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Abstract: A series of mononuclear Co(II) complexes showing slow magnetic relaxation is assessed
from the point of view of relaxation mechanisms. In certain cases, the reciprocating thermal be-
havior is detected: On cooling, the slow relaxation time is prolonged until a certain limit and then,
unexpectedly, is accelerated. The low-temperature magnetic data can be successfully fitted by as-
suming Raman and/or phonon bottleneck mechanisms of the slow magnetic relaxation for the
high-frequency relaxation channel. An additional term with the negative temperature exponent is
capable of reproducing the whole experimental dataset.

Keywords: slow magnetic relaxation; single ion magnets; reciprocating thermal behavior; cobalt(II)
complexes

1. Introduction

Single molecule (SMM), single chain (SCM), and single ion (SIM) magnets represent a
class of coordination compounds based upon transition metal and/or lanthanide complexes
that are promising in their technical utilization as carriers of information possessing a giant
memory capacity [1–10]. During the last decade, a plethora of publications have been
oriented to this subject and these new objects also brought novel physical effects, e.g.,
quantum tunneling of magnetization. Properties of SMMs, SCMs, and SIMs have been
subjected to a number of reviews, e.g., [11–15].

For this still developing field, experimental data bring new information which neither
conforms expectations nor existing theories. Among new observations, a reciprocating
thermal behavior (RTB) has been reported recently [16,17]. In complexes showing the
slow magnetic relaxation, usually detected by the AC (Alternating Current) susceptibility
measurements as a function of the frequency of the oscillating field, a “normal” behavior
is recorded when the relaxation time on cooling increases, irrespective of the particular
mechanism—Orbach, Raman, and direct. Eventually, it reaches a temperature independent
plateau when only the quantum tunneling of magnetization occurs. It is observed that
a number of studied systems showing the slow magnetic relaxation display an anomaly
below some temperature limit: On further cooling the relaxation time τ decreases. This
effect can be phenomenologically described by a new relaxation term with the negative
temperature exponent: τ−1~T−k. Such a temperature evolution is predicted by the second
solution of the phonon bottleneck effect that is, to our best knowledge, ignored so far.

Herein, we are reviewing the most important mechanisms that influence the slow
magnetic relaxation, namely Orbach, Raman, direct, phonon bottleneck, and quantum
tunneling of magnetization. Their applicability is presented for a set of mononuclear Co(II)
complexes showing the slow magnetic relaxation. However, in larger external magnetic
fields of BDC = 0.4–0.6 T, a new, much slower relaxation channel is opened—the low-
frequency (LF) channel. With the increased external field the LF channel tends to dominate
over the high-frequency relaxation path. The mole fraction of the slowly relaxing species
via the LF channel at a temperature low enough often exceeds x(LF) > 0.8. It is worth
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noting that just in such a case the HF relaxation channel can display an anomaly—the
reciprocating thermal behavior.

2. Spin-Lattice Relaxation

The solid-state system that contains magneto-carriers—magnetic moments due to
the orbital and spin angular momentum of electrons and nuclei, consists of the assem-
bly of spins and the phonon bath (energy reservoir) due to the vibrations of the solid
state, and these are under the influence of external stimuli: Static or oscillating magnetic
field, irradiation, and temperature. The overall magnetic polarization is described by the
macroscopic magnetization M(Mx, My, Mz) that from the thermodynamic unstable state
relaxes spontaneously in time to the thermodynamic more stable state. In simple words,
the relaxation means a recovery of the equilibrium.

When the static magnetic field is on/off the relaxation formula for an ideal case is

M(t) = M0 + M(t=0) exp(−t/τ) (1)

and for a paramagnetic material in equilibrium M0 = 0 is assumed. The time constant τ
is termed the relaxation time. In practice, the situation is better described by a stretched
exponential.

In general, relaxation processes are covered by numerous mechanisms in which the
surrounding of the spin system under investigation plays an important role [18,19]. The
relaxation mechanisms were considered as principal: The direct, Raman, and Orbach. They
used to be completed by the quantum tunneling of magnetization that is temperature
independent and manifesting itself at a very low temperature. Some mechanisms are
reviewed in Table 1.

Table 1. Important relaxation mechanisms [18,19].

Mechanism Origin Simplified Formulae for the Inverse
Relaxation Time

Orbach
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transition from |c> to |a>;  
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1

Raman
nCTτ − = , n = 5, 7, 9  

Field independent process.  

Raman-I 

 

Case of non-Kramers system. 
For B D ck ϑ < Δ : 

1 7
Raman (NKS) CTτ − =   

Double phonon process:
(i) A phonon of energy }ω1 is absorbed causing a transition
of state |b> to the real excited state |c>;
(ii) A phonon of energy }ω2 is emitted causing a transition
from |c> to |a>;
Overall balance δba = }ω2 − }ω1.

For ∆Orb � kBT, τ−1
Orbach ≈ AOrb∆Orbe−∆Orb/kBT

τ−1
Orbach ≈ τ−1

0 e−Ueff/kBT

Field independent process.

Raman

Double phonon process:
(i) A phonon of energy }ω1 is absorbed causing an
excitation of the state |b> to the virtual state |c>;
(ii) A phonon of energy }ω2 is emitted causing a transition
from |c> to |a>;
Overall balance: δba = }ω2 − }ω1.

In general:
τ−1

Raman = CTn, n = 5, 7, 9
Field independent process.

Raman-I
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k T

k TAτ
Δ
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−
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Table 1. Cont.

Mechanism Origin Simplified Formulae for the Inverse
Relaxation Time

Raman-III,
Orbach-Blume
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(half integral spin, e.g., S = 3/2)  

1
direct dir(KS) mA T A B Tτ − ′ ′= = , m = 4 

Quantum tunneling of 
magnetization 

 

Temperature independent process via the energy 
barrier; Aqtm—zero-field relaxation rate, γ—
concentration, and β = b/C is parameter proportional 
to the square of the internal field generated by dipole-
dipole, hyperfine, and exchange interactions; b—
coefficient of the magnetic specific heat (cM = b/T2); 
C—the Curie constant. 

Brons-van Vleck formula [20]:  
2 2

1
qtm qtm 2 2

( ) 1
1

B eBA d
B fB

γ βτ
γβ

− + += =
+ +

  

Simplified formula [21]:  
1 2

qtm 1 2 qtm/ ( )Q Q B Dτ − = + =   

Field dependent, temperature independent 
process.  

Phonon bottleneck I 

 

The direct process is hindered by the insufficient heat 
capacity of the phonon system. 

Simplified solution: 
1

pb
lGTτ − = , l = 2 

Phonon bottleneck II Ignored as too fast. 
Predicted in low temperature regime:  

1
pb

kFTτ − −= , k = 1 

Local vibrational process Δloc—energy of the local mode. 
loc B

loc B

/
1

local loc / 2

e
(e 1)

k T

k TAτ
Δ

−
Δ=

−
 [22] 

Thermally activated process 
Ea—activation energy, ω—electron spin Larmor 
frequency. 

1 c
therm therm 2

c

2
1 ( )

A ττ
ωτ

− =
+

  

correlation time a B/0
c e E k T

cτ τ= ⋅  

The overall relaxation time results from the summation as follows: 
1 1 1 1 1 1 1
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where only selected terms are active in the certain temperature range. (Phonon bottleneck 
process is considered as a special kind of the direct process.) It must be mentioned that 

The direct process is hindered by the insufficient
heat capacity of the phonon system.

Simplified solution:
τ−1

pb = GTl , l = 2

Phonon bottleneck II Ignored as too fast.
Predicted in low temperature regime:
τ−1

pb = FT−k, k = 1

Local vibrational process ∆loc—energy of the local mode. τ−1
local = Aloc

e∆loc/kB T

(e∆loc/kB T−1)
2 [22]

Thermally activated process Ea—activation energy, ω—electron spin
Larmor frequency.

τ−1
therm = Atherm

2τc

1+(ωτc)
2

correlation time τc = τ0
c · eEa/kBT

The overall relaxation time results from the summation as follows:

τ−1 = τ−1
Orbach + τ−1

Raman + τ−1
direct + (τ−1

phonon_bottleneck) + τ−1
quantum_tunneling + τ−1

other (2)

where only selected terms are active in the certain temperature range. (Phonon bottleneck
process is considered as a special kind of the direct process.) It must be mentioned that the
registered values of relaxation time τ are not necessarily identical with the time constant
T1 for an ideal solid.

3. Phonon Bottleneck Effect

When analyzing the function lnτ vs. lnT, the low-temperature regime is described by
straight lines. The greater the temperature, the lower the relaxation time as follows:

(a) The Raman process ln τRaman = − ln C− n · ln T with n = 5–9;
(b) The direct process ln τdirect = − ln Adir − ln T;
(c) The quantum tunneling process ln τqtm = − ln Dqtm.
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Moreover, the function ln τOrbach = ln τ0 + (Ueff/kB) · T−1 referring to the Orbach pro-
cess is linear in the high-temperature range. This allows an identification of the relaxation
process that dominates in a certain temperature interval (Figure 1).

Magnetochemistry 2021, 7, x FOR PEER REVIEW 4 of 32 
 

(b) The direct process direct dirln ln lnA Tτ = − − ; 
(c) The quantum tunneling process qtm qtmln ln Dτ = − . 

Moreover, the function 1
Orbach 0 eff Bln ln ( / )U k Tτ τ −= + ⋅  referring to the Orbach pro-

cess is linear in the high-temperature range. This allows an identification of the relaxation 
process that dominates in a certain temperature interval (Figure 1). 

T−1/K−1
0.0 0.1 0.2 0.3 0.4 0.5 0.6

ln
(τ

/s
)

-10

-8

-6

-4

ln(T/K)
0.5 1.0 1.5 2.0 2.5

ln
(τ

/s
)

-10

-8

-6

-4
1.8 K10.0 K

 b[0] -15.6
 b[1] 53.1

 b[0] -3.5
 b[1] -1.9

 b[0] -5.0
 b[1] -0.2

 b[0] -4.3
 b[1] -1.1

 b[0] 1.6
 b[1] -5.1

 b[0] -5.3
 b[1] 0.35

 
 

Figure 1. Different contributions to the relaxation time in [DyIII2ZnII2] molecular complex: Orbach (high-temperature, blue, 
Ueff/kB = 53 K), Raman (intermediate-temperature, black, n ~ 5), phonon bottleneck (low temperature, green, n ~ 2), direct 
(low-temperature, red, n ~ 1), quantum tunneling of magnetization (violet, n ~ 0). Straight lines: y = b[0] + b[1]x. Data 
adapted from ref. [23]. 2014, American Chemical Society. 

