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Abstract: A family of metal-organic frameworks with general formula {[Nd;(ant),((NH;),-bdc)-
(DMF),]-2DMF};, (1) and {[Lny (ant),((NHjy),-bdc)(DMF)]-2DMEF-2H, 0}, (Ln = Tb (2), Ho (3), and
Er (4)) has been obtained from reactions between 9,10-anthracenedicarboxylic (Hpant) and 2,5-
diaminoterephthalic (NH;);-Hybdc) acids, and lanthanide ions in dimethylformamide (DMF).
These lanthanide-organic frameworks (LnOFs) have been characterized, and their crystal structures
have been elucidated by single crystal and powder X-ray diffraction methods (on the basis of a
comparative refinement with similar structures), respectively for 1 and 2—4. All LnOFs present
three-dimensional structures composed of dinuclear [Lny(u-CO,)4] entities linked through both
carboxylate ligands that yield open frameworks in which DMF and water molecules are located in
the channels. Magnetic studies of these LnOFs have revealed slow relaxation of the magnetization
for the Nd-based counterpart. The compounds also acknowledge relevant photoluminescence (PL)
emissions in the visible (for the Tb-based homologue) and near-infrared (for the Nd- and Er-based
compounds) regions. The strong green emission yielded by compound 2 at room temperature allows
its study for photoluminescence (PL) sensing of various solvent molecules, finding a particular
discrimination for acetone.

Keywords: lanthanide—organic frameworks; 9,10-anthracenedicarboxylate; 2,5-diaminoterephthalate;
dinuclear building unit; photoluminescence; slow relaxation of magnetization; acetone sensor

1. Introduction

Metal-organic frameworks (MOFs) are a class of microporous crystalline materials
with structural and topological features that produce very fascinating properties [1,2].
These compounds consist of a highly ordered and extended 3D network based on metal ions
or clusters coordinated to multidentate organic molecules that act as linkers [3]. The first
MOFs were formed with transition metal ions, making their structures easily predictable
due to the rigid coordination spheres exhibited by these metal ions, which is an advantage
when aiming to design but also limits the possible structural patterns to be acquired by
ligands and detracts flexibility from the framework [4,5]. In the last decade, the interest in
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lanthanide-based MOFs, LnOFs hereafter, is rising due to their versatilities in areas such as
luminescence [6,7], gas adsorption [8-11], optical storage [12,13], and magnetism [14]. The
problem lies on the fact that lanthanide elements have very high and variable coordination
numbers, which brings us to the issue that the coordination geometries and the LnOF
topologies are difficult to control [15]. Instead, once a dominant architecture is achieved
and the factors affecting the structural variability are isolated [16-18], it allows obtaining
an isostructural family of lanthanide-based materials in which a comparative analysis of a
specific property may be accomplished.

Among the potential properties of LnOFs, magnetism and luminescence are par-
ticularly interesting due to the shielded nature of the electrons in the 4f shell of these
elements [19-21], which endows them with special intraionic electronic transitions that
enable the occurrence of slow magnetic relaxation (SRM) and solid-state bright light emis-
sion, thus rendering materials behaving as single-molecule magnets (SMMs) [22-25] and
organic light-emitting diodes (OLEDs) [26], respectively for the mentioned properties. On
the one hand, the magnetic properties of these materials are being intensely studied since
Minguez-Espallargas et al. showed for the first time that an LnOF could present SMM-type
behaviour due to the strong magnetic anisotropy occurring in the lanthanide ion [22,27]. As
it is known, the presence of SRM below a certain temperature (called blocking temperature,
Tp) is derived from both the large spin state of the molecule and magnetic anisotropy
(usually axial, D, although other distributions such as plane anisotropy are also known,
E). In this sense, the large magnetic moment and sizeable single-ion anisotropy derived
from spin-orbit coupling (SOC) effect afforded by these ions when the nature and symme-
try of their local environment is appropriate [20,28] imposes significant energy barriers
preventing the reversal of the magnetization in the compound [29]. On the other hand,
the coordination of lanthanide(III) ions to organic ligands with appropriate chromophores,
containing better light absorption capacity than lanthanide(IIl) ions, characterized for
narrow absorption bands, brings the opportunity of generating bright, long-lived, sharp,
and also efficient emissions in the LnOFs [30]. This occurrence is a consequence of the
antennae effect [31,32], by which there is an energy transfer from the ligand to the lan-
thanide(IlI) ion provided that the inner levels of the metal ion remain shielded to avoid
interactions generating luminescence quenching [6,33]. Additionally, it is important to note
that luminescent properties of lanthanides are sensitive to changes in their coordination
environment and other neighboring molecules, which is a fact that considering the open
architecture of LnOFs may result in their capacity to show guest-responsive luminescence
and even a specific luminescence sensing [34,35].

