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Abstract: The behavior of spin for incoherently hopping carriers is critical to understand in a variety
of systems such as organic semiconductors, amorphous semiconductors, and muon-implanted
materials. This work specifically examined the spin relaxation of hopping spin/charge carriers
through a cubic lattice in the presence of varying degrees of energy disorder when the carrier spin
is treated classically and random spin rotations are suffered during the hopping process (to mimic
spin–orbit coupling effects) instead of during the wait time period (which would be more appropriate
for hyperfine coupling). The problem was studied under a variety of different assumptions regarding
the hopping rates and the random local fields. In some cases, analytic solutions for the spin relaxation
rate were obtained. In all the models, we found that exponentially distributed energy disorder led to
a drastic reduction in spin polarization losses that fell nonexponentially.

Keywords: spintronics; organic semiconductors; hopping transport; spin transport

1. Introduction

Spin relaxation of carriers has garnered much interest in the past few decades due to
the prospect of spin electronic or spintronic devices that use spin functionality in addition to
charge functionality. However, most work has been concentrated on band transport [1–5].
Less effort has been expended on the spin relaxation of localized electron spins where
charge transport occurs via incoherent hopping motion. Noncrystalline, organic semicon-
ductors have recently seen a surge in interest [6–12] as spintronic candidates due to their
small spin–orbit coupling and expected long spin lifetimes of 10−5–10−7 s [13]. Within the
field of spin chemistry, spin relaxation plays a role in radical pair reactions [14], which
has applications varying from organic electronic devices [15] to avian navigation [16].
Localized spin relaxation also plays a role in transport through disordered crystalline
semiconductors [17,18]

Spin relaxation of hopping spins has an older genesis: it was first studied in relation
to muon spectroscopy [19–24]. The technique has seen much application in the study
of magnetic materials. Muon spin spectroscopy is used to study kinetic isotope effects
in chemical reactions [25]. The method involves positively charged polarized (spin 1/2)
muons, µ+, being implanted into a material. The interaction of the muon spin with local
magnetic moments allows the technique to be an excellent probe of magnetic properties.
The muon’s lifetime is only 2.1970 µs, after which it decays into two neutrinos and a
positron. The utility of the mechanism is due to the positron being emitted preferentially
along the direction of its parent’s spin. By detecting emitted positrons, the spin evolution
of the implanted muon is revealed. When that evolution is impacted by spin interactions
with the host material, temporal muon decay measurements may yield information about
the host material; time scales that can be probed by this technique range from picoseconds
to microseconds. Due to the positron emission being sensitive to magnetic interactions,
probing spontaneous magnetic fields in magnetic materials was an early application of
muon spectroscopy [26]. In dielectrics, semiconductors, and organic compounds, a low-
energy muon can form a stable state with an electron: muonium. Muonium offers access
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to hydrogen-like states in these materials and can be especially beneficial in the study of
chemical reactions where muonium serves as a radical [27].

Information from muon spectroscopy is obtained from the measured polarization of
the implanted muons. For static fields, stationary muon spins experience a distribution
of environmental magnetic fields whose ensemble average yields the measured response.
When muons diffuse throughout the host, the fields fluctuate, which alters the spin decay
function of the ensemble [24]. Calculations of the polarization in time yield information on
the fields, as well as the hopping diffusion of the muons. Figure 1a shows how the classical
spin rotation is coherent at each location, but then abruptly changes when an incoherent
hop occurs; at the new location, the evolution is again coherent, and the process repeats
until the spin polarization decays to zero. Since the spin is rotated while situated at a
site, we call this an intrasite process of spin relaxation. The intersite process involves the
spin rotating during the hopping process itself, while the spin is stationary when sitting
on a site. Intrasite processes dominate the polarization functions of muon spectroscopy
and therefore have been well studied for many decades [19,28,29]. Previous studies have
shown that quantum and classical calculations of spin diffusion length agree well [8,30].
The time to hop, 1/k, varies widely from system to system. As discussed later, the time is
strongly dependent on energetic disorder. Times can be as short as femtoseconds [31]

