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Abstract: Increased request for metal and metal oxide nanoparticles nanoparticles has led to their
large-scale production using high-energy methods with various toxic solvents. This cause en-
vironmental contamination, thus eco-friendly “green” synthesis methods has become necessary.
An alternative way to synthesize metal nanoparticles includes using bioresources, such as plants
and plant products, bacteria, fungi, yeast, algae, etc. “Green” synthesis has low toxicity, is safe for
human health and environment compared to other methods, meaning it is the best approach for
obtaining metal and metal oxide nanoparticles. This review reveals 12 principles of “green” chemistry
and examples of biological components suitable for “green” synthesis, as well as modern scientific
research of eco-friendly synthesis methods of magnetic and metal nanoparticles. Particularly, using
extracts of green tea, fruits, roots, leaves, etc., to obtain Fe3O4 NPs. The various precursors as egg
white (albumen), leaf and fruit extracts, etc., can be used for the „green” synthesis of spinel magnetic
NPs. “Green” nanoparticles are being widely used as antimicrobials, photocatalysts and adsorbents.
“Green” magnetic nanoparticles demonstrate low toxicity and high biocompatibility, which allows
for their biomedical application, especially for targeted drug delivery, contrast imaging and magnetic
hyperthermia applications. The synthesis of silver, gold, platinum and palladium nanoparticles using
extracts from fungi, red algae, fruits, etc., has been described.

Keywords: green synthesis; magnetite; spinel ferrite; metal nanoparticles

1. Introduction

Nowadays, a new page is turning in the history of chemistry, connected with the de-
velopment of a new integrated scientific direction—”green” chemistry. “Green” chemistry
is interdisciplinary: there is an integration of synthetic organic chemistry with analytical
chemistry, physical chemistry, toxicology, microbiology, biotechnology and engineering.
The goal of “green” chemistry is to develop technologies for more efficient chemical reac-
tions. “Green” chemistry aims to prevent pollution in the very early stages of the planning
and implementation of chemical processes and covers all types and aspects of chemical
processes to minimize the environmental risks. The problems within the competence of
“green” chemistry can be categorized into two main areas. The first relates to the processing
and utilization of environmentally hazardous waste and by-products of the chemical in-
dustry. The second, more promising, involves the development of new industrial processes
to eliminate or minimize the formation and use of harmful products [1]. “Green” chemistry
allows to obtain the necessary substance in the safest possible way. It provides the selec-
tion of raw materials and process schemes, which generally exclude the use of harmful
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substances, toxic and hazardous chemicals, and focuses on industrial processes that do not
pollute the environment and lay the responsibility for the products on the scientists and
manufacturers [2].

As a scientific field, “green” chemistry appeared in the United States in the 1990s. Eu-
ropean countries have been implementing the most advanced laws on “green” technologies.
In recent years, new reaction schemes and processes have been developed, designed to
drastically reduce the burden of chemical production on the environment, to minimize the
processing and utilization of hazardous substances and harmful by-products [1]. “Green”
chemistry is already moving in three major directions: new ways of synthesis (using catalysts);
replacement of traditional organic solvents (particularly, the use of supercritical CO2); renewable
source reagents (i.e., non-petroleum products) [3].

In “green” chemistry, fundamentally new constructs such as “ideal process”, “ideal
product” and “ideal consumer” are used [4]. The ideal process is a simple, eco-friendly,
one-stage process, effective at the molecular level, with the use of renewable raw materials,
which provides maximum yield. The ideal product requires a minimum of energy and
packaging, is safe, recyclable and fully degradable by microorganisms [1]. Usually the
main focus is on the production process and the final product, and the consumer is absent
in this scheme. In “green” chemistry, the image of the “ideal consumer” is present—he
uses a minimum number of goods, understands the need to preserve the environment.
New research frontiers and new terms have been introduced into “green” chemistry:
“atom efficiency”, “innate safety”, “product life cycle analysis”, “ionic liquid”, “renewable
energy”, “environmental efficiency”, “process intensification and integration”, etc.

This review is aimed to analysis of modern scientific research of eco-friendly “green”
synthesis methods of magnetic and metal nanoparticles. “Green” nanoparticles are being
widely used as antimicrobials, photocatalysts and adsorbents [5–7]. “Green” magnetic
nanoparticles demonstrate low toxicity and high biocompatibility, which allows their
biomedical application, especially for targeted drug delivery, contrast imaging and mag-
netic hyperthermia applications. The structure and morphology of synthesized magnetic
nanoparticles can be characterized by scanning electron microscopy, transmission electron
microscopy, energy-dispersive analysis, X-ray diffraction analysis, X-ray photoelectron
spectroscopy, FTIR spectroscopy, Raman spectroscopy and magnetic force microscopy.
Magnetic force microscopy (MFM) is a scatter-sensitive technique with a resolution of up
to 10 nm that can detect weak magnetic fields. MFM is a universal method of analysis of
magnetic nanoparticles due to the simple requirements for sample preparation, the ability
to work in air, vacuum or liquid medium [8]. Due to this, MFM is a powerful tool for imag-
ing of magnetic NPs, characterizing their size and morphology. For superparamagnetic
nanoparticles, MFM has been especially useful to evaluate magnetic moment, magnetic
anisotropy, magnetization curves and the effect of aggregation in particles [9]. The ability
of MFM to detect superparamagnetic and low-coercive magnetic nanoparticles and the
interpretation of the obtained MFM images are the subject of many research [10–15]. Torre
et al. [10] demonstrated the ability of magnetic force microscopy (MFM) to quantify mag-
netic textures at room temperature. MFM measurements were performed for magnetic
nanoparticles of iron oxide with a diameter of 11 nm. The obtained images of nanofilms,
which were applied to the substrate, indicated linear magnetic chains of nanoparticles of
several hundred nanometers. In a study [11] the authors quantified the magnetization
of individual magnetic NPs using MFM. Cordova et al. [12] used MFM to analyze the
superparamagnetic iron oxide NPs in air, liquid medium and inside thin polymer films.
The authors of work [13] used MFM to analyze the magnetite NPs with different sizes
(from 10 nm to 100 nm), which are embedded in polymer films with different thickness.
Therefore, MFM allows to quantify the magnetic properties of both single nanoparticles
and nanoparticles in non-magnetic matrices (e.g., polymers).
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2. The Principles of “Green” Chemistry

In 1998 Paul Anastas and John Warner in their book “Green Chemistry: Theory and
Practice”, Ref. [2] formulated 12 principles of “green” chemistry. They recommend the
scientists, industrialists and government officials to direct their activities to reduce or
eliminate the use of hazardous materials and chemical processes. These 12 principles,
due to their relevance, usefulness and specificity, have made a significant contribution to
the expansion and formation of a new philosophy.

The principles are following (Figure 1):

• prevention of waste (chemical synthesis design that prevents waste rather than its
disposal or utilization);

• maximum increase of components—“atom economy” (design of synthesis to maximize raw
materials ratio in the final product with the least or no amount of waste);

• development of less dangerous chemical syntheses (generating and using substances with
minimal or zero toxicity);

• design of safe chemicals and products (chemicals that are effective yet non-toxic);
• use of safe solvents and reaction conditions (minimize or exclude the use of solvents or

other auxiliary chemicals, and if necessary—use the safest of them);
• increase energy efficiency (identify and minimize the consequences caused by using

energy in chemical synthesis. Initiate chemical reactions at room temperature and
pressure, if possible);

• use of renewable raw materials (sources of renewable raw materials are agricultural
products or waste);

• avoidance of chemical derivatives (minimize or eliminate the use of blocking or protective
groups or any temporary modifications, if possible);

• use of non-stoichiometric catalysts (minimization of waste by implementation of catalytic
reactions, use of effective catalysts in small quantities that can promote the reaction
repeatedly);

• design of degradable chemicals and products (non-persistent, which decompose into safe
substances);

• real-time analysis of pollution (elimination or minimization of by-products through
interfering with the process during synthesis);

• minimizing the possibility of accidents (such as releases, explosions and fires) through
designing safer chemicals and their physical forms (solid, liquid or gaseous).
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R.A. Bourne et al. [3] presents 12 principles of “green” chemistry using the abbreviation
“PRODUCTIVELY” (Figure 2). Let us look closely to each of the 12 principles [16,17].



Magnetochemistry 2021, 7, 145 4 of 34Magnetochemistry 2021, 7, 145 4 of 34 
 

 

 

Figure 2. The principles of „green” chemistry. 

2.1. Prevention (Reducing) of Waste/by-Products 

The major principle is called the prevention principle, and the other principles are 

the “how-to’s” to achieve it. The best way is to carry out the synthesis with zero or no 

waste (by-products), because the costs associated with the waste disposal significantly 

increase the total cost of production. Even unreacted raw materials are part of the waste. 

Therefore, we should avoid the generation of waste (or by-products), which causes pollu-

tion when dumped into the atmosphere, sea or land and requires cleaning costs [16]. In-

troduction of the E-factor (“by-products/final product” ratio) by Roger Sheldon of Delft 

University (the Netherlands) was an important innovation of “green” chemistry. It char-

acterizes the loss per 1 kg of target product, allows to compare chemical production tech-

nologies, and is crucial for attracting attention of global chemical and pharmaceutical in-

dustries to the issue of waste [18]. 