The analysis of experimental data shows that in addition to the above mentioned 
processes there exists another one for which the equation ln ln lnG l Tτ = − − ⋅  or 

1 lGTτ − =  is obeyed, but with a subnormal exponent l ~ 2. This indicates a possible pres-
ence of the phonon bottleneck effect (note: here we are saying that at a different tempera-
ture range a different relaxation “rate” dominates). 

The above relaxation mechanisms were based under the assumption that the energy 
gain given to the phonon system is transferred immediately to the thermal bath of the 
constant temperature T0 and a sufficient (infinite) heat capacity. There are, however, two 
obstacles. (i) The number of spins in a crystal is ca 1021 per cm3, whereas the number of 
available phonon modes at low temperature is significantly lower, by a factor of 106 [18]. 
(ii) The phonons are scattered on the crystal boundary and some of them are backscattered 
so that they are not deposited to the thermal bath “just in time”. Owing to this effect, there 
is some accumulation of the phonons that do not leave the crystal so that apparently the 
temperature of the phonon bath Tph is higher than that of the thermal bath: Tph > T0. This 
results in an alteration of the direct relaxation process that is termed the phonon bottle-
neck effect. 

As a result, we can speak about the temperature of the spin system Ts and phonon 
temperature Tph. Accordingly, the heat capacity of the spin system (CH) is greater than that 
of the phonon (Cph), i.e., CH > Cph (Figure 2). 

Based upon arguments about the heat flow, relationships for two relaxation times 
(time constants) were derived [18] as solutions of the two time-dependent differential 
equations: 

1 1 ph ph/ ( )HC C Cτ τ′ = ⋅ +  (3)

b 1 ph ph ph( ) /HC C Cτ τ τ= + ⋅ +  (4)

Notice that τ1 is the spin to phonon relaxation time and τph is the phonon to thermal bath 
relaxation time. The relaxation time τ1’ is very short, τb is slower and it refers to a combined 
spins + phonons relaxation to the thermal bath. 

Figure 1. Different contributions to the relaxation time in [DyIII
2ZnII

2] molecular complex: Orbach (high-temperature, blue,
Ueff/kB = 53 K), Raman (intermediate-temperature, black, n~5), phonon bottleneck (low temperature, green, n~2), direct
(low-temperature, red, n~1), quantum tunneling of magnetization (violet, n~0). Straight lines: y = b[0] + b[1]x. Data adapted
from ref. [23]. 2014, American Chemical Society.

The analysis of experimental data shows that in addition to the above mentioned pro-
cesses there exists another one for which the equation ln τ = − ln G− l · ln T or τ−1 = GTl

is obeyed, but with a subnormal exponent l~2. This indicates a possible presence of the
phonon bottleneck effect (note: here we are saying that at a different temperature range a
different relaxation “rate” dominates).

The above relaxation mechanisms were based under the assumption that the energy
gain given to the phonon system is transferred immediately to the thermal bath of the
constant temperature T0 and a sufficient (infinite) heat capacity. There are, however, two
obstacles. (i) The number of spins in a crystal is ca 1021 per cm3, whereas the number of
available phonon modes at low temperature is significantly lower, by a factor of 106 [18].
(ii) The phonons are scattered on the crystal boundary and some of them are backscattered
so that they are not deposited to the thermal bath “just in time”. Owing to this effect,
there is some accumulation of the phonons that do not leave the crystal so that apparently
the temperature of the phonon bath Tph is higher than that of the thermal bath: Tph > T0.
This results in an alteration of the direct relaxation process that is termed the phonon
bottleneck effect.

As a result, we can speak about the temperature of the spin system Ts and phonon
temperature Tph. Accordingly, the heat capacity of the spin system (CH) is greater than that
of the phonon (Cph), i.e., CH > Cph (Figure 2).
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Based upon arguments about the heat flow, relationships for two relaxation times (time
constants) were derived [18] as solutions of the two time-dependent differential equations:

τ′1 = τ1 · Cph/(Cph + CH) (3)

τb = τ1 + τph · (Cph + CH)/Cph (4)

Notice that τ1 is the spin to phonon relaxation time and τph is the phonon to thermal
bath relaxation time. The relaxation time τ′1 is very short, τb is slower and it refers to a
combined spins + phonons relaxation to the thermal bath.

In a microscopic approach, two differential equations were established [24] giving rise
to two time constants τb and τ′b, hence:

τb = τ1(direct) + τ′ (5)

with
1
τ′

=
1

τph

3δ2(∆δ)

2π2cv3}3 coth2(δ/2kBT) ≈
[

1
τph

6(∆δ)k2
B

π2cv3}3

]
(T)2 → GT2 (6)

1
τ′b
≈
[

Aπ2cv3}3

6(∆δ)k2
B

]
(T)−1 → FT−1 (7)

Here, c = N/V is the number of spins per cm3 (volume concentration), δ = }ω is
the ground to excited level separation. In the magnetic field one can use the linewidth
(∆δ) = gµB(∆B). In the role of τph a simple formula can be applied τph ≈ L/2v where L is
the linear dimension of the crystal and the velocity of sound in the crystal is v~2.5 × 103 m
s−1 (for L = 1 µm, τph~10−10 s [18]). The dependence of the relaxation time upon the crystal
size proves that the relaxation is driven by PB [25]. Involvement of the magnetic field
modifies the formulae for the relaxation time in the presence of the phonon bottleneck
as follows:

1
τ′
≈ C′

g(∆B)
τphc

T2 → GBT2 (8)

1
τ′b
≈ C′′

Ac
(∆B)g

T−1 → FBT−1 (9)

It was argued [24] that the second solution of the phonon bottleneck differential
equations τ′b is by several orders of magnitude smaller so that it could be ignored (in
diluted ions). To the best of our knowledge, its effect has not been reported until the
discovery of the reciprocating thermal behavior in molecular complexes possessing the
intermolecular contacts [26].

4. Experimental Part
4.1. Synthesis, Chemical Analysis, X-ray Structure, and DC-Magnetic Data

The present communication is a review of the examples where the reciprocating
thermal behavior has been detected. The synthetic route and the analytical data can be
found in the original publications. The X-ray structure determination has been done in a
standard way, preferentially at low temperature, and the principal crystallographic data
are deposited in the Cambridge Crystallographic Data Centre. They are available in the
“cif” format.

The DC magnetic data were collected with the help of the SQUID apparatus (Quantum
Design, MPMS-XL7) restricted to the field BDC = 7 T and T = 1.8–400 K. Samples in the form
of a fine powder were encapsulated in a gelatin sample holder. In DC magnetic experiments,
the small field BDC = 0.1 T has been applied in taking the temperature dependence of the
static magnetic susceptibility between T = 1.9–300 K. These data were corrected for the
underlying diamagnetism. At the same time, magnetization data were taken until B = 7 T
at two temperatures, T = 2.0 and 4.6 K. The DC magnetic data served for the determination
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of the axial zero-field splitting parameter D; their temperature and/or field dependences
were displayed in the published material.

4.2. AC Susceptibility

The AC susceptibility data were taken with the same SQUID apparatus and the same
specimen as above using the working amplitude of BAC = 0.38 mT and frequencies of the
oscillating field f = 0.1–1500 Hz.

The first scan refers to a field dependence of the AC susceptibility at the constant low
temperature (say T0 = 2.0 K) for a set of trial frequencies of the oscillating field: fi = 1.1,
11, 111, and 1111 Hz: χ′ = F(B, fi, [T0]) and χ′′ = F(B, fi, [T0]). Such graph indicates a
field-frequency region where the out-of-phase susceptibility dominates (Figure 3a).
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Figure 3. Ways of AC susceptibility data taking/analysis. AC susceptibility components: (a) field dependence, (b) tempera-
ture dependence, (c,d) frequency dependence. Data adapted from ref. [27]. 2017, Royal Society of Chemistry.

In the second scan, the frequency dependence of the AC susceptibility is monitored for
a set of fixed magnetic fields at the constant low temperature χ′′ = F( f , Bi, [T0]). The fre-
quencies are selected in such a way that the x-axis in the logarithmic scale contains equidis-
tant points. The corresponding graph identifies the number of relaxation channels and their
field dependence. The third scan collects the AC response as a function of temperature for
the set of frequencies at the fixed external field. This is useful in identifying the critical
point where the functions χ′ = F(T, fi, [B0]) merge and χ′′ = F(T, fi, [B0]) vanishes (Figure
3b). Finally, the displayed function are χ′ = F( f , Ti, [B0]) and χ′′ = F( f , Ti, [B0]) that are
subjected to the fitting procedure (Figure 3c,d). This dependence is of a primary interest.

The magnetization measured in the oscillating (AC) magnetic fields

MAC = M0 cos(ωt− δ) = χ′H0 cos(ωt) + χ′′H0 sin(ωt) (10)

determines the in-phase susceptibility χ′ = (M0/H0) cos δ and the out-of-phase component
χ′′ = (M0/H0) sin δ. At low frequencies ω = 2π f , the delay δ is small so that the out-
of-phase component vanishes and the in-phase counterpart approaches the isothermal
susceptibility when the magnetic subsystem is in a thermal equilibrium with the lattice
subsystem as follows:

lim
ω→0

_
χ =

(
∂MAC

∂H

)
T
= χT (11)
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With the increased frequency, the AC susceptibility reaches an opposite limit—adiabatic
susceptibility:

lim
ω→∞

_
χ =

(
∂MAC

∂H

)
S
= χS (12)

when ωτ � 1 holds true and the magnetic subsystem is unable to exchange heat with the
lattice subsystem and it conserves its entropy. Casimir-DuPré formula [28] connects the
isothermal, adiabatic, and AC susceptibilities. After introducing the distribution parameter
α, this formula can easily be extended to the multiset form [29] as follows:

χ(ω) = χS +
K

∑
k

χk − χk−1

1 + (iωτk)
1−αk

(13)

The in-phase and out-of-phase components can be written in closed forms which in
the case of a two-set model are [29] as follows:

χ′(ω) = χS + (χT1 − χS)
1+(ωτ1)

1−α1 sin(πα1/2)
1+2(ωτ1)

1−α1 sin(πα1/2)+(ωτ1)
2−2α1

+(χT2 − χT1)
1+(ωτ2)

1−α2 sin(πα2/2)
1+2(ωτ2)

1−α2 sin(πα2/2)+(ωτ2)
2−2α2

(14)

χ′′ (ω) = (χT1 − χS)
(ωτ1)

1−α1 cos(πα1/2)
1+2(ωτ1)