In previous works, we and others have constructed SMMs by using organic linkers
with carboxylate groups and dysprosium ions to take advantage of their large magnetic
moment and single-ion anisotropy derived from SOC and the crystal field effect [20,22].
In this sense, we have recently designed a new family of 3D LnOFs consisting of the
9,10-anthracenedicarboxylic linker (ant?>~) that exhibits a slow relaxation of magnetiza-
tion [36]. In an attempt to modulate the properties of the system, we decided to introduce
a second ligand possessing the ability to coordinate in a similar way to the ant?>~, among
which we opted for 2,5-diaminoterephthalic acid (NH;),-bdc) due to its aromaticity and
pending amino groups, which facilitate the absorption of light and the establishment of
supramolecular interactions that provide the LnOF with stability to prevent luminescence
quenching (see Scheme 1) [37].
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Scheme 1. Different coordination modes shown by the ligands employed to construct metal-organic
frameworks (MOFs).

Following this line, we have now set out to synthesize other counterparts based on
ant?~ and (NHy),-bdc?~ ligands, making use of different lanthanide ions to explore the
effects caused by the ions sizes in the framework and in the properties of the resulting
materials. In particular, we herein report on the synthesis, structure, and luminescent prop-
erties of four new 3D-MOFs of general formulae {[Nd(ant),((NH;),-bdc)(DMF)4]-2DMF},,
(1) and {[Lny(ant),((NH,),-bdc)(DMF)4]-2DMF-2H,0}, (Ln = Tb (2), Ho (3), and Er (4)).
The magnetic properties have been analyzed by measuring variable temperature direct and
alternating (dc and ac, respectively) susceptibility in order to evaluate both the isolation of
spin carriers in the framework, aided by computational calculations, and lanthanide ions
and their dynamics occurring in the relaxation. Moreover, with the aim to establish their
potential multifunctional character, the emissive properties have been analyzed in solid
state under variable temperatures and, in view of the porous nature of the compounds,
also in response to different solvents, seeking a potential sensor activity of the LnOFs.

2. Results and Discussion
2.1. General Comments on the Synthesis

The solvothermal reactions of two different dicarboxylate ligands with different lan-
thanide salts in dimethylformamide (4 mL) at 95 °C for 24 h produced prismatic crystals
and powder of four different 3D LnOFs. The crystal structure of the compound 1 was
determined using single crystal X-ray diffraction. Although we were not able to obtain
single crystals from the rest of compounds (2, 3, and 4), powder X-ray diffraction (PXRD)
data of these compounds corroborated that the materials are isostructural to a previously
reported dysprosium-based MOF [37] (Figure S1). Despite the fact that no significant
differences were applied during the synthesis of these materials, two structurally similar
compounds are obtained according to their chemical formulae, which only differ in the
content of the solvent molecules crystallized in the voids, which is a fact that is in turn
derived from the slight differences occurring in the framework. As it will be detailed in the
structural descriptions during the next sections, the structural and chemical discrepancy of
these LnOFs may be only attributed to the ion size of the lanthanide(III) ion used. It is well
known that lanthanide(III) ions present a very similar reactivity with most of the ligands,
despite which they may render isostructural or different compounds depending on the
flexibility of the resulting crystal structure. In this sense, there are structures admitting
most of the lanthanide(IlI) ions of the series, as observed for the isostructural family of
homometallic {[Lny(ps-pmdc)y (p-pmdc)(H,0);]-HyO}n compounds (Ln = La-Yb, pmdc
= pyrimidine-4,-dicarboxylate) [38] or heterometallic [Zn(p-L)(p-OAc)Ln(NO3),] com-
plexes (Ln = Pr-Yb, HpL = N,N'-dimethyl-N,N’-bis(2-hydroxy-3-methoxy-5-methylbenzyl)-
ethylenediamine) [39]. Instead, the slight change of ion size occurring between two con-
tiguous lanthanides is enough to force the crystallization of completely different structures
in other cases, such as the case of the compounds of {[Ce(4-pzdc)(NO3)(H20),]-2.33H,0}n
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and {[Pro(p4-pzdc)e(NO3)2(H20)25](NO3)7-8H, O} formulae obtained with pyrazine-2,5-
dicarboxylate (pzdc) ligand [40]. The present case falls within the second (more common)
casuistry, since the change in the ion size between Nd(III) and the group of Tb(III), Ho(III),
and Er(IIl) (framed respectively between the first and second halves of the lanthanide
series) seems to be the main responsible for the observed structural variability.

2.2. Structural Description of Compound {[Nd,(ant),((NH3),-bdc)(DMF)4]-2DMF}, (1)

Compound 1 crystallizes in the triclinic space group P-1. The asymmetric unit contains
one Nd(III) atom, two halves of ant?~ ligands, half a (N H,),-bdc?~ ligand, and two
coordination DMF molecules. The Nd(III) atom has a NdOgy coordination environment
formed by its coordination to five oxygen atoms pertaining to three different ant?>~, two
oxygen atoms belonging to two (NH,),-bdc?~ ligands, and two oxygen atoms of two DMF
coordinated molecules. The continuous shape measures (CShMs) calculated by the SHAPE
program [41] reveal that the polyhedron may be best described as a muffin (Table S1).
The Nd-O,,,p, bond distances are in the range 2.417(5)-2.704(6) A, whereas the Nd-Opyr
distances are 2.447(6) and 2.458(5) A (see Table 1 for more detail).

Table 1. Selected bond lengths (A) for compound 1 [a].