2.2. Maximum Inclusion of Reagents (Source Materials) in the Final Product 

When one mole of reagent results in one mole of product, the yield is 100%. Chemists 

around the world consider the reaction quite effective, when the yield is about 90%. How-

ever, product yield calculations can create excessive waste (or by-products). Typical ex-

amples, such as the Grignard or Wittig reactions, confirm those statement. Aforemen-

tioned reactions can result in 100% yield, but ignore the number of by-products. The re-

action is considered “green” if there is a maximal inclusion of precursors in the final prod-

uct [16]. 

The term “atom economy” was introduced in 1973 and has become a basic concept 

among researchers in this field of chemistry. The main goal of atom economy was to over-

pass the limitations of traditional “profitability”, the amount of final products used in cal-

culating the effectiveness of reactions. For example, to calculate yields, chemists consid-

ered the effectiveness and amount of just the basic chemical product they chose (“target 

molecules”), excluding possibly hazardous by-products. The atom economy takes into ac-

count all the components and reagents of the reactions, thus providing a reliable indicator 

of whether pollutants are formed during the reaction. Green chemistry has proven the 

reduction of pollution to be possible through atom economy, which relies on such pro-

cesses as hydrogenation, metathesis and cycloaddition. 
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2.1. Prevention (Reducing) of Waste/by-Products

The major principle is called the prevention principle, and the other principles are the
“how-to’s” to achieve it. The best way is to carry out the synthesis with zero or no waste
(by-products), because the costs associated with the waste disposal significantly increase
the total cost of production. Even unreacted raw materials are part of the waste. Therefore,
we should avoid the generation of waste (or by-products), which causes pollution when
dumped into the atmosphere, sea or land and requires cleaning costs [16]. Introduction
of the E-factor (“by-products/final product” ratio) by Roger Sheldon of Delft University
(the Netherlands) was an important innovation of “green” chemistry. It characterizes the
loss per 1 kg of target product, allows to compare chemical production technologies, and is
crucial for attracting attention of global chemical and pharmaceutical industries to the issue
of waste [18].

2.2. Maximum Inclusion of Reagents (Source Materials) in the Final Product

When one mole of reagent results in one mole of product, the yield is 100%. Chemists
around the world consider the reaction quite effective, when the yield is about 90%. How-
ever, product yield calculations can create excessive waste (or by-products). Typical exam-
ples, such as the Grignard or Wittig reactions, confirm those statement. Aforementioned
reactions can result in 100% yield, but ignore the number of by-products. The reaction is
considered “green” if there is a maximal inclusion of precursors in the final product [16].

The term “atom economy” was introduced in 1973 and has become a basic concept
among researchers in this field of chemistry. The main goal of atom economy was to
overpass the limitations of traditional “profitability”, the amount of final products used
in calculating the effectiveness of reactions. For example, to calculate yields, chemists
considered the effectiveness and amount of just the basic chemical product they chose
(“target molecules”), excluding possibly hazardous by-products. The atom economy takes
into account all the components and reagents of the reactions, thus providing a reliable
indicator of whether pollutants are formed during the reaction. Green chemistry has
proven the reduction of pollution to be possible through atom economy, which relies on
such processes as hydrogenation, metathesis and cycloaddition.



Magnetochemistry 2021, 7, 145 5 of 34

2.3. Prevention or Minimization of Harmful Products

“Green” chemisty’s major principle is to avoid or reduce the formation of hazardous
products. The danger to workers can be decreased by using protective clothing, respirators,
etc. This, however, increases the cost of production. To avoid risks, “green” chemistry has
found a scientific solution to such situations [16].

2.4. Development of Safer Chemicals

A priority is to ensure that the synthesized chemicals (dyes, paints, adhesives, cos-
metics, pharmaceuticals, etc.) are harmless. An example of a dangerous substance is
thalidomide (introduced in 1961) for nausea and vomiting of pregnancy. Has been proven
that the children born to women taking this drug had different birth defects (including miss-
ing or deformed limbs). Subsequently, thalidomide was banned and strict rules for testing
new drugs were implemented. With the development of technology, it has become possible
to produce safer chemicals by manipulating the molecular structure of substances [16].

2.5. Energy Requirements for the Chemical Synthesis

The minimum energy requirement must be adhered to any chemical processes. For in-
stance, if the precursors are soluble in a specific solvent, the reaction mixture must be
heated for some time or until completion. In such sircumstance, the time required to
complete the reaction should be minimal with a minimum amount of energy required.
A catalyst can be used to reduce the energy needs of the reaction. In case of an exothermic
reaction, large cooling is sometimes required. Sometimes the final product must be purified
by ultrafiltration, distillation, or recrystallization. All these stages are energy consuming
and increase the total cost. Final energy requirements can be minimal if the process is
planned so that there is no need for separation or purification [16].

2.6. Selection of Proper Solvent

The chosen solvent should not lead to any environmental contaminations or health
hazards. The use of liquid or supercritical CO2 should be studied. If possible, the reaction
should be performed in the water medium or without a solvent. The best method is to per-
form the reaction in the solid phase. One of the main problems with many solvents is their
volatility, which can be harmful to the health and ecosystems. In order to avoid this, immo-
bilized solvents can be used. They maintain the solubility of the material, are non-volatile
and safe. Immobilization can be carried out by attaching the solid substances to a solid
phase or by binding the solvent molecule directly to the polymer matrix. Several newly
discovered polymeric substances as solvents have been found to be non-hazardous [16].

2.7. Selection of Proper Source Materials

Source materials are derived from renewable or non-renewable materials. Petrochem-
icals are usually derived from crude oil, that is not a renewable source. Raw materials
obtained from agricultural or organic products are called renewable. However, such factors
as crop failure, etc., may interfere with constant supply of agricultural products. Sub-
stances such as carbon dioxide (formed naturally or synthetically) and methane (derived
from natural sources) are in sufficient quantities. They are considered as renewable raw
sources [16].

2.8. The Use of Catalysts

Catalysts promote the reaction without being consumed and included in the final
product. Thus, they should be used whenever possible. The benefits of catalysts include:
(i) better product yield; (ii) the reaction becomes possible in cases where it does not
occur normally; (iii) increased selectivity. In addition, the use of catalysts has significant
advantages in energy demand, better utilization of raw materials and waste minimization.
With advances in the catalysts selectivity, certain “green” synthesis reactions have become
very convenient [16].
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2.9. Biodegradation of Obtained Products

The problem of non-biodegradable products is especially common with insecticides
and polymers. Farmers are using different types of insecticides in order to protect crops
from insects. Widely used insecticides include less stable (carbamates, organophosphates)
and more stable (chlorinated hydrocarbons). Although the latter are certainly effective,
they are usually bioaccumulated in flora and fauna and included in the food chain. The in-
secticides cause a decrease in the population of beneficial insects and animals (honey
bees, butterflies, mites, etc.). Given the above, it is crucial that any synthesized product is
biodegradable and non-toxic [16].

2.10. Strengthening Analytical Methods for Controlling Harmful Compounds

Analytical methods should be designed to require minimal use of chemicals. For ex-
ample, processing some unreacted chemicals to complete the reaction. It is also useful to
place sensors to track the formation of toxic by-products during a chemical process [16].

2.11. Development of Production Units

The importance of accident prevention in production units cannot be overstated.
A number of industrial accidents have occured and caused not only in the loss of thou-
sands of lives but also in lifelong disabilities. Production facilities should be fabricated
to exclude the accidents possibility caused by toxicity, explosions, fires, etc., during op-
eration [16]. Many industrial enterprises have welcomed the proposed 12 principles and
have made some progress in improving the safety of their chemical plants. For example,
the world-famous company Pfizer has developed a new technology for the production of
sildenafil citrate. While the old technology required 1300 L of solvent containing chlorine,
the new—only 6.5 L of safe solvent. As a result, the mentioned E-factor of such production
decreased from 105 to 6, and the pharmaceutical giant itself received a prize from the
British government [3].

3. Raw Materials for “Green” Chemistry
3.1. Transition to Renewable Raw Materials

During last 80 years, the chemical industry has been based on natural gas and crude
oil as the main raw sources. However, today there is a trend towards transition from
fossil to renewable raw resources, such as carbohydrates and biomass-derived triglyc-
erides [18]. A partial transition to renewable energy sources is desirable for such reasons as
biocompatibility, biodegradability and lesser toxicity. Products based on renewable raw
materials are obtained from carbon dioxide and water via photosynthesis and after being
used, are eventually returned to the biosphere as CO2 and H2O through biodegradation.
They are becoming more reliable and cheaper compared to the rapidly increasing gas
and oil prices. The developing of “green” products, which can replace petroleum-based
products and the implementing of «green synthesis» methods for the chemicals production
from biomass, are the main in the transition to renewable raw materials. For example,
the catalysts (like modified corn starch with surface -SO3H/-NH2 groups) for chemical
reactions can be obtained from biomass [18,19].