1−α1 sin(πα1/2)+(ωτ1)
2−2α1

+(χT2 − χT1)
(ωτ2)

1−α2 cos(πα2/2)
1+2(ωτ2)

1−α2 sin(πα2/2)+(ωτ2)
2−2α2

(15)

Here, the isothermal and adiabatic susceptibilities are constrained as χS < χT1 < χT2
in order to get positive contributions from each primitive component. The above formula
can be rewritten using the mole fractions of the respective k-components xk

χ(ω) = χS + (χT − χS)

[
x1

1 + (iωτ1)
1−α1

+
x2

1 + (iωτ2)
1−α2

]
, x2 = 1− x1 (16)

that fulfil x1 = (χT1 − χS)/(χT − χS) and x2 = (χT2 − χT1)/(χT − χS).
A plot of χ′′ vs. χ′ at the constant temperature refers to the Argand diagram (analogous

to the Cole-Cole diagram for dielectrics). In an ideal case, it is a semicircle providing that
there is a single relaxation time. The distribution parameter α causes its distortion to an
arc. In the case of a two-set model two arcs are overlapping (Figure 4).
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where the axial (rhombic) zero-field splitting parameters D (E) occur. The Zeeman term 
involves the spin operators and the magnetic field oriented towards grids is uniformly 
distributed over a sphere (ϑ  and ϕ  are polar angles). Frequently, simplifications are ap-
plied, such as consideration of only Cartesian components. An ultimate demand is that 
the ground electronic term is non-degenerate (A- or B-type) and well separated from the 
excited electronic terms. For tetrahedral Co(II) with the 4A2 ground term, there are only 
four kets 3 / 2, 1/ 2±  and 3 / 2, 3 / 2±  forming two Kramers doublets [30]. 

5.2. Griffith-Figgis Model 
The energy levels of hexacoordinate Co(II) complexes are derived from the octahe-

dral mother term 4T1g that bears the non-zero orbital angular momentum L. The situation 
describes the spin-orbit Hamiltonian which works in the space of the spin- and orbital- 
kets 1, , ,L SL M S M=  as outlined by Griffith and extended by Figgis (hereafter the GF 
model). 

GF 2 2 2 2 2 2 2
p ax p, p rh p, p,

1 1
B e B p
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 (18)

The spin-orbit coupling involves the free-ion spin-orbit splitting parameter λ = –ξ/2S, 
the orbital and spin Zeeman terms, and the axial (rhombic) crystal-field splitting parame-
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(a) Envelope of AC susceptibility components. (b) Ideal Argand diagram (α1 = α2 = 0) with two
overlapping semicircles.
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5. Theoretical Part
5.1. Spin Hamiltonian

The simplest theoretical model used in interpreting magnetic data (magnetization,
DC-susceptibility, electron spin resonance) is based upon the spin-Hamiltonian formalism.
This method utilizes a formal Hamiltonian containing the spin-only operators acting on
the basis set of spin-only kets |S, MS〉. One particular form refers to the zero-field splitting

Ĥzfs
kl = D(Ŝ2

z −
→
S

2
/3)}−2 + E(Ŝ2

x − Ŝ2
y

)
}−2

+µBB(gzŜz cos ϑk + gxŜx sin ϑk cos ϕl + gyŜy sin ϑk sin ϕl)}−1
(17)

where the axial (rhombic) zero-field splitting parameters D (E) occur. The Zeeman term
involves the spin operators and the magnetic field oriented towards grids is uniformly
distributed over a sphere (ϑ and ϕ are polar angles). Frequently, simplifications are applied,
such as consideration of only Cartesian components. An ultimate demand is that the
ground electronic term is non-degenerate (A- or B-type) and well separated from the
excited electronic terms. For tetrahedral Co(II) with the 4A2 ground term, there are only
four kets |3/2,±1/2〉 and |3/2,±3/2〉 forming two Kramers doublets [30].

5.2. Griffith-Figgis Model

The energy levels of hexacoordinate Co(II) complexes are derived from the octahedral
mother term 4T1g that bears the non-zero orbital angular momentum L. The situation
describes the spin-orbit Hamiltonian which works in the space of the spin- and orbital- kets
|L = 1, ML, S, MS〉 as outlined by Griffith and extended by Figgis (hereafter the GF model).

ĤGF = −(Aκλ)(
→
L p ·

→
S
)
}−2 + ∆ax(L̂2

p,z −
→
L

2

p/3)}−2 + ∆rh(L̂2
p,x − L̂2

p,y)}−2

+µBge(
→
B ·
→
S )}−1 − µB(Aκ)(

→
B ·
→
L p)}−1

(18)

The spin-orbit coupling involves the free-ion spin-orbit splitting parameter λ =−ξ/2S,
the orbital and spin Zeeman terms, and the axial (rhombic) crystal-field splitting parameter
∆ax (∆rh). In addition, ξ is the spin-orbit coupling constant and the other symbols are in
their usual meaning. The remaining parameters involve the orbital reduction factor κ, and
the Figgis CI parameter A. Due to the T-p isomorphism the orbital angular momentum
is Lp = 1 and gL = −1. This Hamiltonian can be treated by a numerical procedure. For
Co(II), λ/hc = −155 cm−1 and the spin-orbit kets cover 12 multiplets forming six Kramers
doublets belonging to the irreducible representations of the respective double group [30].

5.3. Crystal Field Calculations

The generalized crystal-field method is working in the complete set of kets generated
by the dn configuration (e.g., 120 for Co(II)). By involving the electron repulsion, crystal-
field potential, spin-orbit, orbital and spin Zeeman terms a detailed evaluation of the
electronic levels (crystal-field multiplets and Zeeman levels) can be done in a short time.
The internal parameters of the method are the crystal field poles F4(L) and eventually
F2(L) for each ligand, the Racah parameters of the interelectron repulsion B and C, and the
spin-orbit coupling constant ξ. The crystal-field pole strength Fk(RL) = R−(k+1)

L

〈
rk
〉

of
k-th power for the ligand L situated at the distance RL involves the momentum integral
over the electronic variables

〈
rk
〉

. It relates to the common ligand field strength, e.g.,
10Dq = (10/6)F4(RL) for an octahedral system. Consequently, the spin-Hamiltonian
parameters D, E, gz, gx, gy, χTIP can be evaluated [31].
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5.4. Ab Initio Calculations

Contemporary ab initio calculations start with the CASSCF module with inclusion of
the relativistic effects followed by the NEVPT2 block that involves the spin-orbit interac-
tion [32]. Spin-orbit corrected energy levels refer to the crystal-field multiplets and in the
case of Co(II) systems to the set of Kramers doublets. The spin Hamiltonian parameters
can be evaluated in the case of the orbitally non-degenerate ground electronic term. If the
algorithm is applied to the case of the (quasi) degenerate ground term, the results can be
false. Useful results can be obtained only by considering a large and flexible basis set for
the involved atoms.

SH, GF, and ORCA/SO splitting are completely different tasks. For Co(II) systems,
SH considers only two Kramers doublets arising from the 4A2 ground term split by δ.
GF considers six Kramers doublets arising from the 4T1g term on symmetry lowering
(only in the case of the compressed tetragonal bipyramid δ is comparable with the SH
value). Ab initio ORCA/SO calculations reproduce the complete energy spectrum and thus
are superior.

5.5. Fitting Procedures

For temperature evolution of the molar magnetic susceptibility of Co(II) systems, some
closed formulae can be found in the literature (see, for instance [30,31]). These, however,
do not reproduce a correct powder average and they are missing for the field dependence
of the magnetization.

Having energy levels at the disposal by the diagonalization of the model Hamiltonian
in the given basis set, one can proceed by applying methods of statistical thermodynamics.
For the given DC field, the partition function is formed Zkl(T, B) and its derivatives
yield the magnetization Mkl(T, B) and susceptibility χkl(T, B) referring to the grids of the
magnetic field in Zeeman term. Then, an average produces the magnetic functions that
match the powder nature of the sample.

Since the DC-susceptibility and DC-magnetization both reflect the same electronic
structure of the sample, their fitting can be done simultaneously by minimizing a properly
chosen error function. This is F = w · E(χ) + (1− w) · E(M) or F = E(χ) · E(M) with
the weight w, E(χ), and E(M) representing the relative errors of the susceptibility and
magnetization, respectively.

An analogous procedure can be utilized for a simultaneous fitting of the in-phase and
out-of-phase components of the AC susceptibility: F = w · E(χ′) + (1− w) · E(χ′′ ). Here,
E(χ′) and E(χ′′ ) are relative errors of the components when using the one-set, two-set or
three-set Debye model. Since there are simple closed formulas for them, no problem is
found to apply several hundred-thousand searches for advanced non-linear optimization
algorithms such as genetic algorithms.

The primitive functions of the Debye model possess a useful property: The peak of
χ” is perfectly symmetric with respect to log f. Figure 5 visualizes a test of the stability of
the fitting procedure when the experimental points are reduced from the right side—high
frequencies. An omission of 1 through 7 data points has a negligible effect to the fitted set of
seven parameters even in the difficult case when the LF channel appears as a shoulder. The
graph is a superposition of eight lines, each fitted independently. This finding approves
the determination of the relaxation parameters even in the case when the data taking
is stopped (not allowed by the hardware, e.g., f < 1500 Hz) before reaching the peak
maximum. However, one has carefully checked the standard deviations of the parameters
and eventually their pair-correlation (see Supplementary Information). The advantage of
the fitting procedure lies in the fact that it can separate the primitive components also in
the case of their overlap (resulting in a shoulder).



Magnetochemistry 2021, 7, 76 10 of 31

Magnetochemistry 2021, 7, x FOR PEER REVIEW 10 of 32 
 

found to apply several hundred-thousand searches for advanced non-linear optimization 
algorithms such as genetic algorithms. 

