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Abstract: Magnetic fluids based on single-domain magnetic spinel ferrite nanoparticles dispersed in
various liquid media are of particular practical and scientific interest. This paper presents a muon
spectroscopy study of a ferrofluid based on magnetic nanoparticles of CoFe2O4 molecules dispersed
in water (H2O) with a nanoparticle concentration of 3%. In this study, it was determined that the
structure and magnitude of the magnetization of a ferrofluid depend on the viscosity of the liquid
itself. It was shown that, at room temperature (290 K) and under an external magnetic field of 527 G,
the observed additional magnetization was ~20 G. In a small fraction of the sample under study
(~20%), negative magnetization (diamagnetism) was observed. At low temperatures (~30 K), the
sample acted as a paramagnet in a magnetic field. For the first time, the magnetic field inside and in
the immediate vicinity of a CoFe2O4 nanoparticle has been measured experimentally using the µSR
method: the value was 1.96 ± 0.44 kG; thus, direct measurement of the magnetization of a nanoscale
object was performed.

Keywords: muon; spin precession; magnetoelectric interactions; phase transitions; incommensurate
magnetic structure; doped and nanostructured materials

1. Introduction

Magnetic nanostructures, such as nanoparticles [1–10] or thin layers [11–14], are of
great practical and scientific interest due to their special properties, which are caused by
nanoscale effects.

For many decades, ferrofluids (FF)—ultrastable dispersions of single-domain nano-
magnetic particles in various liquids, stabilized by different methods—have been continu-
ously studied by scientists and engineers [15].

Ferrofluids have been used in an increasingly diverse spectrum of applications in
research and/or development, such as seals, lubricants, adjustable dampers, clutches,
inkjet printers, cooling for electronic devices, heat transfer, mass density separation, optics
applications, various sensors or biosensors, cell separation, the controlled targeting of
drugs with magnetic resonance imaging, hyperthermia, etc., to mention a few [3,5,16].

The developments for novel applications are directly connected with active research
on the production of new types of ferrofluids, with particles of different sizes, shapes,
compositions, and concentrations [17,18], using innovative synthesis and stabilization
methods and compounds, as well as conducting studies on their properties. Currently,
liquids based on single-domain magnetic nanoparticles of spinel ferrites, MeFe2O4 (where
Me are Cr, Mg, Fe, Co, and Zn), dispersed in various liquid media are widely studied.
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The stability of magnetic fluids is achieved by the use of various surfactants that prevent
nanoparticles from sticking together [19–21]. The magnetic fluid in water was stabilized at
low concentrations (<5–7%) of nanoparticles. At temperatures below the Curie temperature,
each nanoparticle had a magnetic moment close to the total moment of molecules in
the particle.

The magnetic properties of ferrofluids have been studied with many methods [22–25],
including using quantum magnetometers (SQUID) [26,27], Mössbauer spectroscopy [28,29],
and small-angle neutron scattering [30–33].

Among various solid-state nuclear techniques, muon spin research (µSR) is a relatively
new technique [34,35]. However, as in all fields of science, in applied muon research new
methods and techniques are also being developed, and capabilities of existing methods are
continuously being expanded to meet challenges posed by new objects of investigation.
The positive-muon rotation technique has proven to be an excellent method for investi-
gating static and dynamic local magnetic fields in condensed matter. Due to its positive
charge, the muon usually resides at an interstitial site in a crystal; therefore, these regions
are normally inaccessible with other more conventional techniques (magnetic resonance,
Mössbauer, etc.). Particular attention has been devoted to magnetic oxides and especially
to magnetite [36,37].

The Curie temperature for cobalt ferrite is 793 K, and among the spinel ferrites,
CoFe2O4 has the highest magnetic crystallographic anisotropy constant [38]: about 20 times
higher than that of magnetite Fe3O4, and equal to 1.84 × 106 erg/cm3 at T = 300 K for
cobaltite (CoFe2O4) nanoparticles of about 32 nm in size.

The µSR method can be used to help understand magnetic phenomena peculiarities
in systems containing nanomagnetic particles by determining local magnetic fields in the
sample [39].

2. Materials and Methods
2.1. Materials

For these studies, a ferrofluid sample composed of a 3% volume concentration of mag-
netic nanoparticles in water, stabilized using sodium dodecyl sulfate, CH3(CH2)11SO4Na,
with a density ρ = 1.01 g/cm3, and lauric acid, C11H23COOH, with a density ρ = 0.88 g/cm3,
was used as a double surfactant layer.