3.2. Biological Components for “Green” Synthesis

In order to obtain “green” nanoparticles with required shape, size, and properties,
two synthesis principles are being considered: “top-down” and “bottom-up” [20]. In the
“bottom-up” approach, the NPs are formed first, and then assembled into the final material.
The benefit of the „bottom-up” principle is the opportunity of obtaining small metal NPs
with uniform chemical composition. In the „top-down” approach, the source material is
reduced in size by physical (e.g., mechanical) or chemical methods. The main disadvantage
of this approach is the defects of the material surface, which can significantly affect the
properties of metal nanoparticles [21].
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The environmentally friendly and sustainable synthesis methods are using in “green”
chemistry in order to prevent the formation of toxic by-products [22–24]. Different biolog-
ical materials, such as plant extracts, algae, fungi, bacteria, etc., are used in the “green”
synthesis of metal and metal oxide NPs [25–36]. The use of plant extracts is fairly easy for
obtaining NPs on a large scale, compared to the synthesis with fungi and bacteria [20,37,38].

Various factors (pH, pressure, temperature, solvent type) affect the “green” synthesis
techniques. However, the key role is belongs to the phytochemicals, which are presented
in plant extracts (roots, leaves, stems, fruits): ascorbic acids, phenols, carboxylic acids,
terpenoids, amides, flavones, aldehydes, ketones etc. [39–42]. These components reduce
metal salts to metal NPs [20]. There are different mechanisms of NPs formation using mi-
croorganisms [38]. A huge variety of nature biological materials, including plants [43–51],
algae [52–56], fungi [57–61], yeast [62–65], bacteria [66–69], viruses [70], etc., can be used
for the synthesis of “green” NPs (Figure 3).
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3.2.1. Bacteria

Bacteria are widely used for genetic engineering, bioremediation and bioextraction.
Various types of bacteria are able to reduce metal ions and are important in NPs obtaining.
In particular, prokaryotic bacteria and actinomycetes are widely used for the synthesis of
metal or metal oxide NPs [20]. Some examples of bacterial strains that are widely used
for the obtaining of bio-reduced silver NPs with different size and morphologies include:
Shewanella oneidensis, Arthrobacter gangotriensis, Enterobacter cloacae, Bacillus cecembensis,
Bacillus indicus, Bacillus amyloliquefaciens, Bacillus cereus, Lactobacillus casei, Escherichia coli.
For the synthesis of AuNPs, the following bacteria are used: Plectonema boryanum UTEX 485,
Rhodopseudomonas capsulate, Shewanella alga, Bacillus subtilis 168, Desulfovibrio desulfuricans,
Bacillus megaterium D01 [21].

3.2.2. Fungi

Fungus-mediated metal/metal oxide NPs biosynthesis is also very productive for
obtaining monodisperse NPs with desired morphologies. They are preferable for the
production of metal and metal oxide NPs because of various intracellular enzymes. Proper
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fungi can synthesize more nanoparticles than bacteria. Furthemore, the presence of re-
ducing components, enzymes, proteins in their cells grants them advantage over other
organisms. The probable mechanism of metal nanoparticle formation is an enzymatic re-
duction (reductase) in the cell wall or inside the fungal cell [20]. A clear advantage of fungi
in the synthesis of nanoparticles is the simplicity of their scaling (e.g., using the method of
thin solid substrate fermentation). The fungi are highly effective secretors of extracellular
enzymes. Thus, it is easy to obtain large-scale production of enzymes. More advantages
of using fungi in the “green” synthesis of metal nanoparticles include economic viability
and easy biomass handling. However, there is a significant disadvantage of using these
bioformations in the synthesis of nanoparticles as the genetic manipulation of eukaryotes
is much more complex than prokaryotes [21].

3.2.3. Yeast

Yeast is a unicellular microorganism that is present in eukaryotic cells. Only 1500 species
of yeast have been identified. Numerous research groups have reported the successful
synthesis of nanoparticles/nanomaterials using yeast. Many different types are used to
produce countless metal nanoparticles [20,62].

3.2.4. Plants

Plants can accumulate heavy metals in leaves, roots, fruits, etc. Therefore, synthesis
using plant extracts attract attention as simple, effective, cheap and feasible methods for
obtaining nanoparticles [71–73]. Various plants can be used for reduction and stabilization
of metal nanoparticles during synthesis. Many researchers use “green” synthesis to obtain
metal oxide NPs using plant extracts for varius applications [74–78]. The plant extracts are
mixed with the solutions of metal precursors under different reaction conditions [79–82].
Such parameters as temperature, pH, metal salt concentration, types and concentration
of phytochemicals affect the stability and the rate of NPs formation. Biologically active
compounds found in plants (Figure 4) due to the presence of functional groups are able to
reduce metal ions much faster than bacteria or fungi. Amides, carboxylic acids, aldehydes,
ketones, sugars, terpenoids and flavones are among essential phytochemicals, which are
responsible for the NPs bioreduction [83–86].
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Plants contain biologically active compounds (carbohydrates, coenzymes and proteins)
with excellent ability for the reduction of metal salts to NPs [87,88]. The syntheses of
gold [89–94] and silver [95–101] nanoparticles involving plant extracts were the first to be
studied. Various plants are used: lemon grass (Cymbopogon flexuosus), mustard (Brassica
juncea), coriander (Coriandrum sativum), grape (Vitis), Ginkgo Biloba, Cydonia oblonga,
neem (Azadirachta indica), lemon (Citrus limon), tulsi (Ocimum sanctum), oats (Avena sativa)
and aloe vera (Aloe barbadensis). The Zn, Ni, Co and Cu NPs is obtained using sunflower
(Helianthus annuus), alfalfa (Medicago sativa) and mustard (Brassica juncea). ZnO NPs were
also obtained from a wide number of plant extracts, such as green tea (Camellia sinensis),
China rose (Hibiscus rosa-sinensis), copperleaf (Acalypha indica), coriander (Coriandrum
sativum) and crown flower (Calotropis gigantea) [20,102–104].

3.3. Solvent-Based ”Green” Synthesis”

Solvent systems are the main components in the synthesis process. Most common
solvents are harmful. One of the well-known solvents is benzene, which causes cancer
in humans. Some of the aromatic solvents, such as toluene, can cause brain damage,
affect speech, vision, and cause problems with kidney. Halogen-containing solvents,
such as dichloromethane, carbon tetrachloride, perchloroethylene and chloroform, are also
commonly used and having been recognized as carcinogens [16].

Water is an ideal solvent, as it is the cheapest and most available, and has been used in
the synthesis of various nanoparticles since the beginning of nanoscience and nanotechnol-
ogy [20]. Carbon dioxide is a universal solvent, which is used as liquid CO2 or supercritical
CO2. The gas usually turns into a liquid state after increased pressure. However, if the CO2
is put at a temperature above 31 ◦C and at a supercritical pressure equal 7.38 kPa, a super-
critical liquid is formed [16]. Supercritical and ionic liquids are some of the best solvents
applied in „green” synthesis. Ionic liquids consist of ions with melting points below 100 ◦C.
They are called „ionic liquids at room temperature”. The ability of ionic liquids to be
both reducing and protective agents simplifies the process of nanoparticle synthesis. Ionic
liquids can be hydrophilic or hydrophobic based on the anions and cations nature [20].
The advantages of using ionic liquids as solvents are: (i) easy solubility of many organic
compounds, metals and gases in ionic liquids; (ii) constructive thermal stability when
operating in a wide temperature range (ionic liquids have a 3–4 times larger temperature
range of synthesis, compared with water); (iii) ionic liquids do not coordinate, compared
to other polar solvents or alcohols; (iv) ionic liquids do not evaporate as volatile organic
solvents; (v) ionic liquids are amphilites due to the presence of cations and anions [20].
However, the main disadvantage of ionic liquids is their non-biodegradability. Thus the
new ionic liquids with high biodegradation efficiency are being developed.

4. “Green” Synthesis and the Use of Magnetic Nanoparticles
4.1. Effect of Magnetic Nanoparticles on Environmental Restoration

In recent years, the environment has been polluted due to the excessive use of fertiliz-
ers and pesticides [105–108]. Extensive research work is underway to study various aspects
of environmental restoration using magnetic nanoparticles, which includes cleaning the
atmosphere, soil, sedimentary rocks, groundwater and surface water [109]. The synthe-
sis of magnetic nanoparticles is the subject of number of systematic research related to
their technological applications [110]. Magnetic nanoparticles have demonstrate high
potential in environmental and biomedical applications [109,111,112]. Magnetic NPs are
able to detoxify the environment due to the high specific surface area. They act as a “su-
perabsorbent” for many contaminants, converting them into non-toxic forms. Magnetic
nanoparticles are usually consists from Fe, Ni, Co or their oxides, such as magnetite (Fe3O4),
maghemite (γ-Fe2O3), cobalt ferrite (CoFe2O4) etc. They can be controlled by magnetic
fields [109]. The earliest reports of the synthesis of magnetic iron oxide particles, which
form relatively stable colloids, date back to the 1930s. The first stable suspension of mag-
netic particles was obtained in 1965 by Steve Papell. His magnetic fluid was a dispersion of
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crushed particles of magnetite (Fe3O4) (diameter <25 mm) modified with oleic acid. These
particles were dispersed in non-polar solvents (carrier), forming a stable magnetic fluid,
which was used to give the fuel its magnetic properties. Rosensweig obtained several
types of magnetic fluids based on the dispersion of crushed Fe3O4 particles in various
carriers, such as kerosene, water, fluorocarbons and esters. In 1982, Massart obtained
magnetic fluids by chemical means, which involved the co-precipitation of Fe(II) and Fe(III)
hydroxides, and modified the co-precipitation method to obtain ultrastable and highly
concentrated magnetic fluids with different magnetic particles based on spinel ferrites,
such as (M1−x