The primitive functions of the Debye model possess a useful property: The peak of 
χ” is perfectly symmetric with respect to log f. Figure 5 visualizes a test of the stability of 
the fitting procedure when the experimental points are reduced from the right side—high 
frequencies. An omission of 1 through 7 data points has a negligible effect to the fitted set 
of seven parameters even in the difficult case when the LF channel appears as a shoulder. 
The graph is a superposition of eight lines, each fitted independently. This finding ap-
proves the determination of the relaxation parameters even in the case when the data tak-
ing is stopped (not allowed by the hardware, e.g., f < 1500 Hz) before reaching the peak 
maximum. However, one has carefully checked the standard deviations of the parameters 
and eventually their pair-correlation (see Supplementary Information). The advantage of 
the fitting procedure lies in the fact that it can separate the primitive components also in 
the case of their overlap (resulting in a shoulder). 

f/Hz

10-1 100 101 102 103 104

χ '
' m

ol
/(1

0-6
 m

3 
m

ol
-1

)

0

1

2

3

f/Hz

10-1 100 101 102 103 104

χ '
m

ol
/(1

0-6
 m

3 
m

ol
-1

)

0

5

10 -0 points
-1 point
-2 points
-3 points
-4 points
-5 points
-6 points
-7 points
-8 points
-9 points

12, BDC = 0.2 T, T = 2.7 K

-0

-2

-4

-6

-7
-1

-3
-5

LF

HF

-8

-9

 
Figure 5. Test of the stability of the fitted relaxation time when 1 to 9 data points from the HF range 
are gradually omitted. Solid lines for individual fits are overlapped. Dashed lines: Primitive low-
frequency (LF) and high-frequency (HF) components. Data adapted from ref. [33] for [Co(biq)Cl2], 
12. 2015, Royal Society of Chemistry. 

6. Data Analysis 
6.1. DC Magnetic Data 

For a series of tetra-, penta-, and hexacoordinate Co(II) complexes, the values of the 
axial zero-field splitting parameter D extracted from the magnetic data are listed in Table 
2 along with available ab initio data using the CASSCF + NEVTP2 method (ORCA pack-
age). The high-frequency/high-field EPR data are also quoted when available. 

For tetracoordinate Co(II) complexes, in geometry of a compressed and also elon-
gated bisphenoid, the ground electronic term is orbitally nondegenerate 4A2 (Figure 6). 
This justifies an application of the spin Hamiltonian formalism and the experimental data 
on D reasonably match theoretical predictions. The majority of these systems exhibit slow 
magnetic relaxation (SMR) with 1, 2 or 3 relaxation channels irrespective of the sign of the 
D-parameter (Orbach relaxation mechanism requires negative D values). In certain cases, 
however, the exchange interaction of the antiferromagnetic nature prevents the observa-
tion of SMR. 

For the hexacoordinate Co(II) system the electronic terms are daughters of the octahe-
dral 4T1g that is orbitally triply degenerate. On a tetragonal compression the daughter 
ground term is orbitally non-degenerate 4A1g for which the spin-Hamiltonian formalism is 
legitimate to apply. The D-parameter adopts high positive values, D/hc ~ 100 cm−1, and sep-
arates two Kramers doublets [30,31]. The positive D-value discriminates the presence of the 
Orbach mechanism since now the barrier to spin reversal, requiring D < 0, does not exist. 

Figure 5. Test of the stability of the fitted relaxation time when 1 to 9 data points from the HF range
are gradually omitted. Solid lines for individual fits are overlapped. Dashed lines: Primitive low-
frequency (LF) and high-frequency (HF) components. Data adapted from ref. [33] for [Co(biq)Cl2], 12.
2015, Royal Society of Chemistry.

6. Data Analysis
6.1. DC Magnetic Data

For a series of tetra-, penta-, and hexacoordinate Co(II) complexes, the values of the
axial zero-field splitting parameter D extracted from the magnetic data are listed in Table 2
along with available ab initio data using the CASSCF + NEVTP2 method (ORCA package).
The high-frequency/high-field EPR data are also quoted when available.

Table 2. Comparison of selected Co(II) complexes showing SMR.

Complex No. SMR a RTB b Channels c J d D(MS&M) e D(Ab Initio) e Ref.

Hexa-coordination

[Co(pydca)(dmpy)]·0.5H2O 2 Y Y 3 55 (−67.2)
(−121) [26]

[Co(bzpy)4Cl2] 5 Y Y 3 106 88.6
124 [34]

[Co(bzpy)4(NCS)2] 6 Y Y 2 90.5 88.6
90.8 [34]

[CoIIICoII(H2L)2(ac) (H2O)]
(H2O)3

7 Y Y 2 (145) (−99.6) [35]

[Co(dmpy)2](dnbz)2 Y 3 (43.6) (−94.8) [27]
[Co(dppmO,O)3] [Co(NCS)4] N - - O 83, T −5.0 O 102, T −3.5 [36]
[Co(dppmO,O)3] [CoCl4] Y N 2 O 77, T 4.6 O 157, T −1.9 [36]
[Co(dppmO,O)3] [CoBr4] Y N 2 O 122, T 15.0 O 129, T −2.5, T 6.6 [36,37]
[Co(dppmO,O)3] [CoI4] Y N 2 O 99, T 19.3 O 107, T 14.9 [36]
Penta-coordination
[Co(Me6tren)Cl]ClO4, sim Y 2 −4.9, −6.2 −9.73, epr −8.12 [38,39]
[Co(Me6tren)Br]Br Y na −2.5 −2.12, epr −2.40 [39]
[Co(bzimpy)Cl2]·DMF 8 Y 2 58.4 (−87) [40]
[Co(bzimpy)Br2]·DMF 9 Y Y 2 47.0 63.7 [40]
[Co(bzimpy)I2] Y 2 40.0 [40]
[Co(LI)Cl2] Y 2 61.9 (−62) [41]
[Co(LC7)Cl2] Y 2 1.54 153 (−119) [41]
[Co(LC10)Cl2] Y 2 1.42 70.1 44.2 [41]
[Co(LC12)Cl2] Y 2 46.8 43.4 [41]
[Co(LC14)Cl2] Y 2 1.06 87.5 (−58) [41]
[(N3)2CoIII(L)(µ-
N3)CoII(N3)]·2MeOH

Y 2 38.7 42.4 [42]

Tetra-coordination
[Co(PPh3)2(NCS)2] Y 2 −9.44 −12.2 [43]
[Co(DPEphos)Cl2] Y 1 −14.4 [44]
[Co(Xantphos)Cl2] Y 1 −15.4 [44]
[Co(PPh3)2Cl2] Y 1 (2) −11.6 −16.2, epr −14.8 [44–46]
[Co(PPh3)2Br2] 10 Y Y 2 −12.5 [47]
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Table 2. Cont.

Complex No. SMR a RTB b Channels c J d D(MS&M) e D(Ab Initio) e Ref.

[Co(PPh3)2I2] Y 1 −36.9 [48]
[Co(AsPh3)2I2] Y 1 −74.7 [48]
[Co(qu)2I2] N − 9.2 [48]
[Co(bcp)Cl2] Y 1 0.24 −6.62 [49]
[Co(bcp)Br2] N − −0.023 −6.72 [49]
[Co(bcp)I2] N − −0.63 −7.03 [49]
[Co(dmphen)Br2] Y 2 10.6 epr 11.7 [50]
[Co(dmphen)Cl2] N − −1.00 11.9 15.6 [51]
[Co(dmphen)Br2] N 2, 3 13.8 13.8 [51]
[Co(dmphen)I2] Y 2, 3 16.6 11.4 [51]
[Co(biq)Cl2] 11 Y Y 2 10.5 16.1 [33]
[Co(biq)Br2] Y 2 12.5 14.7 [33]
[Co(biq)I2] Y 2 10.3 13.7 [33]

a SMR—slow magnetic relaxation. Bold—true single ion magnets in the zero field. b RTB—reciprocating thermal behavior. Blank field
means that the reciprocating thermal behavior has not been detected in the applied DC fields. c Number of relaxation channels (modes) in
the applied DC field. d J—isotropic exchange coupling constants in cm−1 conforming convention –J in the spin Hamiltonian. e D(MS&M)—
axial zero-field splitting parameter extracted from the magnetic susceptibility and magnetization; D(ab initio) from calculations, eventually
from epr (electron paramagnetic resonance) in units of cm−1. Values in brackets could be false due to the orbitally (quasi) degenerate
electronic ground term and a divergence of the perturbation theory.

For tetracoordinate Co(II) complexes, in geometry of a compressed and also elongated
bisphenoid, the ground electronic term is orbitally nondegenerate 4A2 (Figure 6). This
justifies an application of the spin Hamiltonian formalism and the experimental data on
D reasonably match theoretical predictions. The majority of these systems exhibit slow
magnetic relaxation (SMR) with 1, 2 or 3 relaxation channels irrespective of the sign of the
D-parameter (Orbach relaxation mechanism requires negative D values). In certain cases,
however, the exchange interaction of the antiferromagnetic nature prevents the observation
of SMR.

For the hexacoordinate Co(II) system the electronic terms are daughters of the octa-
hedral 4T1g that is orbitally triply degenerate. On a tetragonal compression the daughter
ground term is orbitally non-degenerate 4A1g for which the spin-Hamiltonian formalism is
legitimate to apply. The D-parameter adopts high positive values, D/hc~100 cm−1, and
separates two Kramers doublets [30,31]. The positive D-value discriminates the presence
of the Orbach mechanism since now the barrier to spin reversal, requiring D < 0, does
not exist.

On a tetragonal elongation the ground daughter term stays doubly degenerate 4Eg
and the spin-Hamiltonian formalism cannot be applied. Eight magnetic levels forming
four Kramers doublets are in the play. Consequently, the D-parameter is undefined. When
the ab initio calculations of the spin-Hamiltonian parameters are, as program options,
activated, the results could be false (e.g., D < 0, gz < 2). Moreover, in the case of quasi
degeneracy the ab initio predictions could fail due to the divergence of the perturbation
theory. The same obstacles hold true for the pentacoordinate Co(II) complexes in the
geometry of the square pyramid.

A few complexes reviewed in Table 2, in addition to the SMR (SIM) behavior, show
the reciprocating thermal behavior (RTB) referring to the high-frequency channel of the
slow magnetic relaxation. These are collected in Table 3 along with fitted parameters
that reproduce a temperature development of the high-frequency relaxation time using a
simple equation τ−1 = GTl + FT−k. There is one obstacle: When the parameters G and
l (F and k) are allowed to float, they could be mutually dependent: With the increasing
G the parameter l decreases and vice versa. This may have a minor influence for the
interpolated data, but sometimes brings a wrong prediction in extrapolation. Therefore,
also the correlation coefficients ρ(G, l) and ρ(F, k) need be monitored.
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The extensive graphs reported below show the experimental points of the out-of-phase
susceptibility as a function of the frequency of the oscillating magnetic field and/or applied
DC field. The high-temperature tail of the data was analyzed by employing the linear
regime for the lnτ vs. T−1 dependence written as lnτ = b[0] + b[1]·T−1. The tangential b[1]
refers not necessarily to the Orbach process (effective barrier to the spin reversal) since the
possible limits are in the data taking/analysis. The intermediate/low temperature regime
was analyzed using the lnτ vs. lnT function (see Figure 1).
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Table 3. Characteristics of the reciprocating thermal behavior for high-frequency channel of slow magnetic relaxation in
transition metal complexes a.