Nd1-O1A 2.417(5) Nd1-01C() 2.704(6)
Nd1-02A(i) 2.442(5) Nd1-02C() 2.486(6)
Nd1-O1B 2.518(6) Nd1-O1M 2.458(5)
Nd1-02B 2.492(6) Nd1-OIN 2.447(6)
Nd1-01C 2.446(5) - -

[a] Symmetry code: (i) —x+1, -y +1, —z + 1.

Two of the ant?>~ ligands and the two (NH,),-bdc?~ ligands establish paddle-wheel-
shaped dimeric entities by coordinating two symmetry related Nd(III) ions by means of
their carboxylate groups, in such a way that both ligands are alternately linked each ca.
90° from each other (Figure 1). It must be noticed that the two carboxylate ligands do not
show the same bridging mode because the ant?>~ ligands display a p-kO:xO’ local mode,
whereas the two (NH;),-bdc?~ bridges by p-x20,0’:k0 mode impose an Nd---Nd distance
of 4.150 A (Figure 1).

Figure 1. Dinuclear entity formed by two dysprosium atoms, four ant’~ ligands, two 2,5-
diaminoterephthalic linkers, and four dimethylformamide (DMF) coordination molecules. Hydrogen
atoms have been omitted for clarity. N = blue, O = red, C = gray, Nd = green.
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The 3D-MOF is built by further links formed by the aforementioned two ligands,
given that they show equivalent coordination patterns at the other carboxylate group as a
consequence of their centrosymmetric nature. In addition to these bridging modes, each
Nd(III) atom is also coordinated to another ant?~ linker that forms a chelating ring as a
consequence of the k20,0’ mode, which bridges the dinuclear entities to one another. If
we consider these dinuclear units as building blocks, we could say that they propagate
the structure, acting as a six-connected node in which the bis(bridging) ligands somehow
simulate the struts of an octahedron. All in all, the junction of the dinuclear units generates
a three-dimensional network that, making use of the TOPOS program [42,43], may be
successfully described by the (4!2-6%) point symbol, taking into account that it belongs to
the pcu (primitive cubic) topological class. The resulting open framework leaves isolated
voids that are well guessed along the crystallographic c axis of the structure to which the
amino groups from 2,5-diaminoterephthalic linkers and coordinated DMF molecules are
oriented (Figure 2). Although the lattice molecules could not be solved due to the large
disorder present, it was concluded that there were dimethylformamide (DMF) molecules
occupying those voids according to the analysis performed with the PLATON program
(see Section S3 in the ESI).

)

Figure 2. View along the c-axis of the channels in compound 1. DMF solvent molecules and hydrogen
atoms have been omitted for clarity.

2.3. Structural Description of Compounds {[Lny(ant),((NH);-bdc)(DMF)4]-2DMF-2H, 0},
(Ln=Tb (2), Ho (3) and Er (4))

These three MOFs crystallize in the triclinic space group P-1 and their structures,
being isostructural to the previously reported Dy-based counterpart [37], are quite similar
to that of compound 1, as briefly detailed in this paragraph. The first substantial difference
in compounds 2—4 corresponds to the lower coordination number of the symmetrically
independent lanthanide(Ill) ion, which shows a biaugmented trigonal prism geometry
when coordinating to the same number of ligands, which is a typical polyhedron found
in many previously reported lanthanide(Ill)-carboxylate based MOFs and coordination
polymers (CPs) [44]. Hereafter, the 3D framework is also composed of lanthanide dimers
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connected by carboxylate groups of two ant?~ and (NHy),-bdc?~ linkers that show a
bis-bridging intradinuclear coordination mode. Conversely to the dimeric entity described
in compound 1, the (NH,),-bdc?~ ligand does not show a p-k20,0":kO coordination mode,
but the same regular bridging 11-<O:xO’ mode also shown by ant’~ ligands, in such a
way that the resulting dimer shares the paddle-wheel shape. As earlier discussed in this
work, this difference seems to be a direct consequence of the ion size of the lanthanide(III)
ion, although some other factors such as the twisting of the carboxylate ligands (i.e., the
out-of-plane arrangements of the carboxylate groups with respect to the aromatic rings)
are slightly different, too ((NHy),-bdc?~ presents an almost planar arrangement for 24,
but it displays a rotation of the carboxylate of 49.8°), which may be taken as a consequence
thereof (Figure 3). In any case, these subtle differences occurring in the framework do
not modify the connectivity, and hence, equivalent networks are obtained in terms of the
topology. Nonetheless, these changes do modify the available voids left in the structure
given that the solvent accessible areas, being somewhat interconnected in this case, lead to
microchannels in which not only DMF but also water molecules are trapped, as reflected in
their formulae.

CN=8
biaugmented
trigonal prism

Compound 1 Compound 2-4

Figure 3. Schematic view of the paddle-wheel shaped cluster conforming the framework of each of
the compounds.