Intersite spin evolution, depicted in Figure 1b, occurs when the spin experiences some
rotation (or flip in a quantum picture) during the transition between two localizing centers.
This type of mechanism is similar to the process of spin relaxation by spin–orbit interactions
in organic semiconductors [12,32–36]. Here, we investigated in depth a classical model of
spin relaxation from a spin–orbit-type interaction.

motion
site 1 site 2 site 3

S

coherent spin evolution while waiting to hop

(a)

motion
site 1 site 2 site 3

S

random spin rotation while at each hop

(b)

ω3t3
ω1t1

rotate by  γ1 rotate by  γ2

Figure 1. (Color online) (a) Intrasite spin evolution where the precession angle (ωt) depends on the
wait time at the site (ti at the ith site) and the random local field. Arrow shading represents the
chronology of spin evolution: the oldest times are represented by lighter grays with shade darkening
to the current time, t, which is black. (b) Intersite spin evolution, which is independent of the wait
time. At each hop, the spin undergoes a spin rotation, γ, due to a random local field.
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2. Theory

In this section, an analytic theory of classical spin relaxation is reviewed for intrasite
mechanisms [34].

2.1. Spin Evolution

The unit vector, S, is a classical electron spin, which in an arbitrary uniform, static
magnetic field, B, has a precessional frequency −ω = −|γe|B/2 ≈ µBBn/h̄, where γe =
gµB/h̄, n is the unit vector of B, and the Lande factor for spin is taken to be two. The
evolution of S is described by the following equation:

dS(t)
dt

= −ω× S(t) = ΩS(t), (1)

where Ω is the skew-symmetric matrix:

Ω = −ωΩ̂ = −

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


≡ −ω

 0 − cos θ sin θ sin φ
cos θ 0 − sin θ cos φ

− sin θ sin φ sin θ cos φ 0

. (2)

Intrasite spin relaxation (hopping independent) was not considered here. The solution
to Equation (1) is:

S(t) = eΩtS0 ≡ R̂(t)S0, (3)

where S0 is the initial spin vector and R is the following rotation matrix:

R̂(t) = 1̂ + sin ωtΩ̂ + 2 sin2 ωt
2

Ω̂Ω̂ (4)

which is equivalent to this vectorial expression [37]:

S(t) = (S0 · n)n + {S0 − (S0 · n)n} cos ωt + [{S0 − (S0 · n)n} × n] sin ωt. (5)

If ω = 0, there is no spin evolution at a site, so R̂(t) = 1̂ and S(t) = S0. Spin relaxation
occurs when carriers hop between different sites with random local magnetic fields. This
was explored in the context of hyperfine interactions and inhomogeneous g-factors in
previous articles [12,34]. Intrasite spin evolution will be ignored from hereon out.

The focus here is on an alternate spin relaxation mechanism where spin rotations
occur between hops—the so-called intersite process of spin relaxation. The spin changes
abruptly at each hop instead of coherently evolving while fixed at a localizing center. The
spin, after a single hop, is updated as:

S(t + dt) = T̂γS0 (6)

where:
T̂γ = 1̂ + sin γΩ̂ + 2 sin2 γ

2
Ω̂Ω̂ (7)

or:
S(t + dt) = (S0 · n)n + {S0 − (S0 · n)n} cos γ + [{S0 − (S0 · n)n} × n] sin γ. (8)

The process can be repeated to model the evolution of the spin. For a single spin, the
spin will randomly walk on the unit sphere as the spin hops to various sites with random
γn fields. Later in this article, we will simulate this process for an ensemble of spins.
However, analytic theories can be devised for the ensemble if appropriate approximations
are made. This is the subject of the next section.
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2.2. Strong Collision Approximation

We used an approximation known as the strong-collision approximation [38]. The
approximation is characterized by the following assumptions: (1) local field changes are
abrupt and not slow at each hop (non-Gaussian); (2) local fields during each hop are
uncorrelated from any previous hop (Markovian).