2+Fex
3+)A[Fe2−x

3+Mx
2+]BO4 (M = Mn, Co, Ni, Cu, Zn). The stability of such

dispersions is achieved via hydrothermal treatment of samples with Fe(NO3)3, which
leads to the formation of a protective layer rich in iron, which passivates the nanoparticle
surface [110]. However, these techniques do not allow good control of the nanoparticles
morphology. Therefore, the researchers’ efforts were focused on finding ways of synthesis
where better control of the size and shape of magnetic nanoparticles can be achieved.
Many scientific studies present different concepts for controlling the morphology of syn-
thesized magnetic nanoparticles, but none of them fully meet all the principles of “green”
chemistry [110]. There are several types of magnetic nanoparticles: ferrites, core-shell NPs
(magnetic core plus shell from SiO2, for example), metal NPs (are pyrophoric and react to
oxidants, what complicates their use and causes undesired side effects) etc. [113]. Magnetic
NPs, coated with SiO2, have a few advantages over metal nanoparticles: higher chemical
stability; narrow size distribution; higher colloidal stability; adjustable magnetic moment
by the size of the nanoparticle cluster; preserved superparamagnetic properties; the SiO2
surface allows direct covalent functionalization [113].

4.2. Superparamagnetic Iron Oxide (Magnetite) Nanoparticles and Their Application

Magnetite Fe3O4 is a most common natural iron oxide with inverse spinel structure.
The ferrous (Fe2+) ions occupy half of the octahedral positions of Fe3O4 spinel structure
due to the higher field stabilization energy of black crystalline substances, and Fe3+ occupy
the remaining octahedral positions and all tetrahedral positions. The magnetic behavior
of Fe3O4 nanoparticles strongly relies on the synthesis method. In addition, the NPs
morphology are key to magnetic properties of magnetite. Therefore, for better application,
it is necessary to determine the optimal parameters of Fe3O4 nanoparticles [114].

Superparamagnetic Fe3O4 NPs are well known due to their unique properties: biodegrad-
ability, biocompatiblity and non-toxic effect. If the nanoparticle size less than 50 nm in
diameter, they are suitable for effective endocytosis with the use of drugs. Therefore,
many synthesis methods (co-precipitation method, sol-gel method, hydrothermal synthe-
sis, solid-state synthesis, flame spraying synthesis, thermal decomposition, solvothermal
synthesis, etc.) to obtain Fe3O4 nanoparticles with the desired properties have been re-
ported [114]. Figure 5 shows the possible use of Fe3O4 nanoparticles, namely: as a catalyst,
for water purification (removal of heavy metal ions), lithium-ion batteries, biomedical
applications, tissue engineering etc. All these studies show promising results and provide
a platform for Fe3O4 nanoparticles, whose unique features provide great potential for their
widespread use.
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Maghemite (γ-Fe2O3) is isostructural with magnetite, but it has cation vacancies and
quite similar general properties, even though maghemite is generally less magnetic but
more stable than magnetite. It can be obtained by direct oxidation of magnetite. Although
maghemite does not always need a shell for stabilization or a graft to the surface with
polymers (such as polyethylene glycol), they are often used in the biological system and
increase the half-life of nanoparticles in the blood. The increase in half-life is usually
associated with a delay in the opsonization process, in which particles are targeted by
phagocytic immune cells, resulting in rapid clearance to the liver or spleen through the
reticuloendothelial system. Another way to increase the half-life is to add a biomolecular
corona that interacts with biological systems. This corona can be the main element of the
biological identity of the nanoparticle [115].

The “green” synthesis of magnetic nanoparticles uses a “bottom-up” approach, when
metal atoms gather and form clusters, and then NPs [116–124]. Biologically active sub-
stances, which are presented in “green” sources, can reduce and stabilize nanoparticles
during synthesis. This allows to control their shape and morphology required for specific
applications [114,125–129].

4.3. ”Green” Synthesis of Magnetic Fe3O4 Nanoparticles

Here are some examples of using “green” synthesis to obtain magnetic Fe3O4 nanopar-
ticles, and their practical application (Figure 6). Venkateswarlu et al. [130] reported a
removal of Pb(II) using DMSA-modified Fe3O4 (DMSA = dimercaptosuccinic acid). Fe3O4
were obtained by “green” method using Punica Granatum peel extract from FeCl3·6H2O and
CH3COONa precursors. Then, 0.926 g of dried product (Fe3O4) and 0.7288 g of DMSA were
added to 40 mL of double distilled water, mixed together with ultrasound for 10 h at room
temperature, and the pH was adjusted to 8 by adding 0.01M NaOH solution dropwise.
After 10-h reaction, the obtained DMSA@Fe3O4 were separated under an external magnetic
field, washed and dried at 90 ◦C in vacuum. These magnetic DMSA@Fe3O4 nanorods
were used to remove Pb(II) from water medium. The adsorption capacity was equal to
46.18 mg/g at a dosage of 0.1 g/L and T = 301 K. The experimental data corresponded to
the kinetic model of the pseudo-second order. Figure 6a shows the magnetic properties
DMSA@Fe3O4 magnetic nanorods (MNRs) and Figure 6b shows TEM image of Fe3O4 and
DMSA@Fe3O4 MNRs. The results indicate that the synthesized biogenic DMSA@Fe3O4
nanorods could be used as promised adsorbent for the Pb(II) removal.
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Niraimathee et al. [131] obtained iron oxide NPs using iron sulfate (FeSO4·7H2O) and
an aqueous extract of Mimosa pudica root containing mimosin, which acts as a reductant.
IR spectroscopy approved the presence of biologically active plant molecules on the iron
oxide NPs surfaces. The obtained iron oxide NPs can be used directly in the targeted
delivery of pharmaceuticals.

Lunge et al. [132] successfully synthesized magnetic Fe3O4 NPs (MION-Tea) using
tea waste as green reductant. MION-Tea exhibited supermagnetic nature (Figure 6c) and
reveals the cuboidal/pyramidal shaped structure of Fe3O4 (magnetite) crystals. TEM anal-
ysis of MION-Tea shows that the formed NPs are in the range of 5–25 nm (Figure 6d).
MION-Tea NPs were investigated as adsorbents for As(III) and As(V) removal from water
medium. The adsorption capacity was 188.69 mg/g for As(III) and 153.8 mg/g for As(V).
Comparison with known adsorbents revealed that MION-Tea has potential for the As(III)
and As(V) ions removal.

Bahadur et al. [133] performed a detailed examination of the optical, thermal, mag-
netic and dielectric properties of citric acid modified superparamagnetic Fe3O4 NPs (Cit-
USPMNs), obtained via a “green” co-precipitation route. Lemon juice was used as a source
of citric acid. Cit-USPMNs were superparamagnetic with low coercivity and saturation
magnetization from 31.4 emu/g to 61.8 emu/g (Figure 6e). The size of Cit-USPMNs was in
the range of 11–15 nm (Figure 6f).
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Figure 6. (a) VSM of DMSA@Fe3O4 MNRs. Upper inset shows DMSA@Fe3O4 MNRs dispersed in water and its magnetic
separation and lower inset shows the enlargement of the hysteresis loop at low magnetic field (Adapted with permission
from [130], Elsevier, 2019); (b) TEM image pattern of DMSA@Fe3O4 MNRs (Adapted with permission from [130], Elsevier,
2019); (c) VSM Magnetization curve of MION-Tea (insight nanoparticles attracted by magnetic retriever) (Adapted with
permission from [132], Elsevier, 2014); (d) TEM image of MION-Tea (Adapted with permission from [132], Elsevier, 2014);
(e) M-H loop for Cit-USPMNs (11nm) at room temperature (Adapted with permission from [133], Elsevier, 2017); (f) TEM
image of Cit-USPMNs (11nm) (Adapted with permission from [133], Elsevier, 2017).

Kanagasubbulakshmi et al. [134] revealed that the Lagenaria siceraria leaf extract is
suitable for “green” synthesis of magnetite nanoparticles with enhanced antimicrobial
properties. The synthesized Fe3O4-NPs were of cubic shape and the size range from
30 to 100 nm. Phytochemicals, which are presented in the leaves, act as reducing agents.
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The –OH and –COOH functional groups present in nanoparticles make them hydrophilic,
so they do not require additional functional modification. The antimicrobial properties of
the “green” Fe3O4-NPs were investigated against gram-negative (E. coli) and gram-positive
(S. aureus) bacteria strains. It was concluded that “green” Fe3O4-NPs demonstate great
potential for biomedical applications.

