeed, some studies have been devoted to determining the relationship
between FEBID chemical composition, especially in Co, and the electron beam voltage
and current [24,64], precursor gas flux [11], patterning parameters [65], substrate tempera-
ture [64], etc. In the case of Fe, even with a precise control of the growth parameters, the
3D as-grown materials present a moderate purity which can be increased by annealing
treatments [25,66,67]. Moreover, performing future quantitative MFM studies is a potential
advantage of FEBID tips, since the extraction of magnetic quantitative information is one of
the major challenges for the future progress in MFM, which requires tips with well-defined
physical properties [68].

One of the fundamental principles of SEM image resolution consists of the fact that the
higher the accelerating voltage is, the better the resolution of the image becomes. This also
works for the FEBID fabrication process, where the thinnest nanowires can be grown at the
highest accelerating voltages. According to Figure 3d, the shape of the tip end replicates
the top part of the electron beam interaction volume in the deposit [69]. Therefore, the
shape of the nanowire tip end can be modulated by tuning the accelerating voltage. The
upper nanowire part presents a blunt shape when using voltage values in the range 3–5 kV,
as illustrated in Figure 3a; however, it exhibits a smaller diameter and an extremely pointy
end at 30 kV. These features can be appreciated in the thinnest ferromagnetic nanowire ever
grown by FEBID (~22 nm in diameter) [61] imaged in Figure 3b and, more precisely, in the
example of the nanowire routinely grown under these conditions, shown in Figure 3c. In
this case, an overall diameter of around 35 nm as well as a ~8 nm-wide tip were obtained
with high reproducibility. This novel shape configuration is very useful to perform very
high resolution MFM imaging as well as to obtain relatively low tip–sample interaction,
minimizing the influence of the tip on the magnetic state of the sample structures [42].
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A local characterization of these tips was recently performed by Scanning Transmission
Electron Microscopy-Electron Energy Loss Spectroscopy (STEM-EELS) chemical analyses.
A metallic content of ~80 at. % was obtained in the FEBID probes with the best signal-to-
noise ratio [42]. As illustrated in Figure 4a, the compositional profile along the length of the
nanowire as a function of the distance to the tip end reveals that the Fe content decreases
as the tip end is approached. As expected, the higher contribution of the oxidation layer at
the tip end justifies the Fe drop from ~70 at. % in the central region down to ~35 at. % at
3.5 nm from the tip, which corresponds with the thickness of the oxidation shell.

The magnetic characterization by electron holography, illustrated in Figure 4b, allows
for mapping not only the magnetic induction (B) inside of the specimen (~1 T in the central
region) but also the value of the magnetic stray field as a function of the distance to the
tip end. This is particularly useful for the development of quantitative MFM measure-
ments [70]. The magnetic flux lines indicate that the magnetization is high in the thick
central part of the nanowire and decreases close to the narrow tip, giving rise to small
stray fields. Therefore, the tip shape will have a significant impact in reducing the dipole
magnetic interactions between the tip and the specimen. Jaafar et al. analyzed how the
customization of the stray field by accurately controlling the nanowire tip dimensions
impacts MFM experimental conditions [41]. As shown in Figure 5, the standard commercial
MFM probes usually present frequency shifts around 55 Hz, which can be used to calculate
B when using a calibration sample. For comparison, two different FEBID nanowires with
1 µm in length and different diameters and tip end shapes were fabricated. The nanos-
tructures with 50 nm in diameter and blunt shape showed frequencies shifts of ~40 Hz,



Magnetochemistry 2021, 7, 140 6 of 16

whereas the nanowires with a sharp tip end of 7 nm exhibited ~15 Hz. This shows that the
tailoring of the nanowire geometry can be used to adjust the tip–sample interaction.
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5 kV, (b) the thinnest 3D Fe nanowire ever achieved by us, grown at 30 kV, and (c) an Fe nanowire
fabricated with an extremely sharp tip end with only ~8 nm in diameter grown at 30 kV, reproduced
from [61]. (d) Study of the tip end morphology as a function of the voltage, adapted from [59].
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Figure 4. (a) Longitudinal chemical profile of an Fe nanowire grown on top of an AFM probe, obtained
by STEM-EELS. The vertical short dash dot line represents the nanowire apex. (b) Representation of
the magnetic flux lines illustrating the stray field distribution, obtained experimentally by electron
holography, including insets with the TEM image (bottom), and the chemical map showing the
relative composition of Fe, C, and O contents in green, blue, and red, respectively (top). Adapted
from [61] and reproduced from [41] with permission from the Royal Society of Chemistry.
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Figure 5. MFM contrast, related to the stray field values, as a function of the magnetic tip section,
and their corresponding MFM images of a standard commercial MFM probe (red), a tip with an
Fe-FEBID nanowire with a blunt tip end of 50 nm (green), and with a sharp end of 7 nm (purple).
Adapted from [61] and reproduced from [41] with permission from the Royal Society of Chemistry.