3. Magnetic Properties
3.1. DC Magnetic Properties

The variable-temperature measurements of the molar magnetic susceptibility (xas) of
compounds 1-4 were acquired on polycrystalline samples in the 2-300 K range (Figure 4).
The xpT values obtained at room temperature are very close to those expected for the free
ions (NA(III), Tb(I1I), Er(Ill), and Ho(III) respectively for 1, 2, 3, and 4) considering a regular
population of the Stark sublevels in their ground states [45]. The progressive drop of the
xmT product observed upon cooling the samples is mainly attributed to the depopulation
of the high-lying M; sublevels of the corresponding ground terms (Iy/,, 7F¢, °Is, and
5 /2 respectively for Nd(III), Tb(III), Er(Ill), and Ho(III)) which, being quite isolated from
the excited states (usually at energies < 2000 cm™), are split by crystal-field effects and
possibly intermolecular dipolar interactions. However, the sharp drops of the x)T product
occurring for the low temperature ranges (below 50 K) in most of the compounds (except
for compound 1), although mainly attributed to the magnetic anisotropy present in the
ions, make that the existence of a net non-zero antiferromagnetic exchange interactions
may not be fully discarded in view of the relatively short carboxylate mediated Ln:--Ln
bridges of ca. 4.2 A present within the dimeric cores.
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Figure 4. x /T vs. T plots for all compounds. Codes for each curve are displayed as an inset.

The absence of an appropriate model that fully considers all the above-mentioned
effects present in these ions by fitting the temperature-dependent susceptibility did not
allow us to estimate a reliable value of the magnetic coupling constant. In order to evaluate
the presence or absence of the potential exchange interactions, density-functional theory
(DFT) calculations with the broken symmetry approach were performed on appropriate
dimeric models based on the dimeric cores of the two distinct frameworks of compounds 1
and 2—4. These models consisted of the isostructural Gd-based counterparts grown from the
X-ray coordinates of 1 and 24, given that Gd(III) ions are characterized by a ground 8S; /,
term with no orbital contribution, which allows excluding the SOC and thus estimating the
exchange interactions.

As inferred from Figure 5, the calculated | values, yet very low in both cases, are
of opposite signs. In particular, the ferromagnetic coupling occurring in compound 1 is
somewhat unexpected in view of the shape of the susceptibility measurements, which
inspired us to further explore the origin of such interaction by further analyzing each of
the bridges (u-(NHy)p-bdc-x20,0”:k0 and p-ant-kO:k0’) coexisting in this compound. In
this line, two additional calculations with the same methodology upon models in which
one of each bridges was suppressed (by modeling terminal water molecules instead of
carboxylate groups) allowed us to conclude that both bridges transmit antiferromagnetic
interactions of a similar strength (p-(NHjy),-bdc and p-ant generate | values of —0.002
and —0.009 cm™). The occurrence of a net ferromagnetic exchange resulting from the co-
existence of two distinct bridges that individually evoke antiferromagnetic interactions is a
largely reported effect, mainly for paddle-wheel dimeric entities, which is known as orbital
countercomplementarity [46—49]. As detailed in these previous works, as a consequence

of the different interaction between the highly occupied molecular orbitals (HOMOs) of
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each of the bridging ligands, (NH,),-bdc?~ and (NH;),-bdc?~ in the present case, with the
symmetric and antisymmetric combinations of the magnetic orbitals, and provided that
the interaction is weak, the antiferromagnetic contribution of the exchange may be so small
that the ferromagnetic contribution takes the lead. In any case, it must be highlighted that
the value of the coupling constant is too low as to expect that the magnetic exchange could
eventually have a significant weight on the overall behavior, dominated by the SOC, in
such a way that the lanthanide(III) ions are to be considered as practically isolated in the
3D framework.

Compound 1 Compound 2-4

Py

Ho 07 HQo

K 0 N \ \¢
o Ln Lh
? o N

)2 J‘J :ﬂ/‘}J o'{r—czré OH,
&8 89 J=-0.008 cm™"!
o *,r‘, 9 ?‘ 2

=-0.002 cm™!

d 5

BS’JJ oy’ 3
Figure 5. DFT-computed dimeric models cut from X-ray structures of compounds 1 (top left) and
2-4 (top right). The superexchange bridges conforming the paddle-wheel shaped entity of 1 are

individually analyzed.

3.2. Ac Magnetic Properties

Dynamic ac magnetic susceptibility measurements on 1-4 reveal the absence of slow
relaxation of the magnetization under the zero external dc field, which is in agreement
with the behavior observed for the ant?>~ analogues [36]. Interestingly, the application
of an external magnetic field of 1000 Oe leads to frequency dependent out-of-phase xnm”
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signals for the Nd (1) and Er (4) counterparts, which is ascribed to the suppression of
the quantum tunnelling (QTM) relaxation pathway. Even though 4 does not display any
maxima in the xy” vs. T plots, 1 exhibits some well-differentiated signals below 7 K
(Figure 6 and Figure S6). The low energy barrier (Uygi =114 K; 79 = 9.4.1077 s), together
with the deviation from linearity of the relaxation times at low temperatures and the fitting
of the Cole—Cole plots to the generalized Debye model for 1 (« = 0.09 (2 K)-0.04 (3.8 K),
Figure S7), suggest that the relaxation of the magnetization is not the result of an Orbach
process [50]. In fact, other mechanisms such as direct or Raman could be responsible
for the observed behavior, but the available data (in the 2-6 K range) do not allow us to
unequivocally assign the origin of the relaxation process.