Padhi et al. [135] reported a new single-stage hydrothermal synthesis of photocatalyt-
ically stable and magnetically separated g-Fe3O4/2RGO nanocomposite in the presence
of Averrhoa carambola leaf extract (as a natural surfactant for multipurpose use) for water
purification. The adopted hydrothermal process leads to good incorporation of g-Fe3O4
nanoparticles with an average size of 22 ± 2 nm into 2D sheets of graphene oxide (RGO).
Averrhoa carambola leaf extract was crucial in modifying the structural, optical and electronic
properties of Fe3O4 nanoparticles. At room temperature, the g-Fe3O4/2RGO nanocom-
posite showed 97% in Cr(VI) reduction (50 mg/L in 1 h) and 76% in phenol degradation
(10 mg/L in 2 h) under visible light. A higher activity of g-Fe3O4/2RGO is due to the
presence of RGO in situ, which led to better separation of photoexcited charge carriers
(e−/h+). In addition, g-Fe3O4/2RGO nanocomposite exhibited better antimicrobial activity
against three bacterial pathogens, such as Staphylococcus aureous (MTCC-737), Bacillus sub-
tilis (MTCC-736) and Escherichia Coli (MTCC-443), compared to GO and standard antibiotics
(30 µg). The study proves g-Fe3O4/2RGO nanocomposite to be potentially useful as a good
antibacterial agent.

Kataria et al. [136] synthesized new biogenic “green” magnetic iron oxide NPs,
loaded with sawdust carbon (SC) and functionalized with EDTA (EDTA@Fe3O4/SC),
to remove Cd(II) from the aqueous medium. The adsorption capacity toward Cd(II) ions
was 63.3 mg/g. The results of regeneration studies proved the modified EDTA@Fe3O4/SC
to be promising, cheap and eco-friendly for the adsorption of heavy metals from water
environment.

Ahmadian-Fard-Fini et al. [137] prepared the Fe3O4/carbon dots nanocomposite for
E.coli bacteria detection. Carbon dots (CDs) were obtained via hydrothermal method using
extracts of grapes, lemon and turmeric in the presence of ethylenediamine. Next, Fe3O4
(magnetite) nanoparticles were obtained using these biocompatible retaining reagents.
Figure 7a shows VSM curve of Fe3O4-carbon dot nanocomposite, and Figure 7b shows
TEM image of magnetite-carbon dot core-shell nanocomposite. The results reveal the
quenching of the photoluminescence of nanocomposites by increasing the number of
bacteria.

Nnadozie et al. [138] reported a “green” biosynthetic co-precipitation of magnetite
nanoparticles using Chromolaena odorata root extract, which acted as a precipitator and
binder for nanoparticles. The extracted phenolic plant component was alkalized with 28%
aqueous ammonia solution to pH 13, and added while stirring into the precursor solution
(Fe2+ and Fe3+ ions in a 1:2 molar ratio) at 6 mL/min rate. The experiment was performed
under a steady stream of nitrogen to avoid oxidation. The particle sizes were in the range
of 5.6–16.8 nm. The peaks of the particles’ absorption bands at 205 nm and 291 nm are
attributed to the oscillations of the surface plasmons, and the calculated band gap of the
particles is 1.97 eV. Based on the extract, 30-fold single-phase magnetite nanoparticles are
formed with a reduced band gap compared to the raw Fe3O4 nanoparticles. The obtained
NPs demonstate good water-disperse and hydrophilic properties.

Khatami et al. [139] synthesized superparamagnetic iron oxide nanoparticles (SPIONs)
using a zero-calorie natural sweetener (Stevia) for reduction and stabilization. SPIONs
(less than 25 nm) were very stable due to the biomolecular coating, as the zeta potential
(−41.1 mV) creates opposite forces between the nanoparticles and prevents them from
assembling. Biogenic SPIONs were able to counteract the effects of oxidative metabolites,
according to a study of antioxidant activity. Figure 7c shows VSM magnetization curves
of iron oxide nanoparticles. The FE-SEM image of the synthesized SPIONs is shown in
Figure 7d. Great magnetic and catalytic properties, biocompatibility and low toxicity prove
their potential for biomedical applications.
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The food industry expresses great interest in β-glucosidase enzyme because of its role
in the transformation of food to obtain functional foods. Moradi et al. [140] covalently im-
mobilized β-glucosidase on aminotanic acid modified with magnetic Fe3O4 nanoparticles
(ATA-Fe3O4 MNPs) as a biocompatible nanoplatform with a modified polyaldehyde pullu-
lan to increase the ability and strength of the nanoparticle to bind the enzyme. The highest
percentage of loading and immobilization yield was obtained with a solution of 0.1 mg
of enzyme per 1 mL of citrate buffer (pH = 6; 1 M), a solution of citrate buffer carrier
(ATA-Fe3O4)—10 mg/3 mL (pH = 6; 1 M) and a solution of polyaldehyde pullulan—20%
of the total volume of the reaction system. Optimal pH and temperature values were found
for free enzyme (pH = 5; 30 ◦C) and immobilized enzyme (pH = 6; 40 ◦C). The immobilized
β-glucosidase enzyme retains its activity up to 83% after 10 cycles, so its immobilization
by this method is an effective way for improving the properties of the enzyme. Magnetic
hysteresis loops of the Fe3O4 MNPs, ATA-Fe3O4 MNPs, BGL-ATA-Fe3O4 MNPs are shown
in Figure 8a. Figure 8b shows TEM image of the ATA-Fe3O4 MNPs.

Karade et al. [141] received magnetic Fe3O4 nanoparticles (with particle sizes from
∼20 to 25 nm) via modified “green” synthesis method using green tea extract as a reductant
and ethylene glycol as a solvent. As observed, the reaction time strongly affected the mag-
netic and structural properties of magnetic nanoparticles. As time increased, the crystallite
size also increased from 7.5 to 12 nm with an improvement in saturation magnetization
(Figure 8c,d). Magnetic measurements revealed that nanoparticles were superparamagnetic
at room temperature, ferromagnetic and superparamagnetic—at 60 K. Magnetite magnetic
nanoparticles synthesized using green tea extract are promised for bioapplication due to
their biocompatibility and high magnetization.

Fatimah et al. [142] used Parkia speciosa husk extract for the synthesis of magnetic
nanoparticles. The obtained NPs consisted from magnetite and hematite particles with
sizes in the range of 10–80 nm. The magnetic NPs exhibited an excellent photocatalytic
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properties in the degradation of the bromophenol blue dye under UV and visible light.
The synthesized “green” nanoparticles are promising as photocatalysts in the degradation
of dyes from wastewater.
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4.4. “Green” Synthesis of Spinel Magnetic Nanoparticles

Spinel ferrites with the general formula AB2O4 have great chemical, catalytic, ad-
sorption and magnetic properties [143–148]. Spinel ferrites have attracted much attention
due to their thermal and chemical resistance [149–154]. Nickel ferrite (NiFe2O4) is a major
representative of spinel ferrites with the inverse spinel structure, which demonstrates
ferromagnetism, originating from the magnetic moment of the antiparallel spins of metal
ions (Ni2+ and Fe3+) [155]. Udhaya et al. [156] developed a simple auto-combustion method
using albumen for the synthesis of nanocrystalline nickel ferrite (NiFe2O4). Egg white
(albumen), which is used in the “green” synthesis, plays the role of fuel in the process
of auto-combustion. The results of powder analysis and IR spectroscopy indicated that
the synthesized nanoparticles are single-phase and the spinel structure is cubic with a
particle size of 23 to 47 nm. The dielectric properties of the nickel ferrite were measured
for different frequencies from 100 Hz to 1 MHz. It was concluded that the alternating
conductivity increases with increasing frequency.

Al-Hunaiti et al. [157] developed a “green” synthesis of magnetic CuFe2O4 NPs with
an average size of 20 nm using Azadirachta indica extract. Cupper ferrite NPs were tested
as an effective catalyst for the arylalkanes oxidation without solvents, especially in direct
oxidation of toluene to obtain the desired benzoic acid in mild and eco-friendly conditions.

Routray et al. [158] synthesized nanosized CoFe2O4 via automatic combustion method
using Aloe vera and the solutions of precursors Fe(NO3)3·9H2O and Co(NO3)2·6H2O. FE-
SEM microphotographs revealed the formation of a bud-like structure and the resulting
particle size was approximately 50–65 nm. Magnetic properties, especially saturation
magnetization, remanence magnetization and coercivity, were examined from the M-H
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loops: 72.23 emu/g, 31.29 emu/g, 1519 Oe, respectively. Furthermore, a massive dielectric
constant, low dielectric loss and variable conductivity of CoFe2O4 nanoparticles depended
on the frequency (100 Hz–1 MHz), preparation method and grain size.

