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Abstract: A [GeTe/Sb2Te3] superlattice is known as a topological insulator. It shows magnetic
responses such as magneto-optical effect, magneto resistance, magneto capacitance, and so on. We
have reported that [GeTe/Sb2Te3] superlattice film has a large spin–orbit interaction using a spin
pumping method of a [GeTe/Sb2Te3]/Py superlattice. In this paper, we demonstrate a ST-FMR (spin
transfer torque ferromagnetic resonance) of the [GeTe/Sb2Te3]6/Py superlattice, compared with a
W/Py bilayer. The superlattice film showed a large resonance signal with a symmetric component.
The ratio of symmetric components (S) to anti-symmetric (A) components (S/A) was 1.4, which
suggests that the superlattice exhibits a large spin Hall angle. The [GeTe/Sb2Te3] superlattice will be
suitable as a hetero-interface material required for high performance spintronics devices in future.

Keywords: topological insulator; superlattice; ST-FMR; spin Hall angle; spintronics

1. Introduction

Topological insulators (TIs) have attracted much attention for spintronics devices and
their physical origin [1–5]. Tis, such as chalcogenides of Sb2Te3 built from quintuple layers
(QL) of Te-Sb-Te-Sb-Te, satisfy both spatial inversion symmetry and time reversal symmetry
because of a single Dirac cone at the Γ point [6–8]. The spin bands are degenerated by the
inversion symmetry. However, the spatial symmetry is broken, for example, by an external
electric field, the band gap opens, and the spin degeneracy is resolved by a Rashba-split
phase [9]. In a surface state of the TIs, a spin–orbit interaction (SOI) is maximal when an
electron’s spin orientation is fixed relative to its propagation direction [10–12]. We can
determine the strength of the SOI by using a spin torque ferromagnetic resonance (ST-FMR)
technique [13]. In the ST-FMR, rf current induced spin currents and caused resistance
oscillations due to the magnetoresistance of a ferromagnetic layer. We can measure the
SOI from the resonance curve of a direct voltage, which is caused by mixing the applied rf
current and the oscillating resistance.

[GeTe/Sb2Te3] superlattice films are known as an interfacial phase change memory
material, which was originally developed to reduce the switching energy consumption in
phase-change random access memory (PRAM) [14,15]. The films consist of a superlattice
with Sb2Te3 (TI) and normal insulator GeTe (NI), which have two phases of a topological
insulator (RESET phase) and normal insulator (SET phase) [16,17]. Recently, it was reported
that the film shows magnetic properties, such as magneto-resistance, Kerr effect, magneto-
capacitance, etc. The magneto-resistance of the films was over 2000% at room temperature
under a magnetic field of 1 kOe [18]. Moreover, the films showed a large mirror-symmetric
magneto-optical Kerr effect and a magneto-capacitance at the SET phase [19,20]. The origin
of the magnetic sensitivity is due to the pz-electrons of Ge and Te atoms in the Ge2Te2
layers of the superlattice [16]. In addition, it was clear using ab-initio simulations that
the film is a topological insulator with a strong SOI [21]. Moreover, the films showed a
topologically protected spin diffusion length of more than 100 µm at room temperature [22].
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We also confirmed that there exists a large SOI in a [GeTe/Sb2Te3]/Py superlattice, by
a spin pumping method using Electron Spin Resonance (ESR). The width of the FMR
spectrum was broadened by the strong SOI and a damping coefficient was as large as
0.027 [23].

In this paper, we demonstrate the SOI of the [GeTe/Sb2Te3]6 superlattice film by an
ST-FMR of the [GeTe/Sb2Te3]6/Ni80Fe20 (Py) bilayer. The film shows a strong SOI, and we
estimated a large spin Hall angle for the [GeTe/Sb2Te3] superlattice film.