No. Chromophore BDC/T G /K−l s−1

C /K−n s−1 l or n F /Kk s−1 k Ref.

1 [Mn(bzpy)4Cl2] MnN4Cl2 0.35 57(13) 2.20(10) 20.1(2) 1.98(12) [52]
2 [Co(pydca)(dmpy)]·0.5H2O CoN2O4 0.40 0.13(1) 5.93(4) 3.7(1) × 103 0.78(3) [26]
3 [Cu(pydca)(dmpy)]·0.5H2O CuN2O4 0.5 46(13) 1.9(1) 2.5(4) × 103 0.73(18) [53]

1.0 5.6(42) 2.6(3) 4.2(6) × 103 0.79(17)
4 [Ni(pydca)(dmpy)]·H2O NiN2O4 0.4 10.3(2) 4.7 3.4(1) × 103 0.58 [54]

0.6 6.4(3) 4.76 8.0(3) × 103 0.84
5 [Co(bzpy)4Cl2] CoN4Cl4 0.4 19(5) 4.17(16) 5.1(7) × 103 0.63(19) [34]

0.6 68(19) 3.66(18) 40.9(17) × 103 1.22(7)
6 [Co(bzpy)4(NCS)2] CoN4N2 0.4 18(5) 4.26(14) 4.3(6) × 103 0.42(22) [34]
7 [CoIIICoII(LH2)2(ac)(H2O)] (H2O)3 CoO4OO 0.4 33(9) 4.10(14) 9.1(12) × 103 0.75(19) [35]
8 [Co(bzimpy)Cl2]·DMF CoN3Cl2 0.4 3.4(8) 5.36(14) 7.3(1) × 103 [0] [40]
9 [Co(bzimpy)Br2]·DMF CoN3Br2 0.2 48(19) 4.00(25) 10.2(12) × 103 0.75(21) [40]

CoN3Br2 0.4 12.1(45) 5.08(24) 28(1) × 103 0.56(6)
10 [Co(PPh3)2Br2] CoP2Br2 0.2 0.098(82) 12.4(8) 67(18) 2.53(41) [47]
11 [Co(biq)Cl2] CoN2Cl2 0.3 0.0083(17) 12.0(2) 2.3(4) × 103 1.0(3) [33]

a Equation τ−1 = GTl + FT−k or τ−1 = CTn + FT−k. Standard deviations in parentheses. Resulting parameters of the non-linear fitting
for the whole temperature range can be slightly different from those referring to the linear fits to a limited temperature point.

6.2. Example of Reciprocating Thermal Behavior

The hexacoordinate complex [MnII(bzpy)4Cl2], hereafter 1, belongs to the class of SIMs
showing RTB [52]. This S = 5/2 spin system with 6A1g ground electronic term possesses
a very low (rather negligible) D-parameter as verified by the DC magnetic data and ab
initio calculations: D/hc = −0.63 cm−1. A small D-value is also indicated by simulation
of the X-band EPR spectra. Such a D-value discriminates the presence of the Orbach
relaxation mechanism.

The first scan of the AC susceptibility refers to a field dependence of the AC response
at T = 2.0 K for a set of four trial frequencies f of the oscillating field (Figure 7b). It can
be seen that the low-frequency χ” differs substantially from the rest of the frequencies. It
passes through a marked maximum at BDC = 0.35 T. Thus, a traditional selection of a small
field BDC = 0.1 is less informative.

The second scan has been done at the selected BDC = 0.35 T for a set of 22 frequencies
ranging between f = 0.1 to 1500 Hz and temperature rising from T = 1.9 to 10 K. The AC
susceptibility for 1 confirms the slow magnetic relaxation with three relaxation channels:
Low-frequency (LF), intermediate-frequency (IF), and high-frequency(HF), see Figure 7a.
At BDC = 0.35 and low temperature, the LF relaxation channel dominates and escapes more
rapidly on heating than the HF one. The HF channel borrows its intensity (isothermal
susceptibility) from IF and LF until a maximum and then escapes in a usual way. At
T = 1.9 K, the relaxation time is as long as χ(LF) = 798 ms and the mole fraction of the
slowly relaxing species is x(LF) = 0.49. It is interesting to note that the situation around
f = 40 Hz resembles the isosbestic point for a unimolecular reaction {LF + IF}↔ HF.

The molar AC susceptibility was subjected to the fitting procedure by employing the
three-set (two- or single-set) Debye model. The obtained relaxation times are presented in
Table 4 along with the R-factors (discrepancy factors) for the absorption and dispersion,
each parameter is presented with its standard deviation.

For the fitted set of parameters, the interpolation/extrapolation lines have been gener-
ated (they consist of three primitive functions in the case of the three-set Debye model),
which are drawn in Figure 7 as solid lines. A detailed inspection confirms that the con-
voluted lines pass through the experimental data perfectly. Notice, each primitive line
is mirror-symmetric in the logf scale so that even the reduced data set is fully informa-
tive when reaching the maximum of the peak (when the maximum of the HF-peak is
not approached, the fitted data show increasing standard deviations and they should be
considered with care).
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Table 4. Fitted relaxation times of the Debye model for [Mn(bzpy)4Cl2].

T/K R(χ′)/% R(χ′′)/% τLF/s τIF /10−3 s τHF/10−6 s xLF xHF

1.9 0.46 1.9 0.798(32 60(15) 183(37) 0.49 0.07
2.1 0.28 1.3 0.738(22) 54(6) 198(15) 0.42 0.10
2.3 0.35 1.7 0.612(26) 48(9) 229(13) 0.38 0.15
2.5 0.43 2.4 0.533(27) 42(20) 252(14) 0.34 0.19
2.7 0.78 2.4 0.456(35) 33(39) 289(22) 0.32 0.25
2.9 0.38 1.9 0.389(14) 27(26) 328(9) 0.30 0.32
3.1 0.29 1.6 0.360(17) 18(5) 368(8) 0.34 0.45
3.3 0.26 1.3 0.363(16) 18(6) 388(7) 0.27 0.53
3.5 0.18 1.3 0.357(15) 19(6) 409(5) 0.24 0.61
3.9 0.29 1.4 0.381(34) 9(12) 404(5) 0.18 0.71
4.3 0.23 0.98 0.410(44) 9(9) 392(5) 0.13 0.81
4.7 0.35 3.1 0.416(80) 9(9) 362(6) 0.09 0.89
5.1 0.34 1.7 0.451(90) 9 338(4) 0.06 0.93
5.5 0.41 2.3 0.521(147) - 315(4) 0.04 0.96
6.1 0.14 0.74 0.635(111) 273(1) 0.03 0.97
6.7 0.20 1.4 0.867(402) 237(2) 0.02 0.98
7.3 0.16 0.99 1.086(593) 204(1) 0.01 0.99
8.1 0.24 1.7 - 168(2) - 1
8.9 0.39 2.2 136(3) 1
9.7 0.35 1.9 113(2) 1

Mole fractions: xLF = (χT,LF−χS)/(χT −χS), xIF = (χT,IF−χT,LF)/(χT −χS), xHF = (χT,HF−χT,IF)/(χT −χS),
χT,HF = χT , and xLF + xIF + xHF = 1. SI unit for the molar magnetic susceptibility [10−6 m3 mol−1]. Standard
deviations in parentheses (last digit). R—discrepancy factor of the fit for dispersion χ′ and absorption χ′′,
respectively. Bold data refer to RTB.
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In Figure 7, a vertical mark at the top of the convoluted curve envisages the maximum
on χ” that determines the relaxation time τHF. Notice its movement on heating to a slower
relaxation and then back to the faster one, which is the reciprocating thermal behavior.
RTB is also well seen in Figure 8 where several presentations of the temperature evolution
of the high-frequency relaxation time are drawn. A traditional Arrhenius-like plot lnτ vs.
T−1 (Figure 8a) would predict the barrier to spin reversal Ueff/kB = 19 K when the Orbach
mechanism is considered, which is in strong contrast with the negligible D-value. This
high-temperature tail is recovered by the straight line in lnτ vs. lnT graph (Figure 8b).
The temperature exponent in τ−1(HT) = GTl , l~2.2, indicates that the phonon bottleneck
mechanism applies rather than the Raman relaxation mechanism for which the temperature
exponent close to 5 is expected (in the case of narrow multiplets). The low-temperature
relaxation data follow a phenomenological equation τ−1(LT) = FT−k with the temperature
exponent close to the second solution of the phonon bottleneck effect, k~1.3. These data
were used as the starting set for a more advanced non-linear fitting procedure by employing
a combined equation τ−1 = GTl + FT−k. The resulting parameters are listed in Table 3.
Having the relaxation parameters determined, the interpolation/extrapolation curves were
drawn as shown in Figure 8. They pass through the experimental points almost perfectly.
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and 24A1, whereas 4A1g converts to 34A1. For the low energy gap, the subsequent evaluation 
of the spin-Hamiltonian parameters could fail in predicting the sign and value of the D-
parameter and gz component. Indeed, this is the case (see Table 2). The involvement of the 
spin-orbit interaction gave the energies of the lowest six Kramers doublets lying at δ = 0, 
138, 971, 1176, 2753, and 2853 cm−1 for A as well as δ = 0, 248, 731, 997, 2089, and 2212 cm−1 
for B. The D-value extracted from the DC magnetic data (magnetic susceptibility and mag-
netization) taking into account only the 14A1 ground electronic term is D/hc = 55 cm−1 [26]. 

The first scan of the AC susceptibility (Figure 9a) shows that a maximum of the out-
of-phase component appears for different frequencies at different fields. A more detailed 
mapping presented in Figure 9b confirms that three relaxation channels are in play. The 
external magnetic field supports the low-frequency channel at the expense of the high-
frequency one that becomes suppressed. Notice, at T = 1.9 K and BDC = 0.4 T the low-fre-
quency relaxation time exceeds 1 s: τ(LF) = 1.3 s. 
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with acceptable standard deviations (Table 5). There is an indication of the isosbestic point 
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Figure 8. Various dependences of the high-frequency relaxation time in [Mn(bzpy)4Cl2]. Full line—fitted over the whole
temperature range with τ−1 = GTl + FT−k. (a) Arrhenius-like plot, (b) log-log plot, (c) relaxation time vs temperature. The
standard deviations for each data point are displayed in the inset of panel (c). Data adapted from ref. [52]. 2019, American
Chemical Society.