Madhukara Naik et al. [151] prepared spinel zinc ferrite (ZnFe2O4) nanoparticles
using the juice of Limonia acidissima (wood-apple). ZnFe2O4 nanoparticles were obtained
by adding zinc nitrate and ferric nitrate to 5 mL of Limonia acidissima juice (reducing agent).
The proposed method leds to obtain ZnFe2O4 nanoparticles with an average crystallite
size of 20 nm (Figure 9a). The study of magnetic properties reveals a high saturation
magnetization of ZnFe2O4. ZnFe2O4 nanoparticles exhibited effective photodegradation
of Evans blue and methylene blue dyes when exposed to visible light. Furthermore,
the antibacterial activity (Figure 9b) of the nanoparticles was investigated against both
gram-negative and gram-positive bacteria.
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Ciprofloxacin (CIP) is an antibiotic that is widely used to treat infections. It is mostly
excreted in non-metabolized form and enters the water via wastewater discharge. The aim
of research by Malakootian et al. [159] was to synthesize ZnFe2O4@CMC and investigate its
effectiveness in removing CIP during the photocatalytic process. The authors successfully
synthesized the nanobiocomposite ZnFe2O4@CMC via hydrothermal method. Initially,
Fe(NO3)3·9H2O тa Zn(NO3)2·6H2O were dissolved in a 2:1 ratio in 100 mL of deionized
water. Then 0.5 g of carboxymethylcelluloce (CMC) and 6 g of NaOH was being gradually
added over an hour to obtain a suspension with pH = 12. After 30 min, a suspension of dark
brown color was obtained and placed in the oven at 160 ◦C for 20 h. The acquired precipitate
was washed and dried at 60 ◦C for 2 h. TEM image of ZnFe2O4@CMC as a prepared
photocatalyst for degradation of CIP is shown in Figure 9c. The photocatalytic activity
of ZnFe2O4@CMC was evaluated by studying the effect of reaction time (20–120 min),
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the initial concentration of CIP (5–30 mg/L), pH (3–11), the dose of photocatalyst (0.1–0.5 g).
The optimal conditions for maximum removal efficiency in synthetic (87%) and natural
(79%) samples were: pH = 7, initial CIP concentration—5 mg/L, photocatalyst dose—0.3 g
and irradiation time—100 min. Kinetic studies have shown that photocatalytic degradation
of CIP is accompanied by pseudo-first-order kinetics. Mechanism for photodegradation of
CIP by nano ZnFe2O4@CMC is shown in Figure 9d. The new magnetic nanobiocomposite
ZnFe2O4@CMC has demonstrated good chemical stability and reusability after five cycles.

Saeid Taghavi Fardood et al. [160] reported non-toxic, cheap, and eco-friendly route
using tragacanth gel to synthesize superparamagnetic nanoparticles of magnesium ferrite
(MgFe2O4). The MgFe2O4 NPs exhibits excellent photocatalytic properties for Malachite
green dye removal (98%) when exposed to visible light. The MgFe2O4 catalyst demonstrate
good reusability during six cycles and can be easily removed from solution by magnetic
separation.

Gayathri Manju et al. [161] prepared nickel-copper ferrite nanoparticles [Cu1−xNixFe2O4
(x = 0, 0.5, 1)] via combustion method using Aloe barbadensis extract as a “green” reducing
agent. XRD patterns confirmed the formation of compositions with a cubic spinel structure
and a crystallite size of 52 nm shrinked to 29 nm after adding nickel to copper ferrite and to
35.85 nm for nickel ferrite. Measurements of magnetization received at room temperature
indicated mild ferromagnetic behavior and saturation magnetization, and the coercivity value
increased with nickel substitution. A study of antibacterial activity against Bacillus subtilis,
S. aureus, Klebsilla pneumonia and E.coli was performed using diffusion method. The results
showed increased activity when adding nickel to copper ferrite.

Atrak et al. [162] synthesized Mg0.5Ni0.5AlxFe2−xO4 (x = 0.5, 1, 1.5) spinel ferrites
by a “green” sol-gel method using tragacanth gel (Figure 10a,b). It was shown that the
crystallite size decreased with increasing concentration of Al3+. Studies of the optical bands
energy gap in the samples show that the value of the band gap increases from 2.55 to
2.67 eV due to increase in the dosage of Al3+. Photocatalytic activity was evaluated during
the degradation of the direct blue 129 (DB129) dye as a model reaction of environmental
pollution when exposed to visible light. Experimental results confirmed a direct relation
between photocatalytic activity and the amount of Al: a catalyst with x = 1.5 illustrates
better degradation (94%) than a catalyst with x = 1 (88%) and x = 0.5 (79%).

Mahajan et al. [153] synthesized CoFe4O4 NPs and AgxCo1−xFe2O4 NPs (where
x = 0, 0.005, 0.01, 0.02) via sol-gel autocombustion method using “green” and chemical
synthesis with extracts from tulsa seed (Ocimum sanctum) and garlic cloves (Allium sativum).
The XRD analysis confirmed that the prepared samples were crystalline and had a cubic
spinel (inverse) structure. Magnetic measurements at room temperature showed that the
saturation magnetization values for samples obtained using tulsa seed extract (49.72 emu/g)
and chemical synthesis (49.95 emu/g) were significantly higher than those obtained using
garlic extract (28.89 emu/g) (Figure 10c). FE-SEM micrograph of Ag 1% doped chemically
synthesized CoFe2O4 nanoparticles is shown in Figure 10d. The samples demonstrated
good antibacterial activity: they were more effective against gram-positive than against
gram-negative bacteria, mainly due to the difference in the bacterial cell wall.

Madhukara Naik et al. [152] prepared nanostructured Zn-doped cobalt ferrites
ZnxCo1−xFe2O4 (x = 0.0 to 0.6) via combustion method using cheese as “green” fuel.
X-ray diffraction patterns reveal that these nanomaterials have a crystallite size in the
range of ∼12–21 nm with an inverse cubic spinel structure. Figure 11a shows CIE diagram
of ZnxCo1−xFe2O4 NPs. The vibrational stretching modes of the tetrahedral (582 cm−1)
and octahedral (385 cm−1) sections (metal-oxygen bonds) were confirmed by IR spectra.
Photodegradation studies of the obtained nanoparticles were examined during degradation
of Congo red and Evans blue dyes under visible light (Figure 11b). Pure CoFe2O4 nanopar-
ticles and Zn-doped CoFe2O4 NPs were examined against both gram-positive (S. aureus)
and gram-negative (S. typhi) bacteria. Gram-negative bacteria Salmonella typhi exhibit high
antibacterial activity in a zone of inhibition of Zn-doped CoFe2O4 (22 mm), compared
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with pure CoFe2O4 (16 mm). The obtained nanoparticles are suitable for optoelectronic,
photocatalytic and pharmaceutical applications.

Moradnia et al. [154] obtained MgFeCrO4 magnetic nanoparticles of spinel structure
via a “green” sol-gel synthesis method. Tragacanth gel was used to provide a comfort-
able, natural and cheap sol-gel method that does not contain surfactants and organic
solvents. X-ray diffraction patterns confirmed the formation of spinel cubic magnetic
MgFeCrO4 nanoparticles. Figure 11c shows magnetic hysteresis loop of spinel MgFeCrO4
nanoparticles, and Figure 11d shows TEM image pattern of MgFeCrO4 MNPs. The unique
photocatalytic activity of magnetic MgFeCrO4 nanoparticles for rapid degradation of direct
black 122 (DB122) dye in aqueous solution under visible light was studied. The photo-
catalytic activity of the nanocatalyst (MgFeCrO4) is achieved due to the synergistic effect
between Mg, Fe and Cr in the spinel structure. This nanocatalyst is heterogeneous (insol-
uble in water) and stable during photodegradation. The results showed that 96% of the
DB122 dye was degraded in only 60 s. The degradation kinetics of DB122 are consistent
with the pseudo-first-order kinetic model. Magnetic MgFeCrO4 nanoparticles show excel-
lent reusability for DB122 dye degradation, as the photocatalyst did not show a significant
reduction in its activity even after four applications. The synthesized magnetic nanopar-
ticles have a promising potential for use in electrical and optical systems, cosmetology,
ecology, etc.
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Figure 10. (a) Magnetic hysteresis loops of spinel Mg0.5Ni0.5AlxFe2-xO4 (a: x = 0.5; b: x = 1; c: x = 1.5)
obtained using tragacanth gel (Adapted with permission from [162], Elsevier, 2019); (b) TEM im-
ages of Mg0.5Ni0.5AlxFe2-xO4 MNPs (x = 0.5) (Adapted with permission from [162], Elsevier, 2019);
(c) magnetic properties and (d) FE-SEM micrograph of Ag 1% doped CoFe2O4 nanoparticles, syn-
thesized using green extract of garlic and tulsi seed (Adapted with permission from [153], Elsevier,
2019).
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5. “Green” Synthesis of Metal Nanoparticles
5.1. Silver Nanoparticles

Out of all noble metal nanoparticles, silver nanoparticles (AgNPs) are widely use in
various fields, such as optic materials [163], photocatalysts [164–169], biomedicine [170–176],
etc. For example, the general use of AgNPs in biomedicine can be attributed to their
potent antibacterial properties against a wide range of bacteria. Various methods are used
effectively to produce large numbers of AgNPs. However, these methods remain relatively
expensive and usually require the involvement of certain harmful substances. Therefore,
the development of “green” methods for obtaining silver nanoparticles is very impor-
tant [177]. Recently, the obtaining of silver NPs using biological processes has attracted
much attention. The use of plants and plant extracts is one of the most desirable methods
of “green” biological synthesis due to their rich biologically active metabolites [178–186].