With the strong-collision approximation, the theory of continuous-time random
walks [39,40] can be used to calculate the polarization functions of hopping carrier spins.
Two important functions of continuous-time random walk theory are the survival probability,
Φ(t), and the wait time distribution, ψ(t). Φ(t) is the probability that a random walker
starting on a site at t = 0 has not hopped by time t. ψ(t) is the probability distribution from
which the hopping times are chosen. The two quantities are related by:

dΦ(t)/dt = −ψ(t), Φ(t) =
∫ ∞

t
ψ(t′)dt′ = 1−

∫ t

0
ψ(t′)dt′. (9)

The polarization of spins that have not hopped is then P0(t) = Φ(t)S0, since only those
spins that have “survived” on their initial site contribute the polarization of stationary spins.

The polarization of spins that have hopped exactly one time by time t is P1(t) =
R̂1(t)S0, where:

R̂1(t) = 〈
∫ t

0
Φ(t− t′)T̂γ,1ψ(t′)dt′〉 =

∫ t

0
Φ(t− t′)〈T̂γ,1〉ψ(t′)dt′ (10)

where R̂1(t) is the rotation matrix for the sub-ensemble of spins that have rotated one time
by time t. This equation is interpreted term-by-term going from right to left: the probability
of making a single hop in the interval dt′ is ψ(t′)dt′; the rotation of the spin as it hops
one time, due to the intersite process, is T̂γ,n, where n is the nth hop in the sequence of
hops; once the hop is completed, the spin remains at the new site according to the survival
probability. Since there is an ensemble of spins of which many will hop a single time
within the interval t, we must integrate over the possible hopping time dt′. Lastly, the
angular brackets denote an average over the angular coordinates of the T̂γ,1 rotation matrix
Equation (7), which yields:

〈T̂γ,1〉 = 1̂ + 2 sin2 γ

2
〈Ω̂Ω̂〉 = 1̂− 4

3
sin2 γ

2
1̂. (11)

The magnitude of the rotation angle, γ, is held constant for the time being. The
cumulative rotation matrix for spins that have hopped twice is:

R̂2(t) = 〈
∫ t

0
dt′

∫ t′

0
dt′′Φ(t− t′)T̂γ,2ψ(t′ − t′′)T̂γ,1ψ(t′′)〉

= 〈T̂γ,2〉2
∫ t

0
dt′

∫ t′

0
dt′′Φ(t− t′)ψ(t′ − t′′)ψ(t′′) (12)

where the angular averaging of the two rotations, T̂γ,1 and T̂γ,2, is independent since there
is no correlation between local fields; the two average rotation matrices are also equal; we
then denote their average as 〈T̂γ,1〉 = 〈T̂γ,2〉 ≡ T̂γ. The polarization of these two-hoppers
is P2(t) = R̂2(t)S0. The generalization to higher order hops is straightforward, which
leads to a total polarization P(t) = ∑∞

n=0 R̂n(t)S0. The net polarization function becomes
tractable by Laplace transformations and the convolution theorem.

Analytic solutions are obtained by Laplace transforming the rotation matrices.
For instance:

˜̂R0(s) = Φ̃(s)1̂, ˜̂R1(s) = T̂γΦ̃(s)ψ̃(s), ˜̂R2(s) = T̂2
γΦ̃(s)ψ̃(s)2 (13)
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feed into P̃(s) = ∑∞
n=0

˜̂Rn(s) · S0, which is a geometric series summable to:

P̃(s) =
Φ̃(s)

1− T̂γψ̃(s)
S0 (14)

2.3. Non-Disordered Model

A simple example of the theory is demonstrated by using a exponential wait time
distribution, ψ(t) = ke−kt, where k is the average hopping rate. The relevant quantities
feeding into Equation (14) are ψ̃(s) = k/(k + s) and Ψ̃(s) = 1/(k + s), which yield first:

P̃(s) =
1/(k + s)

1− T̂γk/(k + s)
S0 (15)

which is reduced to:

P̃(s) =
1

s + k(1− T̂γ)
S0 =

1
s + 4

3 k sin2 γ
2

S0. (16)

The desired polarization function in time is ascertained by the inverse Laplace trans-
form to be:

P(t) = e−
4
3 k sin2 γ

2 tS0. (17)

When the spin rotation angle γ is small, the polarization function is:

P(t) = e−
1
3 kγ2tS0. (18)

A comparison of the full polarization function, the approximate polarization function
suitable for small rotation angles, and the multiple trapping simulations (to be described
later) are displayed in Figure 2. The relaxation rate’s kγ2 dependence can be correlated
with a quantum spin model for spin–orbit-induced spin relaxation, where γ is interpreted
as a spin admixture parameter instead of a rotation angle. First principle calculations of γ
for a common organic semiconductors yield 10−2 –10−4 [32].

0 �

2
� 2�3�

2

0.0

0.5

1.0

1.5

2.0

� (rad)

�/
k

0 2 4 6 8 10 12 14
0.01

0.05
0.10

0.50
1

k t

P
(t)

1
3 γ2k

4
3 sin2 γ

2 k

simulation

γ = 0.9
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Figure 2. (Color online) Left panel: the spin polarization as a function of time when relaxation is due
to spin–orbit coupling using γ = 0.9. Red: simulation; black: exact spin polarization calculated using
a multiple trapping model, strong-collision approximation, and γ of constant magnitude, but random
orientation; blue: small-angle approximation for the spin relaxation rate. Right panel: Spin relaxation
rate, Γ, determined from the simulation (red points), exact solution (black line), and approximate
solution (blue line). k = 1 was chosen for the hopping rate for all points and curves.

2.4. Hopping Models

The spin relaxation of hopping spins is modeled in two ways. The first is Multiple
Trapping (MT), where each hops is completely uncorrelated from previous hops. The
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advantage of this model is the ability to obtain analytic solutions. The disadvantage is
that in a real system, hops are in fact correlated, which means the random fields giving
rise to relaxation are correlated. The Multiple Hopping (MH) model accounts for these
correlations. We used Monte Carlo methods to simulate both models.

2.5. Multiple Trapping Model

Realistic wait time distributions, appropriate for amorphous and organic semiconduc-
tors, are harder to handle than what was treated in Section 2.3. The two aforementioned
disordered systems are typically characterized by an exponential density of states and a
Gaussian density of states, respectively. The width of the Gaussian is typically taken to
be on the order of tenths of an electron volt in organic semiconductors [41]. The Multiple
Trapping model (MT) constructs wait time distributions ψ(t) = k(ε)e−k(ε)t from hopping
rates that are of the form of trap release rates, k(ε) = k0eε/kBT , where ε is the trap energy and
is distributed according to the density of states. The energy levels are uncorrelated between
hops. The strong-collision approximation is still assumed, so there is no correlation in
rotational fields either. For an exponential density of states, ge(ε) = (kBT0)

−1 exp(ε/kBT0),
ψ(t) is described by

∫ 0
−∞ ge(ε)k(ε)e−k(ε)tdε or in Laplace space as:

ψ̃(s) =
∫ 0

−∞
dεge(ε)

k(ε)
s + k(ε)

=
∫ 0

−∞
dxex k0ex/α

s + k0ex/α
, (19)

with x = ε/kBT0 and α = T/T0. The result can be written as a hypergeometric function:

ψ̃(s) =
k0α

s + αs 2F1(1, 1 + α, 2 + α,−k0/s). (20)

The long time, or asymptotic, behaviors of ψ(t) and Φ(t) are of interest; they are
determined to be [34]:

ψ(t→ ∞) ∼ t−α−1

kα
0

, Φ(t→ ∞) ∼ t−α

kα
0

. (21)

The polarization at any time can be ascertained by the numerical Laplace transform
inversion [42] of Equation (14) [43,44]. However, in the long-time case, asymptotic analysis
determines [34]:

P(t) =
nπα

Γ(1− α)

1
kα

0

1
γ2 csc(πα)t−α (22)

which demonstrates an algebraic decay of spin polarization. n = 3 for γ distributed with a
constant magnitude over a sphere and n = 1 for a randomly directed Gaussian γ.

