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Abstract: Nanoparticles of CoGdyFe; _ yOy4 (x = 0%, 25%, 50%) synthesized via sol-gel auto com-
bustion technique and encapsulated within a polymer (Eudragit E100) shell containing curcumin
by single emulsion solvent evaporation technique were formulated in this study. Testing of synthe-
sized nanoparticles was carried out by using different characterization techniques, to investigate
composition, crystallinity, size, morphology, surface charge, functional groups and magnetic prop-
erties of the samples. The increased hydrophilicity resulted in sustained drug release of 90.6% and
95% for E1(CoGdy 25Fe; 7504) and E2(CoGd soFe; 504), respectively, over a time span of 24 h. The
relaxivities of the best-chosen samples were measured by using a 3T magnetic resonance imaging
(MRI) machine, and a high r, /r; ratio of 43.64 and 23.34 for composition E1(CoGdg »5Fe; 7504) and
E2(CoGdy 50Fe; 504) suggests their ability to work as a better T, contrast agent. Thus, these novel
synthesized nanostructures cannot only enable MRI diagnosis but also targeted drug delivery.

Keywords: cobalt ferrite nanoparticles; targeted drug delivery; in vitro diagnosis; magnetic reso-
nance imaging; T, weighted images

1. Introduction

Inorganic nanoparticles (NPs) are widely examined for targeted drug delivery (TDD),
early stage treatment and diagnosis of major diseases, such as cancer, for instance, for the
past 20 years [1,2]. For time efficient and effective treatments, theranostic nanomaterials
have been extensively used for clinical purposes. Such materials combine the functionalities
of both diagnosis imaging and therapy into one single nanoscale entity [3,4]. Among these
nano materials, the utilization of protein-based and polymer-coated magnetic nanoparticles
(MNPs) [5,6] in biomedical applications, such as TDD, magnetic hyperthermia [7], magnetic
separation [8], targeted imaging in vivo [9,10], magneto-control of subcellular signaling
pathways [11], tracking of stem cells [12], magneto-responsive therapy [13] and magnetic
resonance imaging (MRI) contrast agents (CAs), have attained serious consideration [14].
The long-term aim of diagnosing diseases is the advancement of imaging techniques having
adequate sensitivity and specificity. Therefore, theranostic nanomaterials providing therapy
and generating imaging signals when subjected under external stimuli are particularly of
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great demand [15]. Among all the imaging techniques used in biomedical field for diagnosis
and molecular imaging purposes, MRI is the most powerful and versatile diagnostic tool
because of its fundamental advantages, such as high spatial resolution, non-invasiveness,
excellent soft tissue contrast and safety [16]. In most of the clinical applications, MRI CAs
are used for enhancing contrast which in result boosts sensitivity and image quality for
more accurate diagnosis.

MRI CAs are generally classified into two categories: paramagnetic metal ions based Ty
CAs and superparamagnetic iron oxide (SPIONS) based T, CAs. High spin paramagnetic
metal ions or their complexes containing gadolinium (Gd**) ions having unpaired electrons
in their outer orbits give rise to magnetic dipoles when subjected under external magnetic
field, due to a (700 times) larger magnetic moment of electron, as compared to that of a
proton. These paramagnetic metal ions generate large fluctuating magnetic fields, resulting
in the enhancement of proton relaxation if this fluctuation frequency has components close
to the Larmor frequency. Such CAs are responsible of providing positive contrast in the
case of T; weighted MR image, while SPIONS based MR agents shorten the transverse
(T7) relaxation time and show negative contrast on T, weighted images [17]. The Food
and Drug Administration (FDA) permitted the utilization of Gd>* based contrast agents
(GBCAs) for clinical purposes for about 30 years. However, later it was found that GBCAs
contain harmful side effects, including impaired kidney function, fibrosis of skin, joints
and internal organs caused due to leached free Gd3* ions [18]. Moreover, GBCAs get
excreted through the body via urine, thus hindering their use in high-resolution imaging
application, which demands a long scan time [19]. Moreover, it has been confirmed that
repeated exposure of GBCAs under MRI results in the accumulation of Gd** ions in human
brain [20] and bones [21] and stay in the organs for years. Moreover, the capability for Gd>*
dechelation elevated the concerns over the safety of GBCAs. Consequently, in February
2018, the UK government suspended the licenses of Omniscan and Magnevist, two main
commercial GBCAs, until further investigation [22]. Thus, there is a considerable need for
new clinically applicable MRI CAs meeting the standards of traditional GBCAs.