Aygün et al. [187] synthesized silver nanoparticles (AgNPs) using reishi mushroom
extract (Ganoderma lucidum). 20 mL of mushroom extract was diluted to 100 mL by adding
distilled water. Later, 15 mg of AgNO3 salt was added to the mixture, which was then
stirred magnetically until Ag+ ions reduced to Ag0 ions (transition from clear to brown-
red color of the solution). In the UV-visible spectrum, a wide absorption peak between
400–460 nm was detected, indicating the presence of AgNPs. TEM images proved the
nanoparticles had spherical shape with a diameter of 15–22 nm (Figure 12a). Antioxidant,
antifungal and antimicrobial (against S.aureus, E.coli, P.aeruginosa, L.Pneumophila, C. albicans
strains) activity of AgNPs were studied.

De Aragão et al. [188] offered a simple method of “green” route of AgNPs synthesis,
using a polysaccharide extracted from red algae Gracilaria birdiae. AgNPs ranged between
20.2 nm and 94.9 nm (Figure 12b). AgNPs were examined for antimicrobial activity
against Escherichia coli and Staphylococcus aureus. The obtained results prove that the silver
nanoparticles, synthesized along with the polysaccharide, can be used for drug delivery.
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Khatami et al. [189] synthesized AgNPs using dried grass. The average size of Ag-
NPs was 15 nm (Figure 12c). It was investigated that such NPs demonstrate the antitu-
mor, antibacterial and antifungal activity. When the concentration of AgNPs increases to
five µg/mL, an inhibitory effect on the cancer cells growth is achieved, the survival of
cancer cells is reduced by approximately 30%.

Saha et al. [190] presented a “green” eco-friendly method of AgNPs biogenic synthesis
using Gmelina arborea fruit extract. The mixture of fruit extract and AgNO3 was being
heated at 60 ◦C along with continuous magnetical stirring at 1000 rpm. Within 5 min,
the color of the solution changed from clear to yellowish. The formation of AgNPs was
investigated via UV-visible spectra over the same period. A blank probe was prepared by
taking 30 mL of distilled water instead of silver nitrate. The amount of added fruit extract
ranged from 0.1 to 1.0 mL. TEM analysis proved that the AgNPs are stable, with spherical
shape, and particle sizes ranging from 8 to 32 nm. The AgNPs hane been tested as “green”
catalyst in Methylene blue dye degradation and demonstrated excellent catalytic properties.

M.R. Bindhu et al. [182] TEM image of AgNPs synthesized using Moringa oleifera
flowers (Figure 12d). Transmission electron microscopy analysis indicated the formation
of nanoparticles with spherical shape and size of 8 nm. Synthesized “green” AgNPs
suppressed the growth of Klebsiella pneumonia and Staphylococcus aureus and effectively
sensed Cu4+ ions.

Nouri et al. [191] synthesized ultra-small AgNPs using Mentha aquatica leaf extract.
Phytochemicals from the extract can reduce Ag+ to Ag0 and form nanoparticles. The syn-
thesis of AgNPs was carried out from AgNO3 solution and at different pH (9, 9.5, 10 and
10.5), volume ratio of AgNO3 solution to the extract (0.1: 0.9, 0.3: 0, 7, 0.5: 0.5, 0.7: 0.3,
0.9: 0.1 mL/mL), temperature (25, 40, 70, 90 ◦C) and ultrasound power (50, 100, 150 and
200 W). 0.5 mL of leaf extract was added to 19 mL of water, the pH was adjusted by
adding 0.2M K2CO3 solution. Next, 0.5 mL of aqueous AgNO3 solution (100 mM) was
added dropwise, while continuously stirring magnetically or subjecting to ultrasound
with a high-power ultrasonic generator tool equipped with a titanium tip. The formation
of AgNPs through the reduction of Ag+ to Ag0 was monitored over different amounts
of time via UV-spectroscopic analysis. To prevent unnecessary photochemical reactions,
the vessel was covered with aluminum foil. Furthermore, all glassware was washed with
a mixture of solutions of HCl and HNO3 (HCl:HNO3 = 3:1 v/v), and dried at 100 ◦C.
The obtained AgNPs were washed and centrifuged at 16,000 rpm. The effective synthesis
parameters were fully optimized to achieve small size of nanoparticles (8 nm) (Figure 12e)
with superior antibacterial properties. In particular, the values of the minimum inhibitory
concentration for ultrasonically synthesized AgNPs against P. aeruginosa, E. coli, B. cereus
and S. aureus were 2.2, 58, 20 and 198 µg/mL, respectively. In addition, those AgNPs have
shown significant catalytic activity for the removal of various types of dyes, which are
environmental contaminants.

Ravichandran et al. [167] performed a “green” synthesis of AgNPs via bioreduction
of silver nitrate using an Parkia speciosa leaf extract. The change of the solution color to
brown indicated the biological reduction of AgNO3: 1 mL of 0.01M AgNO3 solution was
added to 1 mL of Parkia speciosa leaf extract in a 10 mL volumetric flask, which was filled
to 10 mL with deionized water and kept at room temperature for 24 h. The synthesized
AgNPs were centrifugated at 10,000 rpm. The synthesized AgNPs demonstrated maximum
absorption at 410.5 nm. SEM and TEM (Figure 12f) analyses revealed the average size
of AgNPs (31 nm and 35 nm, respectively). The synthesized AgNPs demonstrate good
photocatalytic (in Methylene blue dye degradation), antimicrobial (against Bacillus subtilis,
Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli) and antioxidant activity.
Synthesized AgNPs can be used in various fields, such as water purification, biomedicine,
biosensors and nanotechnology.
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Odeniyi et al. [192] investigated the phytochemical, antioxidant and antimicrobial
potential of aqueous and methanolic extracts of Nauclea latifolia fruit and their application
in the biosynthesis of AgNPs and for cold cream formulations. The extracts were used to
bioreduce silver nitrate to AgNPs. Phytochemical evaluation of crude Nauclea latifolia ex-
tracts showed the presence of alkaloids, terpenoids, flavonoids, saponins, anthraquinones,
steroids, and tannins. The plasmon resonance peak was at 350 nm, and such functional
groups as hydroxyl, carboxyl, alkyl halide, phenolic, amine, carbonyl, and amide were
important for bioreducing and closing silver ions into nanoparticles. The analysis showed
that silver is the main element, and nanoparticles have an irregular shape and size of 12 nm.
The obtained creams were stable, cosmetically attractive with satisfactory pH, viscosity
and application. Silver nanoparticles based on aqueous extracts of Nauclea latifolia and its
cream composition showed strong antimicrobial and antioxidant activity.

5.2. Gold Nanoparticles

Gold nanoparticles (AuNPs) are considered the most attractive among noble metal
nanoparticles, because of their potential use in catalysis, optics, biomedicine, etc. The
widespread application of AuNPs has aroused considerable interest for new AuNPs syn-
thesis methods, avoiding hazardous chemicals [53,177,193–196]. Alternative methods,
including “green” synthetic approaches to produce AuNPs, are important for maintaining
sustanable development.

Molnár et al. [197] showed and compared results of few approaches to the synthesis
of AuNPs using fungal strain. Izadiyan et al. [194] used an improved method of two-stage
synthesis to form “core-shell” type Fe3O4/Au nanostructures from the extract of Juglans
regia green husk. The Fe3O4 NPs were suspended in HAuCl4 solution, and the molar ratio
in solution was adjusted to 1:1. Iron oxide nanoparticles suspended in HAuCl4 solution
were subjected to ultrasound for 20 min. J. regia extract was added as a reductant and
stabilizer. Next, Fe3O4/Au was autoclaved at 120 ◦C for 20 min, the supernatant was
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discarded and oven dried at 60 ◦C. The Fe3O4/Au NPs demonstrate magnetic properties
(Figure 13a) and average diameter is around six nm (Figure 13b). The anticancer activity of
Fe3O4/Au NPs may be promised candidates for cancer treatment and other biomedical
applications.
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Figure 13. (a) Vibrating sample magnetometer plots of Fe3O4 and Fe3O4 coated with Au nanoparticles (Adapted with
permission from [194], Elsevier, 2019); (b) HR-TEM image of Fe3O4/Au nanoparticles (Adapted with permission from [194],
Elsevier, 2019); (c) UV-Visible spectrum of Cr@AuNPs. The inserted figure shows the color changes of Cr@AuNPs, (i) extract,
(ii) chloroauric acid and, (iii) synthesized Cr@AuNPs (Adapted with permission from [198], Elsevier, 2019); (d) XRD pattern
of Cr@AuNPs (Adapted with permission from [198], Elsevier, 2019).

Manikandakrishnan et al. [198] reported using Caulerpa racemosa (Cr) to synthesize
gold nanoparticles (AuNPs). C. racemosa extract mixed with HAuCl4 solution under stirring
(24 h) and the Cr@AuNPs were obtained (Figure 13c). The presence of phytochemical
components in the aqueous extract of C. racemosa was confirmed by IR spectroscopic
analysis. The size of Cr@AuNPs ranged from 13.7 to 85.4 nm. XRD pattern of Cr@AuNPs
is shown in Figure 13d. The synthesized Cr@AuNPs effectively controlled the growth
of human colon adenocarcinoma cells (HT-29), and demonstrated IC50 of 20.84 µg/mL.
“Green” synthesized Cr@AuNPs had a non-toxic effect on Artemia nauplii, even at high
concentrations (100 µg/mL).