2. Methods
2.1. Fabrication of the Films

We measured two samples of [GeTe/Sb2Te3]6/Py and W/Py films. Here, the W/Py
film was prepared for a control sample. The sample structures are shown in Figure 1. The
[GeTe/Sb2Te3]6/Py film was fabricated on a crystalline sapphire substrate <0001> using a
sputtering system. The GeTe, Sb2Te3 and Py films were sputtered from the GeTe, Sb2Te3
and Ni80Fe20 alloy targets, respectively. The unit thickness of the (GeTe)2 and (Sb2Te3)1
layers were 0.85 nm and 1.0 nm, respectively. The unit thickness of the (GeTe)2 is two
monolayers of (GeTe), and the unit thickness of the (Sb2Te3)1 is one monolayer of (Sb2Te3).
The bilayer of a [(GeTe)2/(Sb2Te3)1] was stacked 6 times. The structure is same as previous
reports [22]. To ensure a strong crystalline orientation, a 20 nm-thick amorphous Si and
a 3 nm-thick Sb2Te3 layer were formed prior to the deposition of the films as seed layers.
A 5 nm-thick Sb2Te3 layer was finally deposited on the top as a protective layer. We can
obtain a well ordered superlattice using this method [24,25]. Finally, a 60 nm-thick Py layer
was deposited as a magnetic resonance layer and an electrode used in FMR/ST-FMR. The
thicknesses were determined with the deposition rate of each target and the compositions
with composition of each target. The film was patterned using metal stencils with a size
of 1.5 mm width and 7 mm length for the superlattice, and with a size of 0.1 mm width
and 3 mm length for the Py layer. The control sample of W/Py film was prepared to
insert an 18 nm-thick W layer between the amorphous Si and the Py layers instead of the
superlattice. The W layer was sputtered using a W target. The resistivities of the Py, W and
superlattice films, measured with the 4 probes method, are 8.9 × 10−7 Ωm, 2.2 × 10−7 Ωm
and 3.3 × 10−5 Ωm, respectively.
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Figure 1. Sample structures of (a) a [GeTe/Sb2Te3]6/Py superlattice film and (b) control sample of a
W/Py film.

2.2. Measurement

FMR and ST-FMR measurement setups are shown in Figure 2a,b, respectively. In the
normal FMR measurement, RF signals from a signal generator (Agilent model 83620B)
with a frquency range of 5 to 9 GHz were applied to the samples through a directional
coupler (Agilent model 8472B). The RF signal amplitude was modulated with a frequency
of 1 KHz for a Lock-in detection. The reflection signals were separated by the coupler and
detected by a Lock-in amplifier (model SR830, Stanford, Sunnyvale, CA, USA) through a
Schottky diode detector (model 87300B, Keysight, Santa Rosa, CA, USA). In the ST-FMR
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measurement, RF signals were applied to the samples and DC components were detected
by a Lock-in amplifier through a bias T (Picosecond model 5575A). Input RF powers for
the samples were 7 dBm for all the measurements. In the FMR, we applied the magnetic
field parallel to the rf current (normal to the rf field). On the other hand, in the ST-FMR, we
applied the magnetic field 45 degrees to the rf current to induce a resistance oscillation due
to the anisotropic magnetoresistance in the Py [13].
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Figure 2. Schematic diagram of setups for (a) normal FMR and (b) ST-FMR. For the normal FMR,
RF signals with a frequency range of 5 to 9 GHz were applied to the film. Reflection signals were
detected through a directional coupler by a Lock-in amplifier. For the ST-FMR, RF signal with a
frequency of 7 GHz was applied to the film and DC components were detected by a Lock-in amplifier
through a bias T. The external field was applied at 0 degrees for the normal FMR and 45 degrees for
the ST-FMR from the direction of applied current.

In the normal FMR, the RF current generates Oersted fields, which are driving mag-
netization precessions in the Py layer. At the ferromagnetic resonance field, the RF signal
is absorbed by the Py. Therefore, we can detect a FMR through the reflection of RF signal
from the sample. In the ST-FMR, the RF current in the [GeTe/Sb2Te3]6 or the W layer
injects a spin current into the Py layer as well as Oersted fields, which drives magnetization
precessions in the Py layer. The magnetization precessions result in an oscillation of the
resistance through the anisotropic magnetoresistance in the Py layer. We can detect a
mixing DC voltage of symmetric and anti-symmetric Lorentzian functions using the bias
T [26,27].

3. Results
3.1. Normal FMR

Figure 3a shows a normal FMR from the [GeTe/Sb2Te3]6/Py film at a frequency of
7 GHz. The horizontal axis shows an applied magnetic field, and the vertical axis shows
reflection RF signal amplitudes from the film. There is a report about the strong contribution
of eddy currents in the FMR [28]. As the skin depth of the microwave frequencies is thought
to be small in this sample, we can clearly see an absorption of the ferromagnetic resonance.
It was observed around external fields of 550 Oe, which was almost the same as that of a
pure Py. It was increased with increasing the RF frequency. Figure 3b shows a resonance
frequency as a function of the field. The relationship was consistent with the Kittle formula
fres = (γ/2π)[Hres(Hres + 4πMs]1/2 with a parameter of Py, where γ is gyromagnetic ratio
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and Ms is 670 emu/cc for the Py [29]. Therefore, it was found that the resonances were
caused by the Py layer.
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3.2. ST-FMR