-8.59

o
=}

T/IK

200 Hz
500 Hz
800 Hz
1000 Hz
2000 Hz
4000 Hz
6000 Hz
10,000 Hz

xM"/cm3moI o

R B O O

T/IK

Figure 6. Temperature dependence of the in-phase (top) and out-of-phase (bottom) components
of the ac susceptibility for 1 under an external field of 1000 Oe (the susceptibility values are given
per Nd(III) ion). Inset: fitting of the relaxation times at each temperature (black circles) to Orbach
relaxation modes (red line).

At first sight, the occurrence of clear SMR only for compound 1 and not for the rest
of the compounds may be attributed to their slightly different structures and related mag-
netic interactions involved in the compounds, as detailed in the previous section, as well
as to the Kramers nature of the Nd(III) ion [51]. On another level, a direct comparison
between the compounds reported in the present work (based on ant?~ and (NHp),-bdc?~
ligands) and the ant?>~-based compounds reveals a worsening of the magnetic proper-
ties upon the incorporation of the second ligand. In fact, {[Dy(ant); 5(DMF),;]-(DMF)},
and {[Er(ant); 5(DMF),]-(DMF)}, exhibit slow relaxation of the magnetization with en-
ergy barriers of 52.7 and 13 K (Hg4. = 1000 Oe), respectively, while only slight frequency
dependent x,,” signals are observed for the (NHy),-bdc?~ containing materials [36,37].
Additionally, 1 displays maxima in the xyp” vs. T plots at lower temperatures than
{[Nd(ant); 5(DMF),]-(DMF)}, in the same experimental conditions [36]. A careful exam-
ination of the crystal structures reveals that the {[Ln(ant); 5(DMF);]-(DMF)},, (Ln = Dy,
Er, Nd) compounds contain LnOg coordination spheres that are close to the muffin ideal
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geometry [52,53], as in the herein described compound 1 (Table S1), whereas the ant?>~ and
(NH,),-bdc?~-based MOFs obtained with the rest of smaller lanthanides(III) display LnOg
(Ln = Dy, Er, Tb, Ho) polyhedra resembling biaugmented trigonal prisms. Even though
both geometries can lead to the appearance of slow relaxation of magnetization [54], an
unfavorable distribution of the negatively charged atoms around the lanthanide ions could
explain the magnetic properties of 2—4 and the Dy analogue [55]. Additionally, the longer
Ln---Ln intradinuclear distances found in the (NHj),-bdc?~ containing MOFs could also
have a negative impact, as previously reported by our group [36]. Finally, the differences
between compound 1 and {[Nd(ant); 5(DMF);]-(DMF)}, can be ascribed to a slightly higher
deviation from the ideal muffin geometry in 1, as supported by SHAPE measurements
(Table S1).

4. Photoluminescence Properties

Photoluminescence measurements were carried out on polycrystalline samples of all
compounds given that lanthanide-based emissions, characterized by narrow signals in
the visible and near-infrared (NIR) regions [7,19], are largely desirable and useful in areas
such as solid state lighting (in development devices with high quantum yields) [56-59] and
biomedicine (in generating easily detectable fluoroimmunoassays) [60,61]. Unfortunately,
these compounds did not show remarkable emission at room temperature but for the
terbium-based compound 2. Under a UV excitation monochromated light of Aex = 325 nm,
compound 2 shows six groups of signals assigned to both the ligand-based and terbium-
centred emissions (Figure 7). The first wide band peaking at ca. 450 nm corresponds to the
7 < 7r* transitions occurring in the aromatic rings of both ant?~ and (NH,),-bdc?~ linkers,
which is in good agreement with assignations done for related compounds [37]. Instead, the
rest of the narrow bands correspond to the characteristic transitions occurring in the inner f
orbitals of the Tb(III) ion [62]. Monitoring the main emission band peaking at Aem = 548 nm
(assigned to 5D4 — 7Fs intraionic transition) reveals that the Tb-based emission observed
in this compound comes from the ligand excitation, thus confirming the occurrence of a
substantial antenna effect (see Figure S8). When the sample is cooled down to 10 K, the
metal-organic systems save much vibrational quenching related with the thermal energy
of the bond electrons [63-65], which brings a substantial enhancement of the radiative
signal in all cases. Particularly for compound 2, the low-temperature spectrum reveals a
similar pattern, with >Ds— “Fs being kept as the dominant band, except for the absence of
the first band that is attributed to ligand-centred (LC) transitions. This fact confirms that
the antennae effect, i.e., electronic transition occurring from the excited (LC) triplet states of
the compound to the empty excited states centred on Tb(IIl), is much more efficient at low
temperature, in such a way that absorbed light is more easily transferred to the °Dy state to
provide °Dy— “F; transitions, thus preventing the LC emission. The dominant transitions
occurring in the visible spectra confer this sample a pale-green emitted light (see inset in
Figure 7).