On the other hand, in order to provide a quantitative characterization of the magnetic
stray fields, micromagnetic simulations were performed. Firstly, Figure 6a illustrates the
variation of B along the long axis of the nanowire depending on the nanostructure aspect
ratio. Nanowires with 1 µm in length, diameters ranging from 50 nm to 95 nm and B = 1 T
in the central region were modelled. An important difference in the magnetic signal can
be appreciated at the estimated MFM working distance—around 75 nm far away from
the tip— reducing the magnetic induction 3.5 times when decreasing the diameter by half.
Secondly, the stray fields of 50-nm-wide nanowires were calculated as a function of the
length, using values between 300 nm and 1 µm. In this case, the impact of the length of the
nanowire is negligible in the MFM working distance, as shown in Figure 6b. Therefore,
regarding the values of B for the MFM performance, the length of the nanowire is not
as relevant as the diameter. This means that shorter nanowires can be used, which is
an advantage concerning the fabrication time and their stability during MFM operation.
Finally, in Figure 6c the evolution of B as a function of the distance to the apex along the
longitudinal axis direction for a nanowire of 750 nm in length and 50 nm in diameter is
considered. As expected, the results indicate that, as B decreases, the stray field value at
the position of MFM operation decreases. More interestingly, at lower fields an increase of
30% of B leads to an increase of the stray field by a factor of 2 in the MFM working area.
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2.2. Detection of Soft Magnetic Textures

Berganza et al. recently reported the observation and stabilization of magnetic
skyrmions by the magnetic field arisen from these functionalized tips [42]. In this study,
the exploration of magnetic Néel half-hedgehog skyrmions was performed in soft magnetic
polycrystalline permalloy nanodots with diameters below 100 nm by field-dependent
MFM experiments with different magnetic probes [42]. As shown in Figure 7, an in-plane
applied magnetic field changes the magnetic state of the nanostructure from the skyrmion
configuration to the saturated one, but stability of the skyrmion state depends on the MFM
tip used for imaging the process. The magnetic field required for saturation was the highest
with the commercial NanosensorsTM probe, the Co-coated tip by sputtering offered an inter-
mediate value, and the Fe-FEBID nanowire tip exhibited the lowest saturation field. This
can be explained by the fact that the stray field coming from the MFM tip contributes to the
stabilization of the skyrmions [71], being larger for the commercial probes. Consequently,
the saturating field decreases as the generated stray field is reduced.
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with a commercial magnetic tip by NanosensorsTM, a sputtered Co-coated tip and an Fe-FEBID
nanowire tip. All image sizes are 250 × 250 nm2. Reproduced from [42] with permission from the
Royal Society of Chemistry.

FEBID tips allow for imaging the skyrmions with better resolution and with the lowest
invasiveness, maximizing the out-of-plane/in-plane (OOP/IP) stray field ratio. Since the
application of OOP magnetic fields serves to tune the stability of the skyrmions, the FEBID
nanolithography technique can modulate this stabilization by tuning the stray field values.
Therefore, the use of FEBID functionalized probes is beneficial to analyze soft magnetic
textures such as skyrmions without perturbating their magnetic state and to explore their
magnetization dynamics.

2.3. Applications in Liquid Media

Many research lines rely on the investigation of samples which must remain in a liquid
environment to be stabilized, e.g., culture media or dilutions. In these environments, the
sensitivity is inversely proportional to the effective spring constant, K, and heavily depen-
dent on the quality factor, Q, which is linked to the damping coefficient and ultimately to
the density of the liquid [47]. As a result, the signal-to-noise ratio is much worse in liquid
media than in air conditions for the same cantilever. In order to improve the sensitivity,
high resonance frequency and low K are required [72], but a K decrease implies a noise
increment, proportional to (KQ)−1/2.

Hereafter, an improved technology devoted to analyzing biological samples (cells,
tissues, proteins, virus, bacteria, nucleic acids, etc.) with magnetic traces, nanoparticles,
and nanowires is reviewed. These elements can act as contrast agents in nuclear magnetic
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resonance, heating elements in hyperthermia for cancer treatment, magnetic carriers for
drug delivery, etc. Specifically, the magnetic properties which determine their effective
implementation in biomedicine can be examined: magnetic domains configuration at rema-
nence, magnetization reversal mechanism, stray fields, aggregate state of nanostructures
in accordance with their size, level of material functionalization, and so on. For that pur-
pose, the technological challenge of the observation and characterization of these magnetic
samples in liquid media has been recently addressed using Co- and Fe-FEBID nanowire
tips [41].

Figure 8 shows the results obtained on a hard disk in air and liquid conditions for com-
mercial and FEBID tips. The use of a standard NanosensorsTM PPP-MFMR tip [47] demon-
strates a clear deterioration of the signal-to-noise ratio in water environment, whereas
the commercial Team Nanotec tip entails a stable, constant total signal-to-noise ratio in the
liquid medium, with improved sensitivity and worse noise.
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Given the performance constraints of the commercial probes, experiments with FEBID
functionalized tips have been reported using dedicated cantilevers for working in liquid
media. In particular, the Olympus BioLever mini AFM probe with a FEBID nanowire
evidences a remarkable improvement of contrast and a strong noise reduction with respect
to the standard commercial MFM tips in liquid. In fact, the image quality and sensitivity
are approximately the same in both air and water, with the tip showing no aging effects
after one year in storage.