In the need for the development of new contrast agents for MRI applications, SPI-
ONS have been extensively explored. Nevertheless, CoFe;O4 NPs remain comparatively
uninvestigated as MRI CAs, regardless of their outstanding performance in biomedical
applications, including hyperthermia and drug delivery. Only a few reports are available
describing the potential of CoFe,O4 NPs as potential T CAs. Ghasemian et al. submitted
the development of CoZnFe,O4 MNPs coated with Dimercaptosuccinic acid (DMSA) to
be appropriate for T, contrast enhancement with relaxivity ratio of 50 at 1.5T [23]. Nidhin
et al. also published CoFe,O4 NPs as suitable T, CAs with rp /17 ratio of 69 [24]. Piché et al.
performed MRI phantom test on DMSA coated CoFe,O4 NPs and reported rp /1y ratio of 65
at 9.4 T [25]. Wu et al. used multi-walled carbon nanotubes (MWCNT)/CoFe,O4 hybrids
as effective theranostic agents for MRI and TDD with r; /r; ratio of almost 28 [26].

In the present study, the synthesis, encapsulation and employment of novel Gd**
doped CoFe,O4 MNPs for targeted drug delivery and MRI is reported. A simple sol-gel
auto-combustion technique was used for preparing CoFe,O4 MNPs. Curcumin (anti-
cancer drug) and CoGdFe(;_,)O4 NPs were then encapsulated within a polymer shell, by
oil-in-water (O/W) single emulsion, using solvent evaporation technique.

2. Results and Discussion
2.1. X-ray Diffraction (XRD)

The XRD patterns of synthesized CoGdyFep_ Oy (x = 0%, 25%, 50%) MNPs calcined
at 850 °C for 5 h are presented in the Figure 1. For CoGdyFe(,_)O4 (x = 0%), the patterns can
be indexed to single-phase cubic spinel crystal structure (Fd3m) of CoFe;O4 MNPs (JCPDS
card 22-1086) with (220), (311), (400), (422), (511) and (440) diffraction peaks. The lack of
any additional or impurity peak in XRD is proof of pure CoFe,O4 MNPs [27]. Moreover,
in XRD pattern of CoGdyFe_)Oy (x = 25%, 50%), the presence of secondary phase is
visible, which is identified as peaks of GdFeO3, after comparing with JCPDS card 74-1476
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data and the literature [28,29]. The crystallite sizes of CoGdyFe_)Oy (x = 0%, 25%, 50%)
calculated by using the Scherrer formula were 36.89, 36.90 and 36.92 nm, respectively. The
increased peak intensity of secondary phase along with reduced crystallinity is observed
with the increment in dopant concentration. The increase in crystallite size with increment
in Gd®* content agrees with the reported data and is due to the ionic radii difference of
Gd>*(0.094 nm) and Fe?* (0.067 nm) [30]. The bigger ionic radii of Gd** ions as that of Fe>*
and Co?* ions result in expansion of the crystal structure, lattice strains and disordered
lattice structure. Such improvements impede the growth of grain and therefore raise the
lattice parameter [31], whereas the reduction in lattice parameter “a” is observed with the
doping of large sized Gd3* ions [32]. This is because rare-earth (RE) ions prefer to occupy
octahedral sites [33]. The decrease of “a” can also be associated with the existence of Fe

vacancies in samples [34].
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Figure 1. Indexed XRD pattern of CoGdyFe_ Oy (x = 0%, 25%, 50%) synthesized via sol-gel auto
combustion technique