One milliliter of ferrofluid contained 0.17 g of cobalt ferrite, and for every 1 g of
CoFe2O4 nanoparticles, 0.25 g of surfactant was used.

The investigated sample was synthesized at the Institute of Technical Chemistry, Ural
Branch of the Russian Academy of Sciences [18,40,41]. Preliminarily, a double separation
of nanoparticles by size was carried out on a Biofuge 15R centrifuge for 60 min at 6000 rpm.
The particle size distribution was studied at the Center for Advanced Technologies (Moscow
State University, www.nanoscopy.ru) using a LEO 912 AB OMEGA high-resolution trans-
mission electron microscope with an accelerating voltage of 120 kV. The size distribution of
nanoparticles was approximated by the lognormal distribution function, and the follow-
ing parameter values were determined: D0 = 7.8 ± 0.1 nm, σ = 0.40 ± 0.01 nm, with the
mathematical expectation value Dm = D0 exp(σ2/2) = 8.5 nm.

2.2. Muon Spin Rotation (µSR) Method

The sample was studied using the µSR setup [42] installed at the output of the muon
channel of the SC-1000 synchrocyclotron of the NRC “Kurchatov Institute”, PNPI. The
principles of µSR and uses of various relaxation (depolarization) functions of the muon
spins to describe the time spectra of the µSR signals are presented in studies which have
become references in the field [34,43]. At this facility, we have previously conducted studies
of ferrofluids based on Fe3O4 [39]. The beam of positively charged muons with an average
momentum pµ = 90 MeV/s and a momentum dispersion ∆pµ/pµ = 0.02 (FWHM) had a
longitudinal polarization pµ = 0.90 ÷ 0.95.

www.nanoscopy.ru
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The ferrofluid sample, packed in a copper cell 80 mm in diameter and 10 mm in height,
was placed in a blowdown cryostat, which made it possible to set the temperature with
an accuracy of ~0.1 K in the temperature range 10–290 K. An external magnetic field on
the sample, transverse to the direction of the muon spin, was created by Helmholtz coils
with a stability of ~10−3. The uniformity of the magnetic field in the central region of
the magnetic system was no worse than 10−4. The degree of uniformity of the magnetic
field was measured both by the standard method using Hall sensors and by the rate of
attenuation of the polarization precession in a copper sample with a size of Ø 40 × 5 mm
(λ = 0.0053 ± 0.0031 µs−1); such uniformity of the field is acceptable for conducting µSR
experiments. The Earth’s magnetic field and external scattered magnetic fields were
compensated for by additional Helmholtz coils to a level of ~0.05 G.

The time spectra of the positrons from the muons’ decay were measured simul-
taneously in two ranges (0 ÷ 10 µs and 0 ÷ 1.1 µs) with channel widths of 4.9 and
0.8 ns/channel, respectively.

The measurement procedure consisted of cooling the sample in a zero external mag-
netic field (ZFC) to a temperature of 25 K. After that, a magnetic field of 527 G, transverse
to the magnetic moment of the muon, was switched on, and ZFC measurements were
recorded as the sample was heated to room temperature (290 K). Then, the sample was
again cooled to a temperature of 30 K in the same transverse magnetic field of 527 G, and
FC measurements were performed.

The experimental data (time spectra) were approximated using the function:

N(t) = N0 exp
(
−t/τµ

)
[1 + as · Gs(t) + ab · Gb(t)] + B (1)

where N0 is a normalization constant; τµ is the muon lifetime (2.197 µs); B is the back-
ground of random coincidences, determined by the form of the time spectrum in the part
before the beginning of the decay spectrum, t0; and as and Gs(t) are the asymmetry and
relaxation function of the observed muon component of the muon spin precession in the
sample, respectively. The term ab ·Gb(t) corresponds to the contribution of the constructive
background to the observed asymmetry. The constructive background itself is mainly
associated with the decay of muons stopped in the copper walls of the container with
ferrofluid, and its contribution can be described as follows:

ab · Gb(t) = ab · cos(2π · Fb · t) · exp(−λb · t) (2)