The identification of the reciprocal thermal behavior as the second solution of the
phonon bottleneck effect is a hypothesis which requires more experimental and theoretical
effort. Therefore, we cannot be surprised that sometimes the k-exponent floats outside
the expectation (k~1). Unanswered is also the coexistence of the quantum tunneling of
magnetization that is a temperature independent process. In the limit of temperature far
below 2 K the approximation τ−1(LT) = FT−k should fail and the quantum tunneling may
adopt a leading role.

An indication for the anomalous thermal behavior at low temperature in a mononu-
clear V(IV) complex has been reported but not analyzed in detail [55]. An anomalous
phonon bottleneck effect has been quoted in the lanthanide SIMs [56]. Additional informa-
tion on the relaxation processes can be found elsewhere [57–61].

6.3. Cobalt(II) Complexes Showing RTB

The hexacoordinate complex [Co(pydca)(dmpy)]·0.5H2O, 2, contains two structural
units A and B, both resembling a compressed tetragonal bipyramid along the N–Co–N
linkage with a significant angular distortion reducing the D4h symmetry to D2d (O–Co–O
angles less than 180 deg). Ab initio CASSCF calculations using experimental geometries
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show that the lowest excited electronic terms lie at 797 and 2571 cm−1 above the ground
term for A as well as 389 and 1763 cm−1 for B. These are daughter terms of the 4T1g

octahedral mother term on symmetry lowering to the ground 4Eg, that further splits into
14A1 and 24A1, whereas 4A1g converts to 34A1. For the low energy gap, the subsequent
evaluation of the spin-Hamiltonian parameters could fail in predicting the sign and value
of the D-parameter and gz component. Indeed, this is the case (see Table 2). The involve-
ment of the spin-orbit interaction gave the energies of the lowest six Kramers doublets
lying at δ = 0, 138, 971, 1176, 2753, and 2853 cm−1 for A as well as δ = 0, 248, 731, 997,
2089, and 2212 cm−1 for B. The D-value extracted from the DC magnetic data (magnetic
susceptibility and magnetization) taking into account only the 14A1 ground electronic term
is D/hc = 55 cm−1 [26].

The first scan of the AC susceptibility (Figure 9a) shows that a maximum of the
out-of-phase component appears for different frequencies at different fields. A more
detailed mapping presented in Figure 9b confirms that three relaxation channels are in
play. The external magnetic field supports the low-frequency channel at the expense of
the high-frequency one that becomes suppressed. Notice, at T = 1.9 K and BDC = 0.4 T the
low-frequency relaxation time exceeds 1 s: τ(LF) = 1.3 s.
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full scale of data taking, right—zoomed high-frequency range truncated for clarity. (b)–Arrhenius-like plot, (c)–log-log 
plot, (d) relaxation time vs temperature (inset includes the standard deviations as error bars). Data adapted from ref. [26]. 
2018, American Chemical Society. 

  

Figure 9. AC susceptibility and relaxation time for 2. Solid lines—fitted. (a) field dependence, (b) frequency depenence,
(c) relaxation time vs. field.

Figure 10 contains the AC susceptibility data of 22 χ′( f ) and 22 χ′′ ( f ) data points for
each temperature and the calculated convolution curve based upon 10 free parameters
with acceptable standard deviations (Table 5). There is an indication of the isosbestic point
at f ~40 Hz.

The fitted relaxation time τHF for the high-frequency channel on cooling from T = 10 K
shows an increase in accordance with existing theories. However, it turns down below
4 K, which reflects an accelerated relaxation. This reciprocating thermal behavior cannot
be reproduced by traditional relaxation mechanisms (Orbach, Raman, direct, quantum
tunneling). A three-point linear fit in the Arrhenius-like diagram (Figure 10b) would
predict the barrier to spin reversal Ueff = 2|D|~53 cm−1. However, D > 0 detected by
magnetometry does not support the Orbach relaxation mechanism.

The high-temperature data can be well fitted by assuming the Raman-like process as
evidenced from the linear fit in Figure 10c. The temperature exponent in τRaman

−1 = CTn

is n = 5.9. The low-temperature tail of the relaxation time can be fitted well by assuming
the second (LT) solution for the phonon bottleneck effect, τpb

−1 = FT−k with k = 0.64 (not
far from the theoretical value of 1). A fitting procedure based upon the combined formula
τ−1 = CTn + FT−k gave a slightly modified value k = 0.78. The reconstructed function for
the relaxation time passes through the “experimental” data almost perfectly within the
standard deviations shown in Figure 10d.
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full scale of data taking, right—zoomed high-frequency range truncated for clarity. (b)–Arrhenius-like plot, (c)–log-log 
plot, (d) relaxation time vs temperature (inset includes the standard deviations as error bars). Data adapted from ref. [26]. 
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Figure 10. AC susceptibility and relaxation times for 2. Full lines—fitted. Hydrogen atoms are omitted hereafter. (a) Left—
full scale of data taking, right—zoomed high-frequency range truncated for clarity. (b) Arrhenius-like plot, (c) log-log plot,
(d) relaxation time vs. temperature (inset includes the standard deviations as error bars). Data adapted from ref. [26]. 2018,
American Chemical Society.

Table 5. Fitted parameters of the three-set Debye model for 2 at BDC = 0.4 T including the discrepancy
factors and standard deviations.

T/K R(χ′)/% R(χ′′)/% τLF/s τIF/10−3 s τHF/10−6 s xLF xHF

1.9 0.28 0.73 1.34(5) 107(11) 456(8) 0.28 0.14
2.1 0.32 1.1 1.08(2) 89(10) 474(8) 0.23 0.16
2.3 0.55 1.2 0.79(2) 74(21) 502(12) 0.21 0.19
2.5 0.57 1.5 0.67(3) 56(17) 533(14) 0.22 0.21
2.7 0.63 1.1 0.65(3) 56(23) 556(13) 0.14 0.25
2.9 0.31 1.3 0.55(2) 44(11) 579(8) 0.14 0.31
3.3 0.42 0.85 0.37(1) 30(11) 631(10) 0.20 0.46
3.7 0.21 0.92 0.31(1) 24(8) 615(5) 0.17 0.59
4.1 0.23 0.86 0.30(1) 18(10) 544(4) 0.14 0.69
4.5 0.19 0.93 0.31(1) 11(6) 500(3) 0.11 0.76
5.3 0.22 0.84 0.35(2) 7.4 267(1) 0.06 0.88
6.1 0.29 0.86 0.40(5) 3.0 144(1) 0.04 0.93
7.0 0.24 0.66 - - 69(1) 1
8.0 0.14 1.7 32(1) 1
9.0 0.18 2.4 16(1) 1

10.0 0.31 5.3 8.4(7) 1
Mole fractions of the relaxing species: xLF = (χT,LF − χS)/(χT − χS), xIF = (χT,IF − χT,LF)/(χT − χS),
xHF = (χT,HF − χT,IF)/(χT − χS), χT,HF = χT , and xIF = 1 − xLF − xHF. R—discrepancy factors of fit for
the in-phase and out-of-phase susceptibility. A digit in parentheses is the standard deviation. Bold—data
showing RTB.
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Doping experiments of 2 into a diamagnetic matrix (Co:Zn = 1:3) disclosed that the
former three relaxation channels collapse into a single one manifesting itself only in a single
peak at χ′′ vs. f and the RTB effect is lost (Figure 11). Therefore, the LF and eventually also
IF channels are of the intermolecular nature and the RBT effect is somehow associated with
the multichannel relaxation. An effect of the dilution to the diamagnetic matrix and the
field dependence of the relaxation time supports the presence of a kind of direct process,
including the PB [56].
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Figure 12. AC susceptibility for [Co(dmpy)2](dnbz)2] (xCo = 1.00) and its doped analogue C28H24Co0.41N6O16Zn0.59 (xCo = 0.41). 
Data adapted from ref. [27]. 2017, Royal Society of Chemistry. 

The hexacoordinate complex [Co(bzpy)4Cl2], 5, contains two structural units with the 
geometry of the tetragonally distorted octahedron (tetragonal bipyramid) [34]. Despite 
the fact that the axial Co-Cl distances are longer than four equatorial Co-N ones, the com-
plex magnetically behaves as a compressed tetragonal bipyramid for which the spin-
Hamiltonian formalism is justified. The ab initio calculations gave D/hc = 87 and 124 cm−1, 
respectively, matching with the susceptibility and magnetization data D/hc = 106 cm−1. It 
is unlikely that the observed slow magnetic relaxation would proceed at low temperature 
according to the Orbach mechanism since the energy gap of the ground and excited mul-
tiplets, Δ = 2D, is too high and moreover, D is unambiguously positive with no ortho-
rhombic component E. 

Figure 11. AC susceptibility for a doped sample C28H26Co0.52N4O13Zn1.48 (2b).

Two hexacoordinate complexes with the same pincer-type structure, [Cu(pydca)(dmpy)]
0.5H2O and [Ni(pydca)(dmpy)]·H2O, also show RTB [53,54] (Table 3).

A complex [Co(dmpy)2](dnbz)2] containing 2,6-pyridinedimethanol in the coordination
sphere and dinitrobenzoato anions also shows the slow magnetic relaxation, however,
without RTB in the studied region of temperatures and magnetic fields [27]. The lnτHF vs.
lnT dependence gave the temperature exponent l = 2.3 suggesting the phonon bottleneck
relaxation process. There is a strong change in the slow magnetic relaxation upon doping
to the diamagnetic Zn(II) matrix (Figure 12).
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The hexacoordinate complex [Co(bzpy)4Cl2], 5, contains two structural units with the 
geometry of the tetragonally distorted octahedron (tetragonal bipyramid) [34]. Despite 
the fact that the axial Co-Cl distances are longer than four equatorial Co-N ones, the com-
plex magnetically behaves as a compressed tetragonal bipyramid for which the spin-
Hamiltonian formalism is justified. The ab initio calculations gave D/hc = 87 and 124 cm−1, 
respectively, matching with the susceptibility and magnetization data D/hc = 106 cm−1. It 
is unlikely that the observed slow magnetic relaxation would proceed at low temperature 
according to the Orbach mechanism since the energy gap of the ground and excited mul-
tiplets, Δ = 2D, is too high and moreover, D is unambiguously positive with no ortho-
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The hexacoordinate complex [Co(bzpy)4Cl2], 5, contains two structural units with the
geometry of the tetragonally distorted octahedron (tetragonal bipyramid) [34]. Despite
the fact that the axial Co-Cl distances are longer than four equatorial Co-N ones, the
complex magnetically behaves as a compressed tetragonal bipyramid for which the spin-
Hamiltonian formalism is justified. The ab initio calculations gave D/hc = 87 and 124 cm−1,
respectively, matching with the susceptibility and magnetization data D/hc = 106 cm−1. It
is unlikely that the observed slow magnetic relaxation would proceed at low temperature
according to the Orbach mechanism since the energy gap of the ground and excited
multiplets, ∆ = 2D, is too high and moreover, D is unambiguously positive with no
orthorhombic component E.