2.2. Functional Group Analysis by FTIR

Figure 2a shows the FTIR spectra of CoGdyFep_)Oy4 (x = 0%, 25%, 50%) MNPs.
The higher-frequency peak (v1) represents the metal-oxygen vibration at the tetrahedral
sub-lattice, and the lower-frequency peak (v;) represents the intrinsic vibrations of metal—-
oxygen bond at the octahedral sites [35]. For CoGdyFe_y)O4 (x = 0%), the spectra shows
absorption bands position at around 384 and 590 cm ™! for octahedral and tetrahedral
sites, respectively. With the doping of Gd3* ions in CoFe,; Oy, the positions of v1 and vy
bands shift towards higher frequencies, due to the lattice distortion with the addition of
RE ions [27] and increased bond length at octahedral site [36]. Figure 2b shows the FTIR
spectra of the best-chosen emulsions E1 and E2. The IR peaks are mostly shifted from
their original position due to the specific interactions (most commonly due to hydrogen
bonding) between the chemical entities of different components. Changes in the strength
of these interactions are expected to cause the change of FTIR peak position and shape of
the functional groups [37]. Figure 2b confirms the presence of functional groups of all the
components used in emulsion formulation. For example, the peak at 556 cm ™! confirms
the presence of CoGd Fe_,)O4 MNPs [38,39]. Similarly, the peak around 1110.5 cm !
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represents the functional groups of ether present in the drug, i.e., curcumin, the peaks
at 1455.79 and 1733.13 cm ! represent the CH bending and carbonyl group of polymer
Eudragit E100, respectively [37,40]. The peak at 3432.16 cm ! represents hydroxyl group
stretching of curcumin [37], solvent (ethanol) or water used in the formation of organic
phase. Hence, the FTIR spectra confirmed the compatibility of all the components used in
emulsion formulation and its stability.
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Figure 2. Fourier transform infrared (FTIR) analysis spectra of (a) CoGdxFe_)O4 (x = 0%, 25%, 50%) and (b) emulsions E1

and E2.

2.3. Particle Size Determination and Morphological Analysis by SEM

SEM images represent the morphology and grain size of the prepared samples.
Figure 3a shows the SEM image of diluted CoGdyFe_,)O4 (x = 0%) and powdered
CoGdyFep_)Oy (x = 25%, 50%) samples. The particle size was found ranging from 22 to
46 nm of the synthesized samples. These SEM images also verify particle size increment
with the increase in Gd3* content which is in accordance to the reported data [30]. This can
be explained based on ionic radius of the dopant used. Gd3* has ionic size of 0.094 nm,
which is greater, as compared to that of Fe?* ions, resulting in increment of particle size [41].
Moreover, the magnetic forces present between the MNPs and high calcination temperature
of 850 °C cause their agglomeration [30,42]. Figure 4a,b represents the micrographs of E1
and E2. The average particle size calculated for emulsions E1 and E2 was around 103.5
and 124 nm, respectively. The elemental composition of the synthesized samples was
analyzed via EDS. Figure 3b confirms the presence of elements O, Fe, Co and Gd in the
prepared samples, while the absence of any traceable impurities confirms the purity of the
synthesized MNPs.

2.4. Magnetic Hysteresis Evaluation by Using VSM

Magnetic hysteresis loops of samples CoGdyFep_,) Oy (x = 0%, 25%, 50%) calcinated
at 850 °C for 5 h are shown in Figure 5. The size, composition and morphology of the
synthesized material have a great influence on its magnetic properties [43]. The reduction in
saturation magnetization (Ms) and remanent magnetization (Mr) values with the increment
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in Gd3* content supports the reported data. The reduction in Ms values can also be assigned
to the increasing crystallite size of prepared samples with increasing Gd>* content. It has
been reported that the surface of ultrafine MNPs and spins are canted on their surfaces due
to lack of balanced exchange interactions [44]. Hence, the surface of synthesized MNPs
seems to have nonmagnetic layer. Moreover, the magnetic moments of RE ions can be seen
only at very low temperature (less than 40 K) [45]. The arrival of RE ions thus appears
to be replacing magnetic Fe** ions by non-magnetic RE ions at octahedral locations [46],
resulting in a decrease of Ms values. The values of Ms, Mr and coercivity (Hc) are listed in
Table 1.
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Figure 3. (a) Scanning electron microscopy images of CoGdyFe_Oy (x = 0%, x = 25%, x = 50%) samples synthesized
via sol-gel auto combustion technique. (b) EDS analysis of samples CoGdxFep_ Oy (x = 0%, x = 25%, x = 50%) showing
elemental composition of the materials.