The parameters Fb and λb, the precession frequency and relaxation rate, respectively,
are determined from the processing of the time spectrum measured on a copper sample.
The ab parameter was obtained from the joint processing of two spectra measured on the
ferrofluid sample in an external magnetic field (H 6= 0) and in a zero magnetic field (H = 0):

as · Gs(t) = aH · cos(2π · FH · t) · exp(−λH · t) + aL · cos(2π · FL · t) · exp(−λL · t)

for H 6= 0
(3)

as · Gs(t) = a1 · exp(−λH · t) + a2 · exp(−λL · t)

for H = 0
(4)

In this case, the following requirement is imposed:

a1 + a2 = aH + aL (5)

The amplitude a2 of a weakly damped exponent is chosen as ab .
The indices (H, L) on the parameters (a, λ) correspond to the observed frequencies

of the precession of the muon spin FH and FL, where FH > FCu > FL. The value FCu
corresponds to the rotation frequency of the muon spin in the pure copper sample.
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Using the relaxation function (Equation (1)), and taking into account Equations (2)
and (3), made it possible to accurately describe the experimental data of FC and ZFC
measurements in a wide range of sample temperatures.

In the temperature range of 26–100 K, the time spectra obtained in ZFC measurements
are fairly well described using the following single-frequency relaxation function:

as · Gs(t) = aH · cos(2π · FH · t) exp(−λH · t) (6)

3. Results and Discussion
3.1. Zero Field Measurements

Even in the absence of an external magnetic field, µ+ will precess around the internal
dipolar field. At a sample temperature of 290 K, two measurements were performed in a
zero external magnetic field. One was performed before turning on the external field (round
light points), as at T = 41 K, and the second measurement was carried out immediately
after turning on the magnetic field with a value of H = 527 G. In both measurements, the
relaxation functions did not differ from each other within the error limits.

Figure 1 displays the behavior of the relaxation function G(t) at sample temperatures
of 290 K and 41 K in a zero external magnetic field. This indicated that the external magnetic
field did not lead to the spatial displacement of nanoparticles.
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Figure 1. Relaxation function G(t) in a magnetic field H = 0 at T = 41 K (blue triangles) and T = 290 K
(light red dots and squares).

The relaxation function at a temperature of 41 K had two components, which sharply
differed in terms of the decay rates λ1 = 0.41 ± 0.02 µs−1 and λ2 = 23 ± 11 µs−1. The
rapidly decaying component was apparently associated with the presence of muon stops
in the near zone of the scattered fields of nanoparticles, where the inhomogeneity of the
magnetic field was high. The separation of the sample volume into near and far zones
occurred only at low temperatures when the rotation or oscillation of nanoparticles stopped.
At a temperature of 290 K, the entire sample volume was homogeneous in terms of the
relaxation rate. This behavior of the relaxation functions was associated with the presence
of major anisotropy of the magnetic properties of the nanoparticle itself.

3.2. The Field Scan at the Room Temperature

Further, the sample was measured at room temperature for magnetic field values in the
range of up to ~600 G. Figures 2–4 demonstrate the behavior of frequencies, decomposition
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rates, and populations as a function of the external magnetic field at the sample temperature
of 290 K.
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For all external magnetic fields in the range of 50–527 G, the sample under study
exhibited muon spin precession at two frequencies, FH and FL, in the order FH > FCu > FL
(Figure 2). The value FCu corresponds to the rotation frequency of the muon spin in the
pure copper sample.

Additional magnetization was observed in 80% of the sample volume (Figure 4),
which, at room temperature (~300 K), corresponded to an additional ∆H = 20 ± 1 G when
the external magnetic field was more than 300 G (Figure 2). In addition, there was a much
less noticeable diamagnetic contribution ∆H = 6.7 ± 0.2 G in 20% of the sample volume
(Figures 2 and 4). The relaxation rates λH and λL, as well as the populations aH and aL,
practically do not depend on the value of the external magnetic field (Figures 3 and 4). The
values of λL in Figure 3 are in the range of 0.09–0.12.
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Figure 4. Dependence of the amplitudes of the muon spin precession (populations) on the external
magnetic field at a temperature of 290 K (aH—light points; aL—dark blue points).

3.3. FC and ZFC Measurements

The behavior of systems with nanoparticles depends on the conditions in which they
were cooled. At the FC procedure, the sample is cooled in the magnetic field, whereas the
ZFC sample is cooled first in the absence of magnetic field and then the magnetic field is
switched on.