The available AC susceptibility data were successfully fitted by employing the three-
or two-set Debye model and the extracted relaxation times are plotted in Figure 13 in
several ways. The high-frequency relaxation channel can be analyzed using the combined
formula τ−1 = GTl + FT−k, where the parameter G is field dependent (unlike the true
Raman process that is field independent). The results are listed in Table 3. The increased
magnetic field: (i) Favors the low-frequency relaxation channel; (ii) separates the peaks
at the LF and HF branches; and (iii) alters the relaxation parameters. The linear fits lnτ
vs. lnT gave l = 3.7 and 2.1 for BDC = 0.4 and 0.6 T, respectively, whereas the non-linear
fitting procedure results in l = 4.2 and 3.7. These exponents are too low for the pure Raman
process, however, they are too high for the net phonon bottleneck process. The evidence
of RBT (probably a second solution of the phonon bottleneck effect) is magnified by the
magnetic field: The parameter k increases in the monitored field range.
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Figure 13. AC susceptibility for 5. Full lines—fitted. Data adapted from ref. [34]. 2017, Wiley-VCH.

The hexacoordinate complex [Co(bzpy)4(NCS)2], 6, displays characteristics analogous
to 5 [29]. Ab initio calculations predict D/hc = 88.6 and 90.8 cm−1 for the two structural
units matching the magnetometric determination D/hc = 90.5 cm−1. These data again
discriminate the presence of the Orbach relaxation process. The AC susceptibility confirms
two relaxation channels (Figure 14): at BDC = 0.2 T the LF channel is seen only as a shoulder
at χ” vs. f function, whereas at BDC = 0.4 T it refers to a well-developed second, LF peak.
The linearized graphs lnτ vs. lnT gave the exponents l = 4.1 and k~0, whereas the non-
linear data fitting resulted in l = 4.3 and k = 0.4. These data are close to those obtained for
[Co(bzpy)4Cl2] for the same external field BDC = 0.4 T (Table 3).

The dinuclear complex [CoIIICoII(LH2)2(CH3COO)(H2O)](H2O)3, 7, contains the mag-
netically silent center Co(III) and the magnetically active center Co(II) possessing the {CoO6}
donor set (Figure 15) [35]. There are no symmetry elements within the chromophore so
that the ground state is orbitally non-degenerate. However, it results from the splitting of
the mother octahedral term 4T2g to the {4E, 4A} daughter terms, and a further symmetry
descent generates the three lowest orbital singlets. Ab initio calculations predict the three
lowest energy terms lying at 0, 353, and 1250 cm−1 by the CASSCF method and at 0, 463,
and 1532 cm−1 by further application of the NEVPT2 diagonal correction. This means that
the ground electronic term is quasi degenerate and the application of the spin-Hamiltonian
formalism needs to be assessed with care. After inclusion of the spin-orbit interaction,
ORCA calculations gave six Kramers doublets lying at the energies 0, 219, 752, 1020, 1867,
and 1942 cm−1. The lowest energy gap δ1 = 219 cm−1 has no relationship to the axial
zero-field splitting parameter D in the case of the quasi degenerate ground term. However,
when the evaluation of the spin-Hamiltonian parameters is activated, incorrect predictions
are obtained: D/hc = −99.6 cm−1, E/D = 0.26, and g{1.82, 2.32, 3.08}.
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The dinuclear complex [CoIIICoII(LH2)2(CH3COO)(H2O)](H2O)3, 7, contains the mag-
netically silent center Co(III) and the magnetically active center Co(II) possessing the 
{CoO6} donor set (Figure 15) [35]. There are no symmetry elements within the chromo-
phore so that the ground state is orbitally non-degenerate. However, it results from the 
splitting of the mother octahedral term 4T2g to the {4E, 4A} daughter terms, and a further 
symmetry descent generates the three lowest orbital singlets. Ab initio calculations predict 
the three lowest energy terms lying at 0, 353, and 1250 cm-1 by the CASSCF method and 
at 0, 463, and 1532 cm-1 by further application of the NEVPT2 diagonal correction. This 
means that the ground electronic term is quasi degenerate and the application of the spin-
Hamiltonian formalism needs to be assessed with care. After inclusion of the spin-orbit 
interaction, ORCA calculations gave six Kramers doublets lying at the energies 0, 219, 752, 
1020, 1867, and 1942 cm−1. The lowest energy gap δ1 = 219 cm−1 has no relationship to the 
axial zero-field splitting parameter D in the case of the quasi degenerate ground term. 
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Figure 14. AC susceptibility data for 6. Full lines—fitted. Data adapted from ref. [34]. 2017, Wiley-VCH.

The magnetic susceptibility data in the present case was fitted successfully by utilizing
the Griffith-Figgis model with parameters (Aκλ)/hc = −176 cm−1, gL = −(Aκ) = −1.49,
∆ax/hc = −711 cm−1, ∆rh/hc = 44 cm−1. The magnetic anisotropy is of the easy-axis type
as proven by the 3D visualization of the magnetization (the magnetic field was pointed to
the set of grid points distributed uniformly over a sphere).

The AC susceptibility measurements show a two-channel slow magnetic relaxation:
The low-frequency relaxation channel is strongly supported by the external magnetic field.
Moreover, the RTB is evidenced at BDC = 0.4 T and the relaxation time for the HF channel
can be fitted with the temperature exponents l = 4.1 and k = 0.75.

The pentacoordinate complex [Co(bzimpy)Cl2], 8, resembles the geometry of the square
pyramid (the SHAPE agreement factor AF(SPY-5) = 1.7) rather than trigonal bipyramid
(AF(TBPY-5) = 5.0), Figure 16 [40]. For the square pyramid of the C4v symmetry the ground
electronic term is orbitally degenerate 4E. Even at the lowered symmetry the ground and
the first excited electronic terms could be quasi-degenerate (separated by~102 cm−1) so
that the spin Hamiltonian formalism is problematic to apply. An activation of the ab
initio evaluation of the D-parameter could lead to false predictions, both in its value and
sign. Indeed, the inappropriate calculation yields erroneous results D/hc = −87 cm−1
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and gz = 1.86 that originate in the divergence of the perturbation theory (splitting of terms
is only ∆/hc = 220 cm−1). The multiplets (Kramers doublets) arising from the ground
electronic term lie at 0, 186, 559, and 803 cm−1, but the first gap δ/hc = 186 cm−1 has
nothing to do with the axial zero-field splitting parameter D.
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Figure 15. AC susceptibility data for 7. Full lines—fitted. Data adapted from ref. [35]. 2017, American Chemical Society.

The complex [Co(bzimpy)Br2]·DMF, 9, most closely resembles a square pyramid, with
the SHAPE agreement factor AF(SPY-5) = 2.1 (for trigonal bipyramid AF(TBPY-5) = 5.4),
Figure 17 [40]. The ab initio calculations predict the first excited crystal field term at ∆/hc
= 380 cm−1 and the four lowest multiplets (Kramers doublets) positioned at δ = 0, 138, 632,
and 819 cm−1. The calculated value D/hc = 64 cm−1 is not too far from the analysis of DC
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magnetic data, D/hc = 47 cm−1. The calculated E/D = 0.24 points to an importance of the
orthorhombic zfs-parameter E, but gz = 1.93 is still underestimated. The AC susceptibility
data show two relaxation channels with visible RTB. The temperature exponents are n = 4.0
(5.1) and k = 0.75 (0.56) for BDC = 0.2 and 0.4 T, respectively.
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Figure 16. AC susceptibility data for 8. Full lines—fitted. Data adapted from ref. [40]. 2017, Wiley-VCH. 

The complex [Co(bzimpy)Br2]·DMF, 9, most closely resembles a square pyramid, with 
the SHAPE agreement factor AF(SPY-5) = 2.1 (for trigonal bipyramid AF(TBPY-5) = 5.4), 
Figure 17 [40]. The ab initio calculations predict the first excited crystal field term at Δ/hc 
= 380 cm−1 and the four lowest multiplets (Kramers doublets) positioned at δ = 0, 138, 632, 
and 819 cm−1. The calculated value D/hc = 64 cm−1 is not too far from the analysis of DC 
magnetic data, D/hc = 47 cm−1. The calculated E/D = 0.24 points to an importance of the 
orthorhombic zfs-parameter E, but gz = 1.93 is still underestimated. The AC susceptibility 
data show two relaxation channels with visible RTB. The temperature exponents are n = 
4.0 (5.1) and k = 0.75 (0.56) for BDC = 0.2 and 0.4 T, respectively. 

Figure 16. AC susceptibility data for 8. Full lines—fitted. Data adapted from ref. [40]. 2017, Wiley-VCH.

The mononuclear complex [CoII(PPh3)2Br2], 10, is a tetracoordinate system with rather
large negative axial zero-field splitting parameter D/hc = −13 cm−1 [47]. Since a non-zero
out-of-phase susceptibility even at the zero DC field exists, this is a true single-molecule
magnet (Figure 18) showing a single relaxation mode. With increasing external field, a
low-frequency relaxation channel is opened that is well developed at BDC = 0.2 T.
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Figure 17. AC susceptibility data for 9. Full lines—fitted. Data adapted from ref. [40]. 2017, Wiley-VCH.  Figure 17. AC susceptibility data for 9. Full lines—fitted. Data adapted from ref. [40]. 2017, Wiley-VCH.
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The relaxation time has been plotted in several ways as displayed in Figure 19. Three 
points from the high-temperature edge of lnτ vs. T−1 dependence serve for a linear fit yield-
ing the barrier to spin reversal Ueff/kB = 38 and 25 K at BDC = 0.1 and 0.2 T, respectively. 
When the Raman relaxation process is probed as an alternative, τ-1 = CTn, then the linear 
plot lnτ vs. lnT yields exponents n = 13 and 9 that are far above the border of acceptance 
for the Raman relaxation process. The RTB behavior is well seen in Figure 19: The relaxa-
tion time τ vs. T on cooling increases with expectations but then decreases at BDC = 0.2 T. 

The AC susceptibility shows two relaxation channels and the DC magnetic field sup-
ports the low-frequency branch. Again, the LF–HF peak separation is observed with the 
increasing field. At BDC = 0.2 T, the RTB is not evidenced as opposite to BDC = 0.4 T where 
its on-set is seen. The higher-temperature data can be fitted with the Raman-like term 
τRaman−1 = CTn with n = 5.3. 