Table 1. Calculated parameters of the synthesized samples.

Composition COF6204 CoGd0,25Fe1_7504 COGd0‘50F61_5004
Crystallite size (nm) 36.89 36.90 36.92
Lattice constant (a) 8.411 8.380 8.3436
Ms (emu/g) 81.86 47.81 29.719
Hc (Oe) 1317.53 649.99 659.53
Mr (emu/g) 43.44 22.88 14.21
Hydrodynamic Size (nm) 89.4 97.2 105

Zeta Potential (mV) +15 —18.8 —12
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Figure 4. Scanning electron microscopy images of the prepared emulsions (a) E1 and (b) E2.
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Figure 5. Magnetization curves of samples CoGdyFep_y) Oy (x = 0%, 25%, 50%) nanoparticles
obtained at room temperature.

2.5. Hydrodynamic Size and Zeta Potential

The hydrodynamic size and zeta potential of the synthesized samples CoGdxFe(p_,)O4
(x = 0%, 25%, 50%) analyzed by Malvern Zetasizer were 89.4, 97.2 and 105 nm and +15,
—18.8 and —12 mV, respectively. The sharp peaks shown in the Figure 6 confirm the
presence of NPs of almost same size range. The average size of 103.9 nm and 125.9 nm
and zeta potential of +19.6 = 7.83 mV and +31.8 & 6.36 mV was calculated for E1 and
E2, respectively. The increased size confirms the successful drug loading and covering of
polymer shell over the synthesized MNPs. This result supports the grain size obtained by
SEM analysis of these emulsions. The positive charge on the emulsions is attributed to the
cationic nature of the polymer used, i.e., Eudragit E100. The suspensions of formulations
containing zeta potential values between +30 and —30 mV are believed to be stable. Zeta
potential either positive or negative in surface loading than +30 and —30 mV is more prone
to inhibit agglomeration in electrostatic stabilization emulsion [47]. The polydispersity
index (PDI) of 0.397 and 0.456 for E1 and E2 confirms the stability of the emulsion. The
PDI values less than 0.5 correspond to the polydispersity of uniformly dispersed samples.
Meanwhile, PDI values greater than 0.7 indicate the presence of NPs having broad size
distribution and are not suitable to be analyzed by using the dynamic light-scattering
method [48-50].

2.6. In Vitro Drug Release Study
2.6.1. Drug Release and Encapsulation Efficiency

A graphical representation of the drug-release study of the two best chosen emulsions
is displayed in Figure 7. An instant and persistent release of 88.44% and 91.32% drug was
observed in the first 12 h, which was then followed by a decelerate release of leftover drug
over the next 12 h, with the total of 90.6% and 95.0% drug release over 24 h by E1 and E2,
respectively. The rapid release of bursts can be attributed to the release of the drug at or
nearby the surface of MNPs, due to its hydrophilic nature [51]. Diffusion of the drug inside
the MNPs core in the dissolution media could lead to exponential delayed release [52]. The
reason observed for the increased drug release in the case of E2 is its hydrophilicity. It was
observed during this research that the hydrophilicity of E2 increased with the increased
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Gd*2 content, which, as a result proved to release more drug as compared to E1, having less
Gd*? content. The encapsulation-efficiency percentages of 87.7% and 74.52%, along with
the loading-capacity percentages of 5.84% and 4.62% measured using Equations (1) and (2)
for emulsion E1 and E2, respectively, are in accordance with the reported literature [53].
Size Distribution by Intensity
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Figure 6. (a) Hydrodynamic size of CoGdxFe(_,)O4 (x = 0%). (b) Zeta potential of emulsion E1 (measured using distilled

water as dispersion medium, at 25 °C).