To get deeper insights into the luminescence of this compound, the decay curve was
measured in the same experimental conditions (Aex = 325 and Aem = 548 nm). As observed
in Figure S9 in the electronic supporting information (ESI) file, the rectilinear shape of
the curve reveals a monoexponential nature that allows fitting the data to Equation (1)
considering a unique radiative component in agreement with the presence of only one
crystallographically independent Tb atom.

Iy = AO + Alexp(—t/‘rl) (1)
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Figure 7. Emission spectra of compound 2 recorded at room (top) and low temperature (bottom).

Best fitting of the curve gives a lifetime of 980 us, which is a relatively large value
rounding the range of one millisecond and thus, it is close to the long persistent phospho-
rescence phenomenon, which is a highly desirable property exploitable for developing
light-emitting diodes, flat-panel displays, photo-stimulable storage screens, fiber-optic ther-
mometers, and so on [26,66]. This long lifetime is also indicative of an efficient shielding of
the metal toward a non-radiative deactivation [67].

The lack of vibrational quenching is more significant for the NIR emitters, since it
allows their emission not only in the visible but also in the NIR region. As observed in
Figure 8, all compounds show a very wide emission band under UV excitation (Aex = 325 nm),
with maxima at ca. 450 nm, corresponding to the above-mentioned ligand fluorescence
(caused by 7 « 7* transitions in the aromatic rings). The fact that all compounds are
isostructural to each other makes the band very similar for 1, 3, and 4. Moreover, a
relatively intense emission is also observed for 1 and 4 in the NIR region. In particular, a
main multiplet is shown at 1060 nm (structured into two main narrow peaks) in addition
to a weak and wider band peaking at ca. 1345 nm is shown for 1, which is in good
agreement with usually observed signals for the Nd(III)-based compounds [68,69]. On its
part, compound 4 presents a main manifold located at ca. 1550 nm with the most intense
band sited at 1520 nm, which is an emission attributed to the 413 /2 — 445 /2 transition. The
fact that no emission could be found for compound 3 may be explained on the basis of
its less discrete energy distribution of the inner ground and excited terms, in such a way
that all the charge arriving from the triplet state is easily lost in the form of non-radiative
irradiation.
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Figure 8. Emission spectra of compounds 1, 3, and 4 recorded at low temperature. The insets aside
spectra of 1 and 4 correspond to the emissions observed in the near-infrared (NIR) spectra.

In view of the strong green emission displayed by compound 2 and the potential poros-
ity contained in its open structure, we decided to explore its luminescence performance by
dispersing this sample in different solvents. For these experiments, several dispersions of 2
were prepared by adding 5 mg of the sample into 5 mL of the corresponding solvent: water,
dimethylsulfoxide (DMSO), dimethylformamide (DMF), ethyl acetate (EtAc), chloroform
(CH3Cl), dichloromethane (CH,Cly), diethyl ether, (Et;O) and acetone (AcO). Overall, the
spectra measured in this medium is quite similar to that acquired on solid state, although
the emission corresponding to the ligand fluorescence (LC Aem =450 nm) is relatively en-
larged with respect to the Tb-based characteristic bands, meaning that the interaction of
solvents with the framework (and possibly the effect of the dispersion) somehow interferes
in the antenna effect. Moreover, it is observed that the both signals (LC and Tb-based
characteristic bands) are progressively weaker across the following sequence (expressed in
quenching percentage in regard to emission in water): H,O > DMSO > DMF ~ EtAc >>
CH3Cl > CH;Cl > Et,O >> AcO, which approximately agrees with the relative solvent po-
larity, as previously observed for other PL-MOFs (Figure 9) [70-72]. However, the sample
dispersed in AcO experiences a sudden decrease of the emission intensity, particularly for
the Tb-centred bands that are completely null (quenching percentage above 99%), whereas
the LC emission is weak but visible (quenching percentage of ca. 96%). This behavior
can be attributed to the specific quenching capacity of the luminescence by the acetone
molecules which, possessing methyl groups with C—H bonds—well-known quenchers of
lanthanide-based luminescent complexes [65,72]—are able to quench the luminescence
of the MOF by absorbing the energy accumulated in the excited states of the MOF to
enable the non-radiative pathway proceeding through vibrations in the solvent molecules.
However, the methyl group is also present in other solvents, meaning that other factors
such as the size of the molecules, possibly limiting the entrance in the voids, could be also
relevant.
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Figure 9. (a) Intensity-dependent emission of compound 2 dispersed under different solvents. (b) Bar chart plot showing
the quenching percentage of the LC (Aem = 450 nm, blue bars) and Tb-based 5D4 — 7F5 transition (Aem = 548 nm, red bars).

To end up with this characterization, we decided to further explore the mechanism
of the quenching process observed in this compound by measuring the decay curves in
the dispersions. The results show that overall, the 2@solvent dispersions experiment a
significant decrease in their emission longevity, which is an expected behavior considering
the collisional quenching occurring in these kinds of dispersions, in which the emission
arising from the particles of the luminophore crashes with millions of solvent molecules
across the solution [73]. Accordingly, it may be observed that the emission lifetimes are not
strictly uniform for all dispersions, but they experience a variable decrease (see Figure S10).
In particular, the lifetimes range between values of 260 and 370 ps, which may be considered
different enough to support a dynamic quenching occurring probably as a consequence
of the diffusion of the molecules through the pores of the LnOF. However, the absence of
emission in the case of acetone, which prevents acquiring a reliable decay curve in this
mixture, does not allow further discussion of the mechanism governing that particular
quenching.