Shabestarian et al. [199] developed a “green”, eco-friendly, fast and simple synthesis of
AuNPs using aqueous Sumac extract. The solution of HAuCl4 mixed with aqueous Sumac
extract and the purple solid was obtained. The TEM analysis revealed that the bio-formed
AuNPs have a spherical morphology with an average size of 20 nm. The antioxidant
activity of the bio-formed AuNPs has been tested. It was concluded that such AuNPs are
promising for biomedical applications.
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5.3. Platinum Nanoparticles

Platinum nanoparticles (PtNPs) have been widely used in oxidation and hydrogena-
tion reactions in petrochemical industry, due to their large surface and many other charac-
teristics that encourage to synthesize PtNPs for catalytical applications. Therefore, there is
a high demand for synthesis of PtNPs using of eco-friendly materials [177,200–205].

Kumar et al. [201] used Xanthium strumarium leaf extract for the biosynthesis of PtNPs.
TEM analysis confirmed the formation of PtNPs with an average size of 22 nm, and SEM
analysis revealed that those PtNPs have a cubic and rectangular shape and smooth surface.
The nanoparticles demonstrated huge cytotoxic effect on HeLa cell lines, thus can be used
for biomedical applications.

Dobrucka [203] presented „green” synthesis of PtNPs using Fumariae herba extract.
TEM analysis showed hexagonal and pentagonal shapes of synthesized PtNPs with a
diameter of 30 nm. PtNPs demonstrated high catalytic activity during reduction of violet
crystal and methyl blue dyes.

Al-Radadi et al. [200] performed a “green” synthesis of PtNPs using an extract solution
of dates (biodegradable surfactants) in order to learn about their effect on various cancer
cells. Aqueous extracts of solutions from Ajwa and Barni dates behave as stabilizers
and reductants in the synthesis of PtNPs in natural environment conditions. The size
of obtained PtNPs was small, in the range of 1.3-2.6 nm. Furthermore, the change of
pH in the reaction affected the size of nanoparticles. Antitumor activity of PtNPs was
tested for various cancer cells: carcinoma cells (HCT-116), breast cancer cells (MCF-7) and
hepatocellular carcinoma (HePG-2). Antibacterial activity of PtNPs against Escherichia coli
and Bacillus subtilis bacteria was study and were found that PtNPs are able to inhibit the
growth of E. coli and B. subtilis.

5.4. Palladium Nanoparticles

Palladium nanoparticles (PdNPs) are being used in various unique applications,
including sensors and active membrane catalysts, thanks to their catalytic properties and
hydrogen affinity. PdNPs are synthesized using a variety of wet chemical approach, such as
chemical reduction, electrochemical and polyol methods [177].

„Green” synthesis of PdNPs for catalysis and biological applying is of enormous inter-
est [206–213]. Lentinan (LNT) can be a fine stabilizing and reducing agent for replacing
complex plant extracts. Han et al. [214] showed a simple “green” method of PdNPs synthe-
sis using LNT as a stabilizer to achieve a smaller Pdn-LNT nanoparticles (2.35–3.32 nm),
as well as a higher catalytic activity for the 4-nitrophenol reduction, comparing to other
known catalysts. Furthermore, Pdn-LNT NPs demonstrated insignificant cell cytotoxicity
along with good antioxidant activity.

Celebioglu et al. [215] synthesized PdNPs loaded on cyclodextrin (CD) nanofibers.
Cyclodextrin acted as a reductant and catalyzed the PdNPs formation upon reduction from
Pd2+ to metallic Pd0. The results of the study confirmed the presence of homogeneously
distributed polycrystalline PdNPs (3–5 nm) in the entire nanofiber matrix and shown
the existing of a larger fraction of the metal Pd0 atom due to effective reduction of Pd2+

by CD molecules. Catalytic properties of PdNPs were evaluated through reduction of
n-nitrophenol to n-aminophenol, resulting in high catalytic activity of nanofibers.

Amrutham et al. [216] synthesized nano-sized PdNPs via a new, single-stage and
cheap method with high yield—microwave irradiation using water-soluble Neem wood
resin as a stabilizer and reductant. The resin was purified and washed thoroughly with
double distilled water. An aliquot of 50 mL of an aqueous H2PdCl4 solution (5 × 10−4 M)
was added to 50 mL of a 1% resin aqueous solution. The reaction took place in a microwave
oven at 320 W for 10 min. The average particle size was about four nm. Catalytic activity
of PdNPs was evaluated spectrophotometrically through reduction of Rhodamine 6 G dye
using NaBH4. PdNPs, stabilized with Neem wood resin, demonstrated excellent catalytic
activity for Rhodamine 6 G reduction (18 min). The reaction showed pseudo-first order
kinetics, and the obtained rate constant equaled 0.1875 min−1.
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6. Future Perspectives

Thus, green chemistry is an ecological branch of chemistry that aims to minimize
the use of toxic and hazardous chemicals. There are several main ways to maximize the
implementation of the principles of “green” chemistry in all spheres of life:

(1) to create various chemical associations, organizations and institutes, whose missions
will be studying of cleaner reactions, products and processes;

(2) to promote “green” chemistry among universities and research laboratories in order
to develop economically sustainable technologies for clean production;

(3) to introduce methods of “green” synthesis of chemicals in industrial enterprises;
(4) to train future scientists in universities, who in the future will solve regional and

global environmental problems (nowadays, most industrial developments are related
mainly to economic efficiency, rather than environmental friendliness of processes);

(5) to ensure environmental protection at the legislative level;
(6) to use innovative alternative methods of minimal production of undesired chemicals

in order to preserve human health and reduce harmful effects on the environment,
namely: use alternative (renewable) sources of raw materials; use less hazardous
reagents; use alternative solvents (ionic liquids, water, etc.) during the synthesis of
organic matter; use “green” catalysts that affect energy consumption and reduce the
production of unwanted by-products and waste; minimize energy consumption at
every stage of the industrial process.

In future, “green” chemistry should be applied to almost every sector of the business—
food industry, energy, plastics, medicines, cosmetics, cleaning products, etc., and therefore
it will play an important role in the industry development.

7. Conclusions

This review reveals basic principles of “green” chemistry and “green” methods for
obtaining metal/metal oxide nanoparticles using bioresources. The most common method
for obtaining these nanoparticles is a “bottom-up” approach, using various organic sol-
vents, toxic chemicals and non-ecological reagents under high pressure and temperature.
Therefore, alternative, cheap and safe methods are necessary. “Green” synthesis prevents
pollution during initial stages of chemical processes and reduces the negative impact on
the environment and human health. Many interesting biological methods using plants,
algae, fungi, yeast, bacteria, viruses, etc., have been developed. Among various “green”
resources, plants are the best source of precursors for the synthesis of metal/metal oxide
nanoparticles, due to their simplicity, non-toxicity and availability. Such parameters as
total antioxidant capacity and total protein content affect the suitability of plants. It is
important to study physical and chemical properties, stability and activity of “green”
nanoparticles in order to further improve their practical application. This review involves
using sol-gel method, hyperthermal method, auto-combustion, etc., for the synthesis of
magnetic nanoparticles. Various extracts of plants, including leaves of Lagenaria siceraria,
Aloe vera, Averrhoa carambola, husk of Punica Granatum, roots of Mimosa pudica, Chromolaena
odorata, etc., are frequently used as reductants. The separate section is dedicated to „green”
synthesis and the use of spinel magnetic nanoparticles (in particular, superparamagnetic
Fe3O4 NPs), which attracted the attention of researchers due to their unique properties:
bio-degradability, biocompatiblity and non-toxic effect. The biocompatibility and high
saturation magnetization of naturally stabilized magnetic nanoparticles allows for their
various biological applications. Methods of “green” synthesis of silver, gold, platinum and
palladium nanoparticles are also described. For reduction and stabilization during the
synthesis of AgNPs, extracts of reishi mushroom (Ganoderma lucidum), red algae (Gracilaria
birdiae), Gmelina arborea fruit, Nauclea latifolia fruit, Mentha aquatica leaves and Parkia speciosa
leaves have been used. For the synthesis of AuNPs, Juglans regia green husk extract,
Caulerpa racemose extract and Sumac aqueous extract have been used. For the synthesis of
PtNPs, leaf extracts of Xanthium strumarium and Fumariae herba have been used. For the syn-
thesis of PdNPs, Neem wood resin extract has been used. The obtained nanoparticles are
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suitable for optoelectronic, photocatalytic and pharmaceutical applications. The synthesis
of metal/metal oxide nanoparticles via “green” approach allows for obtaining nanoparti-
cles with specified sizes and improved morphology. These new “green” technologies can
radically reduce environmental pollution and risk to human health.
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145. Tatarchuk, T.; Shyichuk, A.; Trawczyńska, I.; Yaremiy, I.; Pędziwiatr, A.T.; Kurzydło, P.; Bogacz, B.F.; Gargula, R. Spinel cobalt(II)
ferrite-chromites as catalysts for H2O2 decomposition: Synthesis, morphology, cation distribution and antistructure model of
active centers formation. Ceram. Int. 2020, 46, 27517–27530. [CrossRef]
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