Figure 18. Frequency dependence of the out-of-phase susceptibility at various temperatures and external fields for
[Co(PPh3)2Br2], 10. Solid lines—fitted; dashed—guide for eyes. Data adapted from ref. [47]. 2014, American
Chemical Society.

The relaxation time has been plotted in several ways as displayed in Figure 19. Three
points from the high-temperature edge of lnτ vs. T−1 dependence serve for a linear fit
yielding the barrier to spin reversal Ueff/kB = 38 and 25 K at BDC = 0.1 and 0.2 T, respectively.
When the Raman relaxation process is probed as an alternative, τ−1 = CTn, then the linear
plot lnτ vs. lnT yields exponents n = 13 and 9 that are far above the border of acceptance for
the Raman relaxation process. The RTB behavior is well seen in Figure 19: The relaxation
time τ vs. T on cooling increases with expectations but then decreases at BDC = 0.2 T.

The tetracoordinate complex [Co(biq)Cl2], 11, possesses the ground electronic term
4A1 [33] which, according to ab initio calculations, is separated from the first excited
term by ∆1 = 1928 cm−1. The calculated value D/hc = 16.1 cm−1 is comparable with
the magnetometric analysis yielding D/hc = 10.5 cm−1. The field dependence of the
AC susceptibility shows that the out-of-phase component exhibits maxima that depend
upon the frequency of the oscillating field (Figure 20). Two external fields, BDC = 0.2 and
0.3 T were selected for subsequent experiments. A detailed scan of the AC susceptibility
for 22 frequencies ranging between f = 0.1 and 1500 Hz is presented in Figure 20. For
BDC = 0.2 T the dominant HF peak is accompanied by a minor LF peak and/or shoulder.
However, with BDC = 0.3 T the LF peak adopts its significance and competes the HF peak.
On heating the extinction of the LF peak is faster than that of the HF peak.

The AC susceptibility shows two relaxation channels and the DC magnetic field
supports the low-frequency branch. Again, the LF–HF peak separation is observed with
the increasing field. At BDC = 0.2 T, the RTB is not evidenced as opposite to BDC = 0.4 T
where its on-set is seen. The higher-temperature data can be fitted with the Raman-like
term τRaman

−1 = CTn with n = 5.3.
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of the oscillating field (Figure 20). Two external fields, BDC = 0.2 and 0.3 T were selected 
for subsequent experiments. A detailed scan of the AC susceptibility for 22 frequencies 
ranging between f = 0.1 and 1500 Hz is presented in Figure 20. For BDC = 0.2 T the dominant 
HF peak is accompanied by a minor LF peak and/or shoulder. However, with BDC = 0.3 T 
the LF peak adopts its significance and competes the HF peak. On heating the extinction 
of the LF peak is faster than that of the HF peak. 

11 [Co(biq)Cl2]  

CCDC No 1051392 
f/Hz

10-1 100 101 102 103

χ '
' m

ol
/(1

0-6
 m

3 
m

ol
-1

)

0

1

2

3

f/Hz

10-1 100 101 102 103

χ '
m

ol
/(1

0-6
 m

3 
m

ol
-1

)

0

5

10
T = 1.9 K
T = 2.1 K
T = 2.3 K
T = 2.5 K
T = 2.7 K
T = 2.9 K

11, BDC = 0.2 T T = 3.1 K
T = 3.3 K
T = 3.5 K
T = 3.7 K
T = 3.9 K

 

Figure 19. Various dependences of the high-frequency relaxation time in 10. Dashed/dot-dashed—linear fits. Full
line—fitted over the whole temperature range using τ−1 = CTn + FT−k. An arrow indicates the RTB behavior.

The in-phase and out-of-phase susceptibility components have been fitted by employ-
ing the two-set Debye model with seven parameters. Two primitive functions merge to
a convoluted envelope that is drawn in Figure 20 as a full line, which passes through the
experimental points almost perfectly. The slow magnetic relaxation shows features of the
RTB and the relaxation time at BDC = 0.3 T can be fitted with the temperature exponents
n = 12.0 and k = 1.0 (Figure 20). A possible Orbach relaxation mechanism is discriminated
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7. Conclusions

The slow magnetic relaxation in mononuclear Co(II) complexes often proceed through
two relaxation channels: Low- and high-frequency mode. The external magnetic field
supports the low-frequency channel, i.e., the maximum at the out-of-phase susceptibility
is moved to lower frequencies (a longer relaxation time), whereas the opposite effect
exhibits the high-frequency channel. Some of these complexes show the reciprocating
thermal behavior in which a prolongation of the relaxation time on cooling passes through
a maximum and then exhibits an acceleration at very low temperatures. Such a behavior
cannot be modelled by the traditional relaxation mechanisms covering the Orbach, Raman,
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direct, and quantum tunneling processes since all of them exhibit positive temperature
exponentsτ−1~Tn, n > 0. RTB, on the contrary, requires τ−1~T−k, k > 0 and the only
theoretical support so far is given by the second solution of the phonon bottleneck effect.
However, one can speculate about an alternate hypothesis: The presence of the LF relaxing
species causes the concentration of the HF relaxing units to decrease and such a dilution,
eventually, can facilitate the relaxation rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7060076/s1, Figure S1. Deconvolution curves for the three-set Debye
model for 1. Solid line–convolution of three primitive curves (dotted, dashed, dot-dot-dashed).
Figure S2. Test of the stability of the fitted relaxation time when 1 to 9 data points from the HF
range are gradually omitted. Solid lines for individual fits are overlapped. Dashed lines: primitive
low-frequency (LF) and high-frequency (HF) components. Experimental data points from [38] for
[Co(biq)Cl2], 12. Figure S3. Test of the stability of the fitted relaxation time when data points from the
HF range are gradually omitted. Experimental data for a doped sample C28H26Co0.52N4O13Zn1.48
(2b). From: Boča, R.; Rajnák, C.; Moncol’, J.; Titiš, J.; Valigura, D. Breaking the Magic Border of One
Second for Slow Magnetic Relaxation of Cobalt-Based Single Ion Magnets. Inorg. Chem. 2018, 57,
14314–14321. [https://doi.org/10.1021/acs.inorgchem.8b02287]. Table S1. Stability test of the data
fitting with incomplete and/or reduced data points for [Co(biq)Cl2], 12. Data taken at BDC = 0.2 T and
T = 2.7 K. Table S2. Stability test of the data fitting with incomplete and/or reduced data points for
[C28H26Co0.52N4O13Zn1.48], 2a. Data taken at BDC = 0.4 T and T = 2.1 K. Table S3. Fitted relaxation
time for 5 at BDC = 0.6 T with three Debye components.
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LC12 4-dodec-1-ynyl-2,6-di-pyrazol-1-yl-pyridine
LC14 4-tetradec-1-ynyl-2,6-di-pyrazol-1-yl-pyridine
Me6tren tris[2-(dimethylamino)ethyl]amine
nqu 5-nitroquinoline
pydca pyridine-2,6-dicarboxylato(2-)
qu quinoline
Xantphos 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene

https://www.mdpi.com/article/10.3390/magnetochemistry7060076/s1
https://www.mdpi.com/article/10.3390/magnetochemistry7060076/s1
https://doi.org/10.1021/acs.inorgchem.8b02287


Magnetochemistry 2021, 7, 76 29 of 31

References
1. Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, UK, 2006; ISBN 13 9780198567530.
2. Winpenny, R. (Ed.) Single-Molecule Magnets and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2006; Volume 122,

ISBN 978-3-540-33239-8.
3. Benelli, C.; Gatteschi, D. Introduction to Molecular Magnetism: From Transition Metals to Lanthanides; Wiley: Weinheim, Germany,

2015; ISBN 978-3-527-33540-4.
4. Atanasov, M.; Zadrozny, J.M.; Long, J.R.; Neese, F. A theoretical analysis of chemical bonding, vibronic coupling, and magnetic

anisotropy in linear iron(II) complexes with single-molecule magnet behavior. Chem. Sci. 2013, 4, 139–156. [CrossRef]
5. Layfield, R.A. Organometallic Single-Molecule Magnets. Organometallics 2014, 33, 1084–1099. [CrossRef]
6. Wernsdorfer, W.; Sessoli, R. Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science 1999, 284,

133–135. [CrossRef]
7. Rinehart, J.D.; Long, J.R. Exploiting Single-Ion Anisotropy in the Design of f-element Single-Molecule Magnets. Chem. Sci. 2011,

2, 2078–2085. [CrossRef]
8. Gatteschi, D.; Barra, A.L.; Caneschi, A.; Cornia, A.; Sessoli, R.; Sorace, L. EPR of Molecular Nanomagnets. Coord. Chem. Rev. 2006,

250, 1514–1529. [CrossRef]
9. Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Understanding the Magnetic Anisotropy toward Single-Ion Magnets. Acc. Chem.

Res. 2016, 49, 2381–2389. [CrossRef] [PubMed]
10. Liddle, S.T.; van Slageren, J. Improving f-element single molecule magnets. J. Chem. Soc. Rev. 2015, 44, 6655–6669. [CrossRef]
11. Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148.

[CrossRef]
12. Coulon, C.; Miyasaka, H.; Clérac, R. Single-Chain Magnets: Theoretical Approach and Experimental Systems. Struct. Bonding

2006, 122, 163–206. [CrossRef]
13. Craig, G.A.; Murrie, M. 3d single ion magnets. Chem. Soc. Rev. 2015, 44, 2135–2147. [CrossRef]
14. Gómez-Coca, S.; Aravena, D.; Morales, R.; Ruiz, E. Large magnetic anisotropy in mononuclear metal complexes. Coord. Chem.

Rev. 2015, 289–290, 379–392. [CrossRef]
15. Frost, J.M.; Harriman, K.L.M.; Murugesu, M. The rise of 3-d single-ion magnets in molecular magnetism: Towards materials from

molecules. Chem. Sci. 2016, 7, 2470–2491. [CrossRef]
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49. Smolko, L.; Černák, J.; Dušek, M.; Titiš, J.; Boča, R. Tetracoordinate Co(II) Complexes Containing Bathocuproine and Single
Molecule Magnetism. New J. Chem. 2016, 40, 6593–6598. [CrossRef]

50. Huang, W.; Liu, T.; Wu, D.; Cheng, J.; Ouyang, Z.W.; Duan, C. Field-induced slow relaxation of magnetization in a tetrahedral
Co(ii) complex with easy plane anisotropy. Dalton Trans. 2013, 42, 15326–15331. [CrossRef]
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