5. Materials and Methods
5.1. Chemicals

All reagents were purchased from commercial sources (Merck Life Sciences, Madrid,
Spain) and used as received and without further purification.

5.2. Synthesis of Compounds 1-4

Compounds 1-4 were obtained by the same solvothermal route through the following
procedure. First, 0.0166 mmol of 9,10-anthracenedicarboxylic acid (4.5 mg) and 0.025 mmol
of 2,5-diaminoterephthalic acid (4.5 mg) were dissolved in 2 mL of DMF into a glass vial.
To this solution, 2 mL of another DMF solution containing 0.05 mmol of the corresponding
lanthanide(III) nitrate salts were added dropwise, observing no precipitation during the
process. After sonicating the resulting mixture for two minutes, it was heated in the
closed vial at 95 °C in an oven for 24 h. After this time, and once the mixture was slowly
cooled at room temperature, a polycrystalline powder was obtained for all compound
except for compound 1, for which single crystals with enough quality for single-crystal
X-ray diffraction were collected. Compound 1 (yield based on metal: 30%): Anal. Calcd.
for CsgHgaNgNdO1g: C, 48.05; H, 4.45; N, 7.73%. Found: C, 47.98; H, 4.39; N, 7.78%.
Compound 2 (yield based on metal: 35%): Anal. Calcd. for C5sHggNgO20Tby: C, 45.98; H,
4.52; N, 7.40%. Found: C, 46.09; H, 4.42; N, 7.45%. Compound 3 (yield based on metal: 45%):
Anal. Calcd. for CsgHggHoyNgOyg: C, 45.62; H, 4.48; N, 7.34%. Found: C, 45.78; H, 4.33; N,
7.28%. Compound 4 (yield based on metal: 40%): Anal. Calcd. for CssHggEryNgOpg: C,
45.48; H, 4.47; N, 7.32%. Found: C, 45.56; H, 4.38; N, 7.42%.
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5.3. Physical Measurements

Elemental analyses were carried out on a THERMO SCIENTIFIC analyzer model
Flash 2000. The infrared spectra measured on powdered samples were recorded on a
BRUKER TENSOR 27 FT-IR and OPUS data collection program. PXRD diffractograms
were registered in a BRUKER D8 ADVANCE equipment. Magnetic susceptibility mea-
surements were performed on polycrystalline samples of the complexes with a Quantum
Design SQUID MPMS-7T susceptometer at an applied magnetic field of 1000 G. The sus-
ceptibility data were corrected for the diamagnetism estimated from Pascal’s Tables [74],
the temperature-independent paramagnetism, and the magnetization of the sample holder.
Ac measurements were performed on a Physical Property Measurement System-Quantum
Design model 6000 magnetometer under a 3.5 G ac field and frequencies ranging from 60 to
10,000 Hz. Photoluminescence spectra were acquired on an Edinburgh Instruments FLS920
spectrometer that is coupled with a close cycle helium cryostat in which the samples are
subjected to high vacuum (of ca. 10~ mbar), which confirms the presence of oxygen or
water in the sample holder. The steady-state measurements were done using an IK3552R-G
HeCd continuous laser (A = 325 nm) as an excitation source for the emission spectra or a
Miiller-Elektronik-Optik SVX1450 Xe lamp for the excitation spectra. The decay curves of
compound 2 were acquired with a uF900 microsecond pulsed lamp. The analysis of the
fluorescence in the ultraviolet-visible (UV-Vis) region was registered with photomultiplier
tube (PMT) coupled to the spectrometer whereas a Hamamatsu NIR-PMT H10330C-75
detector was employed for those compounds emitting in the NIR (1, 3, and 4). The over-
all quantum yield (%) was measured in solid state for all samples (except for 4-Nd) by
means of a Horiba Quanta—’ integrating sphere using an Oriel Instruments MS257 lamp as
excitation source and an iHR550 spectrometer from Horiba to analyse the emission.

5.4. Single-Crystal Structure Determination and PXRD Measurements

The prismatic crystal for 1 was mounted on a glass fiber and used for data collection
on a Bruker D8 Venture with a photon detector equipped with graphite monochromated
MoK radiation (A = 0.71073 A). The data reduction was performed with the APEX2 [75]
software and corrected for absorption using SADABS [76]. Crystal structures were solved
by direct methods using the SHELXT program [77] and refined by full-matrix least-squares
on F? including all reflections with the SHELXL-2018/3 program [78] using anisotropic
displacement parameters by means of the WINGX crystallographic package [79]. Final
R(F), wR(F?) and goodness-of-fit agreement factors, as well as details on the data collection
and analysis can be found in Table 2. CCDC number 1,995,112 contains the supplementary
crystallographic data for compounds. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
(accessed on 21 February 2021).