Magnetochemistry 2021, 7, 47

9o0f 16

(E1)

Cummulative Drug Release(%)

100

40

- 100
80
o
= 7))
o
60 G
o
=3 g i
N
40 g W
Q
- 2
T
~20 S
i &
—u— E1(CoGdg 25Feq 7504) g
—eo— E2 (CyGdg 5Feq 504) O

|
5 10 15 20 25
Time (h)

Figure 7. Comparison of drug-release profile of E1 and E2 observed over a time span of 24 h.

2.6.2. Application of Kinetic Models
Korsmeyer-Peppas Model

After confirmation from Higuchi model that drug release follows diffusive mechanism,
Korsmeyer-Peppas model was applied for finding out the type of dissolution. It is achieved
by calculating its exponent value “n” [54]. This value should be less than 0.5 and, in our
case, it came out to be 0.186 and 0.263 for E1 and E2, respectively. The R? values for this
model are 0.9955 and 0.991 for E1 and E2, respectively, which are very close to 1. The
predicted data are very close to those obtained experimentally which confirmed that the
drug diffusion of the prepared formulations followed Korsemeyer-Peppas model.

2.7. Magnetic Resonance Imaging (MRI)

The inverse relaxation times (1/T; =11, 1/T, = 1p) of the compositions E1 and E2 are
shown in Figures 8 and 9 respectively. For E1 the values of r; and r; are found to be 1.64 and
71.57 s~1, with a relaxivity ratio of 43.64. Whereas for E2 values of r; and rp are found to be
1.85 and 43.18 s, with a relativity ratio of 23.34. For the estimation of the utility of CAs
in relaxation r; or ry, the soothing ratio is a significant parameter: The more calming the
agent is, the more efficient the agent can contrast T [25]. The relaxivity ratio higher than
10 generally suggests a good T, imaging ability of CAs, while a relaxivity ratio less than
5 indicates the capability for T; imaging [26,55,56]. The MRI contrast enhancement relies
upon the particle size, magnetic properties, surface composition and charge of the material.
Ms value is one of the most important factor that affect the relaxation of T,. [57]. Jun et al.
indicated that Ms values depend upon the size and composition of MNPs [58]. Metal NPs,
including Fe, Ni and Co, have higher Ms values than those for oxide NP. In accordance with
the reasons explained above, both compositions confirmed their suitability to be used as T,
contrast agents. However, E1 displayed an r, /1 ratio twice that of E2, which is because
E1 has a high Ms value of 47.81 emu/g, as compared to 29.719 emu/g of E2. One of the
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reasons for higher rp and relaxivity ratio can be the hydrophilicity factor. It was observed,
during the synthesis, that the solubility of CoGdyFe(,_,)Oy in the solvent enhanced with
the increment in the Gd** content in the sample. Moreover, E2 composition has higher
value of positive charge and bigger size, as compared to E1, leading to low r, and relaxivity
ratio. Hydrophilicity plays an important role because this can affect the relaxivity to allow
proximity of more water molecules to induce short spin-lattice relaxation time. The degree
of hydration is strongly influenced by the nature of hydrophilic or hydrophobic coatings
on MNPs and, thus, their capability of MRI [59].
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Figure 8. (a) Graph of relaxation rate (r;) vs. concentration of magnetic nanoparticles (MNPs) for E1. (b) Graph of relaxation
rate (ry) vs. concentration of MNPs for E1.
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Figure 9. (a) Graph of relaxation rate (r1) vs. concentration of MNPs for E2. (b) Graph of relaxation rate (r) vs. concentration

of MNPs for E2.

3. Materials and Methods
3.1. Materials

Iron nitrate (Fe(NOj3)3.9H,0), Cobalt nitrate (Co(NOj3).6H,0), Gadolinium nitrate
(Gd(NO3)3.6H,0), Citric acid (CgHgO7-H»0), Ammonia solution 32% (NHs.H,O), Tween
80, Curcumin, and hydrochloric acid 37% (HCI) were purchased from Sigma Aldrich while
Eudragit E100 was purchased from Evonik industries, Germany.