For a Gaussian density of states, gg(ε) = (2πσ2)−1/2 exp(−ε2/2σ2), the problem is
less analytically and computationally tractable as neither pure exponential nor power law
behavior are observed for finite σ/kBT [8,45].

2.6. Multiple Hopping Model

The MT model treats each hop as an independent trap release with release rate
k(ε) = k0eε/kBT . MT ignores correlations between sites, which would cause the hopping
to not follow the carrier release from distribution sites with some density of states. For
example, two sites lying near in energy and space would allow rapid back-and-forth
hopping before the charge carrier escapes the dyad. Therefore, MT is inappropriate in
general, but is useful due to its simplicity and the availability of analytic solutions to
some problems.
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To address more realistic hopping, we adopted a Monte Carlo approach where charge
hopping and concomitant spin evolution are tracked on a cubic lattice where the rate of
hopping from site i to site j is determined by the Miller–Abrahams rates:

kij =

{
k0, if εi ≥ ε j,
k0e(εi−ε j)/kBT , if εi < ε j.

(23)

Each site on the lattice is assigned a fixed energy drawn from the chosen density of
states (either the delta function, exponential, or Gaussian). The field vector responsible for
rotating the spin is γn. Later on, different assignations for γ are discussed. Spin carriers
were injected randomly onto the lattice of sites. The spin of each carrier was sampled at
a chosen time interval and averaged over many different configurations of the disorder
(typically 10,000–50,000). A single disorder configuration possesses a fixed landscape of
site energies and local fields.

Various models for the local fields, γ, can be employed. Below, we describe two
models for the correlation of the fields between sites (applicable only to MH) and two
models of the local field vector (applicable to either MT or MH).

2.6.1. Local Field Correlations

The previous site is always “forgotten” after each hop in the MT model, so models of
site correlations only apply to the MH model. Two models were employed: the vertex and
edge local fields models.

Vertex local fields: Each site possesses a single local field vector γ, which exerts a torque
on the spin hopping to that site, as shown in Figure 3. This model was employed in [12,34].

Local Field (γ)

Figure 3. (Color online) Vertex model of local fields. A spin rotates a set amount γ about a random
direction (green arrows) when hopping to a site. Each site has a fixed γ value.

Edge local fields (commuting): The local field exists between two nearest neighbor sites.
The local field for a forward hop is opposite that of a backward hop. Therefore, a spin
that undergoes a forward–backward hop combination ends up with its initial spin state
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as shown in Figure 4. This model mimics spin–orbit interactions for sub-barrier carrier
motion [35].

1 2

Local field gamma (γ)

1 → 2         2 → 1

Figure 4. (Color online) Edge model of local fields. A spin rotates a set amount γ about a random
direction (green arrows) when hopping to a site (e.g., a hop from Site 1 to Site 2). The return hop
(e.g., a hop from Site 2 to Site 1) rotates through the opposite direction (red arrows) an amount γ.
Therefore, the net rotation for a hopping sequence 1→2→1 is zero.

2.6.2. Local Field Magnitude

Two different models of the local field magnitude were employed (demonstrated in
Figure 5): (1) the magnitude was constant (the direction was random); (2) the magnitude
was drawn from the Gaussian distribution (the direction was again random).

Constant local fields: Each local field has a fixed magnitude, but a random direction,
such that the rotation angle is Γn, where Γ is constant. This leads to a spin relaxation
function P(t) = e−

1
3 kΓ2tS0.

Gaussian local fields: If each component of the rotational vector Γn is isotropically,
normally distributed with width γ, then in the small-angle approximation for Γ, the
relaxation rates change to γ2k such that P(t) = e−kγ2tS0.

Details on the implementation of these models are described in Section 5.