3. Nanowire Magnetic Force Sensors

Magnetic nanowires have also been applied as scanning magnetic force microscopy
sensors. Rossi et al. reported the use of GaAs nanowires with a single-crystalline MnAs
magnetic tip [44]. The combination of the high force sensitivity and the small magnetic tip
results in a potential tool for imaging weak magnetic field nano-patterns. More recently,
Mattiat et al. showed a special type of MFM based on a transducer composed by a
FEBID nanowire also acting as a local magnetic force sensor, with high-quality flexural
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mechanical modes, as shown in Figure 9. In particular, the growth of long Co-FEBID
nanowires (~10 µm)—exhibiting 80 at. % of metallic purity and magnetic switching fields
of around 40 mT—allows for very sensitive detection by means of dynamic cantilever
magnetometry [43]. Due to the force interaction between the stray fields of the sample
and the tip of the nanowire, different changes on the resonance frequency arise, which can
be correlated to the flexural vibration modes of the long, mechanically stable nanowires.
This design allows for reducing the invasiveness, favouring the mapping of magnetic
fields of different magnetization textures with high resolution and sensitivity down to
3 nT·Hz1/2. This study also revealed that FEBID nanowires can be used as nanometer-scale
force transducers, due to their high mechanical quality, and being sensitive to 2D lateral
force and dissipation detection. In addition, this device has the potential capability for
vectorial force sensing in 3D.
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Figure 9. (a) SEM image of a Co-FEBID nanowire. (b) Sketch of the nanowire flexural modes.
(c) Projection of the flexural modes onto the X-Y plane. (d) Illustration of the detection scheme for the
nanowire motion. (e) Thermally excited response of the upper and lower modes at room temperature.
Adapted from [43].

4. Scanning Ferromagnetic Hall Sensors

Scanning probe microscopy has recently spread its scope through the use of advanced
ferromagnetic Hall sensors [73], underpinning their potential for stray field characteri-
zation of magnetic samples minimizing the invasiveness. Gabureac et al. explored the
performance of Hall sensors fabricated with Co-FEBID, with a lateral size of 50 × 50 nm2,
reaching a magnetic field sensitivity of 1 Ω·T−1 and a resolution of 1 µT·Hz−1/2, benefitting
from the intergranular scattering of the microstructure [22]. Years later, FEBID granular
ferromagnets were grown by M. Huth and co-workers to be used in scanning Hall probe
microscopy, exhibiting an extremely high stray field sensitivity and a lateral resolution
of 500 nm, limited due to the probe geometry [73]. As shown in Figure 10, the granular
ferromagnet Hall sensors were grown in the insulating area located between the Cr/Au
electrodes. This design allowed to acquire the first scanning Hall probe images of a mag-
netic tape where bits with different magnetization orientation can be seen with this type of
sensor (see Figure 10c).
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70 µA as the AC reference current. Adapted from [73].

5. Magnetic Resonance Force Microscopy

MRFM encompasses the interaction between tip and sample to unveil the spin dynam-
ics properties of a magnetic sample [74,75]. This imaging technique allows for exploring
the spatial distribution of magnetic resonance modes of nano-objects. It should be high-
lighted the study of permalloy disks measured with 100 nm magnetic lateral resolution for
the detection of spin waves modes localized in the structure [37]. Similarly, as shown in
Figure 11a, Chia et al. reported the fabrication of magnetic Co nanocube tips by FEBID used
for the generation and detection of localized spin wave precession modes in thin films [76].
In this example, an external magnetic field H aligns the tip and sample magnetization in
the same plane. A microwave field H1, perpendicular to H, drives the spin precession near
the ferromagnetic resonance frequency, eventually producing a cantilever deflection. More
recently, Sangiao et al. reported the use of magnetic FEBID Co nanospheres in magnetic
vortex state, see Figure 11b,c, aiming at minimizing the hysteresis effects and favouring
quantitative analyses of the MRFM signals optimized by the high magnetization values of
the functionalized probe [77].
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6. Conclusions

The versatility of FEBID for the functionalization of AFM cantilevers with magnetic
nanostructures has been discussed. Particularly, the reproducible shape tunability enables
the fabrication of 3D ferromagnets, i.e., nanowires, nanocubes, and nanospheres, with accu-
rate positioning onto the probes, as shown for some selected sensing devices in Figure 12.
The geometrical customization has opened new alternatives for different operational modes
in MFM, MRFM, Magnetic Force Sensing and Scanning ferromagnetic Hall sensors, giving
rise to magnetic sensors with high quality performance in terms of resolution, sensitivity,
and mechanical stability.
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The use of alternative nanostructured materials on the probes for distinct function-
alities, especially feasible due to the broad range of available FEBID precursor gases, the
growth of more complex geometries, thanks to the application of computer-aided design
programs, and the implementation of post-growth approaches for further tunability of the
composition, crystallinity, and magnetic properties of the structures have a great potential
for the future. This upcoming research may contribute, for instance, to the development
of quantitative MFM, where the retrieval of magnetic information requires tips with well-
optimized and well-defined properties.
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