3.2. Synthesis of CoGdyFegy _ )Oy4 (x = 0%, 25%, 50%) Magnetic Nanoparticles

A nominal composition of Gd** doped cobalt ferrites with general formula
CoGdyFep_)O4 where x = 0%, 25% and 50% were synthesized by using sol-gel auto-
combustion technique. The aqueous solutions of metal nitrate salts, i.e., Fe(NO3)3.9H,0,
Gd(NO3)3.6H,0 and Co(NO3),.6H>O and citric acid, were prepared, separately, by
dissolving their stoichiometric quantities in deionized water. Then a 1:1.5 molar ratio
of metal nitrates to citric acid was taken, and the solutions were then mixed.

After stirring magnetically for 1 h, the solution was neutralized by dropwise addition
of aqueous ammonia and heated at 100 °C until the formation of gel. The gel then converted
automatically into fluffy powder form upon self-ignition. This prepared powder was dried
further, in oven, at 100 °C, for a few hours, for complete removal of moisture. Which was
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then ground by using mortar and pestle to get fine powder and calcined at 850 °C in a
muffle furnace for 5 h.

3.3. Emulsion Formulation

Solvent evaporation technique was used to formulate O/W emulsions. Firstly, the
organic phase was prepared by taking fixed amount of polymer, drug and MNPs in specific
quantity of solvent in separate glass vials and sonicated in ultrasonication water bath for
10 min. These three solutions were then combined in one vial and again sonicated for
10 min. For aqueous phase, fixed amount of Tween® 80 was dissolved in deionized water,
by stirring magnetically for about 30 min. Then, the organic phase was poured, dropwise,
into aqueous phase in ultrasonication water bath, for 30 min, to form a uniform solution.
At the end, the prepared emulsion was heated at 30 °C, for 15 min, in Rota vapor, to remove
solvent from it. The emulsion obtained at the end was stored and further used for different
characterizations.

For getting a uniform and stable emulsion, different parameters, such as concentration
of polymer, drug, MNPs and volume of aqueous phase, were altered. For this purpose, De-
sign Expert software was used, which generated a list of different formulations. From that
list, the one formulation showing the best stability for over three months for both composi-
tions, i.e., CoGd s5Fe; 7504 and CoGd spFe1 504, was chosen for further characterizations
and named as E1 and E2, respectively.

3.4. Characterizations

The structural analysis of all the samples were performed, using STOE Powder X-Ray
diffractometer 6-0 between 26 values ranging from 20° to 80°, at room temperature, using
Cu Kot (A = 1.5406 A) radiation. The patterns were evaluated by X'pert Highscore software
and plotted, using Origin software. For the investigation and confirmation of required
functional groups in the synthesized samples, FTIR transmission spectra were taken, using
PerkinElmer, SpectrumTM100 in a range from 300 to 1000 cm~! for NPs and from 400 to
4000 cm ! for emulsions. For morphological and elemental analysis, Scanning Electron
Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were performed, using Vega3
Tescan microscope (Czech Republic) connected with EDS apparatus of Oxford instrument.
The diluted and powdered samples were firstly deposited on the glass substrate and dried
at room temperature and then coated with gold, under vacuum, by cathodic sputtering.
SEM images of the samples were obtained under an accelerating voltage of 15 kV. For
investigation of magnetic behavior of MNPS, vibrating sample magnetometry (VSM) was
performed, using Lake Shore 7407 calibrated with pure nickel as a calibration sample
at room temperature with maximum applied field of 10kOe. The charge and average
hydrodynamic size (Dy,) of MNPs and emulsions was measured, using Zeta Sizer Nano ZS
(Malvern Instruments, UK) by taking highly diluted dispersion of MNPs, by using distilled
water as a dispersion medium, at 25 °C.