Uniform Normal

Figure 5. (Color online) Spin randomizing field vector (green arrows) directions are random at each
step; two models of their magnitudes are used: either a constant magnitude (uniform) or a magnitude
from a Gaussian distribution (normal).
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3. Results

Now, the results from the aforementioned simulations are presented. First, the results
using zero disorder (σ = 0) are shown, and then, the results for finite disorder (using an
exponential density of states) are displayed.

3.1. Zero Disorder

Simulations of MT and MH using each of the previously described models are demon-
strated in Figures 6 and 7. Exponential fits for nondisordered simulations were carried out
with the function:

Pfit(t) = P0e−αγ2kt (24)

where P0 and α serve as fitting parameters. Table 1 shows the values of α obtained for each
model. The MT values were derived from the theory presented earlier in this article.

In view of all the MH simulations in the figures below, one can readily understand
why the edges model led to slower spin relaxation: since to-and-fro hops commuted,
such hops led to no spin losses where every hop in the vertex model had the potential of
incurring a random spin rotation.

0 1000 2000 3000 4000 5000
0.1

0.2

0.5

1

kt

P(
t)

σ = 0
constant γ

gaussian γ
CUDA

C++

MT

α = 0.3326

α = 0.9934

Figure 6. (Color online) Polarization functions in the MT model with the zero disorder parameter, σ,
for two different models of the local fields, γ: constant magnitudes (blue) and Gaussian magnitudes
(green). The spin relaxation rate fit constants, α, are given for each (see Equation (24)). The α

values agree well with the theoretical values of 1/3 and 1. Two simulations were compared-: one
programmed serially in C++ and the other in parallel with CUDA. Their differences are nearly
imperceptible (the difference between solid and dashed lines). Additional parameters used in the
simulations were γ = 0.025 (for the Gaussian approximation γ, it is the width of the distribution)
and k = 1. The C++ (CUDA) simulation is averaged over 20 k(200 k) configurations.

Table 1. Rational approximations for the values of α, found computationally, when σ = 0. Values
preceded by “∼” denote rationalizations of numerical results (in other words, these values are not
derived analytically).

α MT MH

Gaussian 1 –
Gaussian-vertex – 2.014∼2
Gaussian-edge – 2/3

constant 1/3 –
constant-vertex – 0.6606∼2/3
constant-edge – 2/9



Magnetochemistry 2021, 7, 88 10 of 15

σ = 0

constant γ

α = 0.6606

gaussian γ

α = 0.2197

α = 2.014

α = 0.6648

--------- Edges
--------- Vertex

MH Edges and MH Vertex

Figure 7. (Color online) Polarization functions in the MH model with the zero disorder parameter, σ,
for two different models of the local field magnitudes, γ: constant magnitudes (red) and Gaussian
magnitudes (blue). Solid lines use the edges version, while dashed lines use the vertex version. The
spin relaxation rate fit constants, α, are given for each (see Equation (24)). Additional parameters used
in the simulations are γ = 0.025 (for the Gaussian approximation, γ is the width of the distribution)
and k = 1.

An interesting finding demonstrated in Table 1 is that the MH-edges rate is found to
be 2/3 the MT rate (for both field magnitude models). We can understand the factor of
2/3 in the following way. In MT, all six hopping directions lead to a spin rotation (and
hence, contribute to spin relaxation). For the MH-edges model, only five hopping options
contribute to spin relaxation; the sixth option is a return to the spin’s previous site, which
will actually suppress the spin relaxation due to the assumed commutation of back-and-
forth hops. By compiling the fraction of hops that lead to relaxation or reduce relaxation,
on a cubic lattice, we have 5

6 (+1) + 1
6 (−1) = 4

6 = 2
3 . In general, with coordination number

q, the relaxation suppression fraction is q−1
q (+1) + 1

q (−1) = q−2
q , which we confirmed for

the square lattice.

3.2. Finite Disorder

Figures 8–10 demonstrate the role nonzero disorder (σ > 0) plays in the spin polariza-
tion functions. Figure 8 is the MT model with σ = 2. The thin black lines are the analytic
results from inverse Laplace transforms of Equation (20). The linear dashed lines are the
analytic approximation at longer times given by Equation (22). The key features, when
σ > 1, are that the polarization function decays algebraically at long times no matter the
model being used (however, an exponential density of states was assumed here).