The X-ray powder diffractions (XRPD) patterns were collected on a Philips X'PERT
powder diffractometer with Cu K« radiation (A = 1.5418 A). Indexation of the diffraction
profiles was carried out using the FULLPROF program [80], on the basis of the space group
and cell parameters found for isostructural compounds by single crystal X-ray diffraction.
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Table 2. Crystallographic data and structure refinement details of compound 1.

Compound 1
Chemical formula Co9H3N4O9gNd
CCDC 1995112
M (g mol 1) 724.82
T (K) 100
Cryst. syst. Triclinic
Space group P-1
a(A) 10.4488(6)
b (A) 11.4058(6)
c(A) 13.2404(8)
(%) 73.550(2)
B©) 86.550(2)
7 ) 87.175(2)
Vv/A3 1509.76(15)
z 2
p/gcm™3 1.594
#/mm~! 1.778
Ry 2/WRy P [[>20(D)] 0.0620/0.1411
R; 2/wR; P [all data] 0.0816/0.1520

ARy =S| 1Fy | —IFc | 1 /SIF 1. P wRy = {S[w(F,,Z—FCZ)Z]/S[w(F(,Z)Z]}%; where w = 1/[02(Fy2) + (aP)? + bP] and P
= (max(Fy?,0) + 2Fc?)/3 with a = 0.0600 and b = 12.7562.

6. Conclusions

In the present study, two related 3D LnOFs are chemically and structurally charac-
terized to show that they present isoreticular frameworks of pcu topology but distinct
chemical formula due to the different coordination shown by the carboxylate aromatic
ligands to the selected lanthanide(III) ions on the basis of their ion size. In particular,
frameworks of 1 and 2—4 differ in the bridging coordination pattern shown by the (NHj),-
bdc?~ ligand within the dimeric paddle-wheel shaped building unit, being respectively
n-k20,0":k0 and p-kO:xO’. The magnetic behavior of these compounds is dominated by
the spin-orbit coupling of lanthanide(Ill) ions, which are found to be practically isolated
in the framework as corroborated by the DFT computed values of the magnetic exchange
interactions occurring within the dinuclear building units. In this sense, the computa-
tional study suggests that the net weak interaction proceeds through a ferromagnetic
coupling derived from the countercomplementarity of the coexisting carboxylate bridges of
(NHjy),-bdc?~ and ant?~ ligands characterized for rendering antiferromagnetic couplings.
Compounds 1, 2, and 4 show characteristic emissions centred on their corresponding lan-
thanide(III) ions sited in the visible (for 1) and NIR (for 2 and 4) regions. The bright green
emission afforded by compound 1, featuring a long-lived luminescence of nearly a mil-
lisecond, shows a solvent-dependent behavior in response to the interaction of the Tb-OF
with the solvent medium. Compound 1 experiments a complete turn-off in acetone, which
awakens its interest for further studies of each sensing activity. The turning-off response of
the solvent-dependent luminescence of 1 seems to proceed through a dynamic quenching
according to the variability of emission lifetimes measured in the solvent dispersions.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2312-748
1/7/3/41/s1, Figure S1: Pattern-matching analysis and crystalline parameters of the polycrystalline
sample of compound 2, Figure S2: Pattern-matching analysis and crystalline parameters of the poly-
crystalline sample of compound 3, Figure S3: Pattern-matching analysis and crystalline parameters
of the polycrystalline sample of compound 4, Figure S4: Captures of the 3D framework of compound
1 showing the voids present that are occupied by lattice DMF molecules. Two different views are
shown: along b axis (left) and along a axis (right). N = blue, O = red, C = gray, Nd = green, Figure S5:
Captures of the 3D framework of compounds 2—4 showing the connected voids present. Two different
views are shown: along c axis (left) and along a axis (right). N = blue, O = red, C = gray, Tb, Ho
or Er = green, Figure S6: Temperature dependence of the in-phase (top) and out-of-phase (bottom)
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components of the ac susceptibility for 4 under an external field of 1000 Oe (the susceptibility values
are given per Er(III) ion, Figure S7: Cole—Cole plots under 1000 Oe external field for 1. Solid lines
represent the best fits to the generalized Debye model, Figure S8: Excitation spectrum of compound
2 measured at room temperature at Aeyy = 548 nm, Figure S9: Excitation spectrum of compound 2
measured at room temperature at Aem = 548 nm, Figure S10: Decay curves of compound 2 acquired
on dispersions of different solvents (see specified conditions), Table S1: Data of pattern-matching
refinement of compound 2, Table S2: Data of pattern-matching refinement of compound 3, Table S3:
Data of pattern-matching refinement of compound 4, Table S4: Continuous Shape Measures Cal-
culations for herein described compound 1, and previously reported {[Nd(ant); 5(DMF),]-(DMF)},,
{[Dy(ant); 5(DMF);]-(DMF)},, and {[Dy>(ant),((NH;),-bdc)(DMF)4]-2DMEF-2H, 0}, Table S5: Contin-
uous Shape Measures Calculations for the isostructural Dy-based analogue of compounds 2-4 due to
the lack of single crystals of these specimens. The Tb (2), Ho (3) and Er (4) compounds are expected
to have similar coordination environments to that of Dy in both materials.
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