3.5. In Vitro Drug Release Kinetics

To study in vitro drug release kinetics of the emulsions, 5 mL from each prepared
emulsion was taken and placed inside a dialysis membrane which was then dipped in
conical flask containing 50 mL phosphate buffer solution (pH 7.4). This conical flask was
then placed in a mechanical shaker for 24 h, at 37 & 0.5 °C temperature, and 1 mL of sample
was taken out after fixed time intervals from the buffer solution and replaced with fresh
buffer solution, to keep the total volume constant. Ten samples were taken during a time
interval of 24 h and analyzed by UV-Vis spectrometer model HALO DB-20 series. Similarly,
for the measurement of drug-encapsulation efficiency and loading capacity, emulsions
were centrifuged at 4500 rpm for 1.5 h. The supernatant was discarded, and the obtained
pellet was centrifuged again for 1.5 h, at 4500 rpm, by adding ethanol. The supernatant
was then used for UV-Vis analysis. The drug encapsulation efficiency and loading capacity
was calculated by using Equations (1) and (2) [60], respectively, as given below.
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Total amount of drugs — Amount of free drug 1

Encapsulation ef ficiency (%) = Total amount of drug

00 )

Total amount of drug — Free drug in supernatant

Loadi ity =
0adIng capacity Total amount of dried nanoparticles

x 100 (2)

Diffusion and dissolution of drug encapsulated within the polymer matrix was moni-
tored and different kinetic models, i.e., Zero Order kinetics, First Order kinetics, Higuchi
kinetics and Korsemeyer-Peppas kinetics models, were applied, using a software named
“DD Solver 1.0” to analyze drug release [60]. The best fitted model was then selected
depending upon the correlation coefficient (R?), which is a statistical measure of closeness
of predicted data to experimental ones under the same conditions.

3.6. Magnetic Resonance Imaging (MRI) Analysis

The performance of the synthesized samples as MRI agents was evaluated by using
clinical MRI system GE Optima MR450w 3.0T. For this purpose, the samples were prepared
at different concentrations by using different TE and TR sequence. For T, contrast, TR
sequence of 5000 ms with varying TE of 14.27, 42.8, 76, 108, 131, 164 ms and for Ty, fixed
TE value of 10.64 ms with TR of 101 and 685 ms was used. Two glass vials, one containing
water and one containing commercial Gd sample, respectively, were used as references
for comparing the imaging ability of the formulated emulsions with that of water and Gd.
After taking MRI images, a software named “Kpacs” was used for calculating the mean
intensities of the samples by using mean Region of Interest (ROI) values of the respective
samples and the relativity values of the samples were calculated, as well [61,62].

4. Conclusions

In this research, magnetic polymeric emulsion of Gd>* doped CoFe,O; MNPs, using
Eudragit E100 (copolymer) and curcumin (anti-cancer drug), was formulated. The Gd>*
doped CoFe;O4 MNPs having single phase cubic structure uniform spherical morphology
and enhanced magnetic properties were synthesized by sol-gel auto-combustion method.
These MNPs were then encapsulated within a copolymer shell along with the drug cur-
cumin by forming oil-in-water (O/W) emulsion, using solvent evaporation technique. The
formulated emulsion showed spherical morphology with a zeta potential of +19.6 = 7.8 mV
and +31.8 & 6.3 mV, indicating its stability. FTIR analysis confirmed the presence of all
the major functional groups of the materials used for their formation. In vitro drug re-
lease study performed at pH of 7.4 pursued Korsemeyer-Peppas kinetic model, along
with sustained and continuous drug release of 90.3% and 95.0% over a time span of 24 h
and encapsulation efficiency of 88% and 76% for E1 and E2, respectively. The contrast
enhancement ability of these nanostructures was confirmed by MRI analysis. Moreover, a
rp /11 ratio of 43.64 and 23.34 for E1 and E2, respectively, confirmed its ability to work as a
better T, contrast agent. Such synthesized nanostructures provide a successful route for
bio-compatible and selective drug delivery and enhanced MRI, thereby promoting further
research into the field.
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