The much slower algebraic relaxation (as opposed to exponential) was due to the high-
disorder regime of σ > 1. Spin rotations only occurred during hops, and large disorder
means that carriers would fall into deep energy states and take a long time to hop out. Since
relaxation requires hops, the relaxation function follows the same trend as the survival
probability function.
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σ = 2

constant γ

gaussian γ

analytic theory

simulation

MT

1 10 100 1000 104 105 106

0.2

0.4

0.6

0.8
1.0

k t

P(
t)

∼ t1/2

Figure 8. (Color online) Polarization functions in the MT model with the disorder parameter, σ = 2
(exponential density of states), for two different models of the local fields, γ: constant magnitudes
(blue) and Gaussian magnitudes (green). The black curves are the analytic theory expressions
coming from Equations (14) and (20). The dotted lines are the expression Equation (22). Additional
parameters used in simulations are γ = 0.025 (for the Gaussian approximation, γ is the width of the
distribution) and k = 1000. The simulations are averaged over 60 k disorder configurations.

Figure 9 shows a similar behavior for the MH-edges model, and we found the MH-
vertex model (not shown) to be qualitatively identical as well.

σ = 2

MH Edges

~ 𝑡 /

Figure 9. (Color online) Log-log plot of polarization decay for disorder constant σ = 2 in the MH-
edges model for both versions of the local field magnitude. At long times, the decay is algebraic; the
dependence agrees well with the trend ∼t−1/σ (black dotted line). Additional parameters used in
simulations are γ = 0.025 (for the Gaussian approximation, γ is the width of the distribution) and
k = 1000.

Figure 10 is again the MT model, but this time with several different values for the
disorder parameter σ. The relaxation function is exponential for σ < 1 and algebraic for
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σ > 1. These functional dependencies on σ correspond to the notions of non-dispersive
and dispersive transport known to the amorphous semiconductor community.

σ = 0
σ = 0.5

MT Uniform

σ = 1.5

σ = 1

σ = 2

σ = 0

σ = 0.5

Figure 10. (Color online) Main: Log-linear plot of the polarization decay function for low disorder
(curves are exponential or nearly exponential). Inset: Log-log plot of polarization decay for various
disorder constants, σ, in MT using constant local field magnitudes. For σ > 1, at long times, the
decay is algebraic; the dependence agrees well with the trend ∼t−1/σ. Additional parameters used
in simulations are γ = 0.025. For σ = 0, k = 1, while for σ > 0, k = 1000.

4. Discussion

The simulations presented above modeled the instantaneous rotation of a classical
carrier spin as it hopped across a lattice. While our model was a classical approximation to
a quantum mechanical, the motivation was that this type of model should qualitatively
pick up some features of hopping-induced spin–orbit spin relaxation, which is believed to
be responsible for the spin losses in some amorphous and organic semiconductors. In this
section, we discuss the aspects and shortcomings of our classical model, as well as future
directions this work will take.

4.1. Evaluating the Models

In terms of capturing the relevant physics, the MH model is superior due to the
accounting of correlations during hops. The edges version of MH is most applicable to
underbarrier motion undergoing a spin–orbit interaction [35]. The vertex version of MH is
most suitable for overbarrier hopping transport, where one would not expect commuting
spin rotations between adjacent sites.

Determining which of all the models presented here (MT, MH, vertex, edges, Gaus-
sian, constant) are governing a particular system is difficult due to the uncertainty in the
parameters (γ, k) for a given system. This can be seen for the following reasons: (1) if σ = 0,
all models predict spin relaxation rates, αγ2k with α differing by order unity; (2) if σ > 0,
all models predict algebraic spin decay ∼t−1/σ.