Figure 4 shows the ST-FMR spectrum of (a) the [GeTe/Sb2Te3]6/Py sample and (b) the
W/Py sample at a frequency of 7 GHz. The horizontal axis shows an applied magnetic field,
and the vertical axis shows a mixing DC voltage caused by the ferromagnetic resonance.
Standard deviations of the noise are 7.1 nV for (a) and 9.2 nV for (b). In the former sample,
a large DC component of the resonance was detected at the resonance frequency of Py.
The signal was high and symmetrical. The ST-FMR of the single Py film shows only a
small peak around the resonance field of 500 Oe. The large DC component is thought to
be generated by the [GeTe/Sb2Te3]6 film. In the latter control sample, on the other hand,
although a signal was detected at the same frequency, the amplitude was relatively small.
From the X-ray diffraction (XRD), the W film had an α-W phase, which is known to show a
smaller SHE than that of a β-W [30,31]. Therefore, the amplitude was thought to be small.
The superlattice sample had a larger SHE than that of the control.
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Figure 4. ST-FMR spectrum with a frequency of 7GHz. (a) [GeTe/Sb2Te3]6/Py superlattice and
(b) control sample of W/Py film.

In the ST-FMR, the resonance curve has symmetric and anti-symmetric components,
which correspond to spin current-induced FMR and Oersted filed-induced FMR. It follows
in the next equation [32,33]:

Vmix = S
∆H2

∆H2 + (Hext − Hres)
2 + A

∆H(Hext − Hres)

∆H2 + (Hext − Hres)
2 (1)

The values of S and A, the resonance field (Hres) and the half linewidth (∆H) are
obtained by fitting Vmix with symmetric and anti-symmetric Lorentzian functions. Hext are
applied in the external field. Additionally, the origins of spin currents are not clear in the
[GeTe/Sb2Te3]6/Py film. We fitted the ST-FMR results using Equation (1). Figure 5a shows
the fitting results of a symmetric Lorentzian function (S), an anti-symmetric Lorentzian
function (A) and Vmix (S + A) for the superlattice sample, and Figure 5b shows Vmix (S + A)
and the experimental result. The horizontal axis shows an applied magnetic field, and the
vertical axis shows the DC voltages for each components. The resonance curve could be
divided into a symmetric (S) and an anti-symmetric (A) Lorentzian function. The fitting
Vmix (S + A) curve was well consistent with the experimental result. The S/A ratio of the
superlattice sample was 1.4, which is a very large value, in the case of the control sample,
as the ratio of the α-W phase is considered to be small among heavy metals. Therefore, it
was hard to fit the functions due to the weak signal.
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result (blue line).

4. Discussions

Spin Hall angle (SHA) is the ratio of the spin current density to the RF current density.
It means a conversion ratio of the spin current to charge current. In the TI surface, a spin
current converts to a charge current through the SOI. It is known that SHA is proportional
to the symmetric and anti-symmetric component ratio of Equation (1) [32,33]. The SHA is
given by

θST
SH =

S
A

eµ0MStd
h

[
1 +

(4πMe f f

Hres

)]1/2

. (2)

where e, η0, h, Hres, Ms, Meff, t and d are elementary charge, permeability in vacuum, Planck
constant, the resonance field, saturation magnetization, effective magnetization, and each
layer thickness, respectively.

In this equation, SHA depends on the thickness of each layer. Although it is hard to
determine a conduction layer thickness of the [GeTe/Sb2Te3]6 superlattice with the Sb2Te3
protective layer, assuming the SHE layer thickness to be 6 nm (Sb2Te3 layer thickness in the
superlattice), the SHA value can be estimated as 1.3, where S/A, Hres, Ms, d are 1.4, 550 Oe,
670 emu/cc, 60 nm, respectively, and Meff assumes the same as Ms. The SHA is 0.08 for
typical materials of heavy metal Pt [26] and less than 0.07 for α-W [31]. Due to the result, it
is supposed that the [GeTe/Sb2Te3]6 superlattice has an extremely large SOI, which may be
related to the special properties of topological insulator [34].
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In summary, we demonstrated ST-FMR of [GeTe/Sb2Te3]6/Py superlattice. The su-
perlattice film showed a large resonance signal with a symmetric component. The ratio
of S/A, the symmetric S to anti-symmetric A components, was 1.4. This value suggests
that the superlattice exhibits a large spin Hall angle. We conclude that [GeTe/Sb2Te3]6
superlattice has a large spin orbit interaction, although neither the elements of Ge, Sb nor
Te are non-magnetic materials.

We believe that the superlattices will be promising materials for future spintronics devices.
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