The predicted ∼γ2k dependence for spin relaxation was used in [46] to fit experi-
mental electron spin resonance measurements in undoped amorphous silicon [47,48] and
hydrogenated amorphous silicon [49,50]. While these amorphous systems are disordered
(which entails algebraic decay), the ∼ γ2k dependence for the line shape width may be
due to resonance experiments picking up short-time exponential dynamics. A better com-
parison with the theory presented here, to probe the influence of strong disorder, would
require experiments performed using time-resolved electron spin resonance.
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Time-of-flight experiments clearly demonstrate the role of disorder in charge transport
(so-called dispersive transport) [51,52]; however, extending this method to spin transport
is nontrivial, and the authors are not aware of any experiments of this type.

4.2. Shortcomings of the Classical Spin Model

Consider a simple model atom in the 2p state, where pz has an energy ∆ below that of
px and py. For the spin–orbit Hamiltonian, Hso = ξL · S, perturbation theory yields doubly
degenerate eigenstates:

|+〉 = |pz ↑〉+
ξ

2∆
|(px + ipy) ↓〉 (25)

|−〉 = |pz ↓〉 −
ξ

2∆
|(px − ipy) ↑〉 (26)

and a spin–orbit energy shift of −ξ2/∆. |+〉 and |−〉 are pseudospin states: since ξ/∆ is
small, the |+〉 pseudospin state is mostly | ↑〉 with a small component of | ↓〉.

Spin–orbit coupling mixes up- and down-spin spin states, which entails that spin is
not conserved. The hopping integral between two sites i and j is spin independent, but
since the pseudospin states |+〉 and |−〉 are admixtures of up and down states, there is a
finite probability for transitions between |+〉 and |−〉 states during hopping events.

If one takes the local fields to signify spin–orbit interactions, we can contrast the
classical model with quantum models of carriers hopping between sites experiencing spin–
orbit interactions [32,33,36]. Due to the spin–orbit Hamiltonian not commuting with the
spin operators, spin is not conserved during hops. Typically, in an organic semiconductor
(e.g., Alq3), the spin–orbit interaction is weak, such that many spin-conserving hops may
take place before a spin flip. The classical spin model presented herein describes the spin
relaxation as a more continuous process, where small spin rotations occur at each hop
and the accrual of such rotations leads to relaxation. The quantum model as described by
[32,33,36] is inconsistent with the underbarrier motion modeled by MH-edges [35]. The
deviation of the classical MH model with the quantum model (for simplicity, we assumed
no disorder) is starkest in lower dimensional hopping systems, where commuting hops are
assumed by the edges model. The commutation of oppositely directed hops suppresses
spin relaxation, while we do not expect such a dramatic suppression in the quantum spin
model (since spin flips occur probabilistically, there would be no spin flip reversals when
returning to a site). A detailed study of the quantum model awaits our further focus.

5. Materials and Methods

Calculations were carried out in Python, C++, and CUDA. These three languages
were chosen in order to confirm each other and also to parallelize the computations. MH
codes initialized a classical spin vector and then allowed the spin to randomly walk over
a cubic (for 3D simulations) lattice (typically 803, which proved to be far beyond where
finite-size effects would be observed) according to the Miller–Abrahams hopping rates.
The spin vector would be sampled every ∆t. Many thousands of spins were evolved in
this manner, and their vector at every ∆t would then be averaged to find the average spin
decay function. When disorder was present, each run would randomize the site energies
according to the density of states. The MT code operated in a similar fashion, except that
the activation energy at each hop was randomly drawn according to the density of states.
In this manner, each hop is completely uncorrelated from the previous hops.

6. Conclusions

For the first time, we provided a systematic treatment of intersite classical spin relax-
ation processes for hopping carrier spins. The variety of models examined, while classical,
carried enough features to give insight into what may occur for a hopping quantum me-
chanical spin experiencing spin–orbit interactions during the hopping processes. Given a
specific amount of disorder, the classical models do not deviate enough from each other to
adequately distinguish between them since important spin–orbit and hopping parameters
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are not known to high precision. Future efforts will be to study spin relaxation from
hopping using a fully quantum mechanical spin–orbit interaction.
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