Figures 5–8 present the results of processing the time spectra measured on a ferrofluid
sample in an external magnetic field H = 527 G in the sample temperature range of 26 K to
290 K. In the FC measurement mode, two muon spin precession frequencies, FH and FL,
were observed over the entire temperature range (Figure 5).
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In the ZFC measurement mode, in the temperature range of 26–100 K, one precession
frequency of muon spin was observed. With an increase in the sample temperature, starting
from T = 100 K, two muon spin precession frequencies, FH and FL, appeared; moreover,
the FH frequency began to increase noticeably. For comparison, the same figure (Figure 5)
shows the behavior of the precession frequency of muons in a sample of H2O and Cu. The
relationship FH > FCu,H2O > FL is maintained throughout the entire temperature regime.

Figure 6 shows the behavior of the parameters λH , λL, and λ0 in the sample tempera-
ture range of 26 K to 290 K. Here, λ0 is the relaxation rate of muon polarization in a zero
external magnetic field. A noticeable difference of the parameter λ0 at T = 290 K from
the value at T = 41 K is associated with the dynamics of nanoparticles in the medium at
T = 290 K. In the FC measurement mode, the values of λH and λL were practically inde-
pendent within the error limits at the sample temperature. In the ZFC measurement mode
in the temperature range 26–125 K, λH ≈ λ0 (Figure 6). At these temperatures, the sample
behavior was paramagnetic (Figures 5 and 6). With a further increase in the temperature of
the sample, the parameter λH began to increase noticeably, and was practically comparable
with the value of λ0 at T = 290 K.

Figures 7 and 8 display the behavior of the populations of the upper FH and lower FL
frequencies (aH and aL) versus sample temperature in FC and ZFC measurements.

A significant excess of aH over aL was observed over the entire temperature range.
This difference was especially large at room temperature, when the solution was a real
ferrofluid, and not ice. Definite structures of the temperature dependence of the quantities
aH and aL were observed in FC measurements.

The sum of the partial amplitudes at all temperature points was almost 20% less than
the amplitude of the precession obtained in water (H2O) (Figure 9). This difference can be
explained by the fact that some of the muons stop in places with large inhomogeneity in
the field. This leads to their rapid depolarization, and the oscillation of their spins was not
observed. The behavior of positive muons in water has been well-studied previously [44].
Nevertheless, we conducted our own measurements in our cryostat for confirmation.
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Figure 9. Temperature dependences of the fraction of the asymmetry of the muon component in a
transverse magnetic field H= 527 G in the FC mode (aH + aL—open red squares), in the ZFC mode
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3.4. The Estimation of the Magnitude of the Magnetic Field Near the Nanoparticle

The relaxation function G(t) for the sum of spectra in the temperature range 26–100 K,
obtained in the ZFC mode in an external magnetic field H = 527 G, and its satisfactory
fitting curve obtained within the framework of the two-frequency hypothesis presented in
Equation (3), are depicted in Figure 10.
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Figure 10. Function G(t) in the ZFC mode in an external magnetic field H = 527 G; the spectra are
added at temperatures from 26 to 100 K.

Therefore, in addition to the main contribution characterized by the amplitude aL = 0.099± 0.001,
the relaxation rate λL = 0.35± 0.03µs−1, and the frequency FL = 7.167± 0.002 MHz, corresponding
to a magnetic field value of H = 528.76± 0.14 G, a small supplementary contribution is deter-
mined with the parameters aH = 0.027± 0.007, λH = 24± 6 µs−1, and FH = 26.5 ± 0.6 MHz,
corresponding to a magnetic field value of H = 1.96 ± 0.44 kG.

This contribution is associated with the muon stopping in the immediate vicinity of
nanoparticles and inside nanoparticles. Thus, direct measurement of the magnetization of
the nanoscale object was carried out.
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4. Conclusions

A muon spectroscopy study of a ferrofluid with a 3% volume concentration of CoFe2O4
magnetic nanoparticles dispersed in H2O has been reported.

New information on the magnetic properties of the system have been determined or
confirmed using a new method:

(i) The structure and value of the magnetization of a ferrofluid with CoFe2O4 nanoparti-
cles depend on the viscosity of the liquid itself.

(ii) At room temperature (~290 K), when the sample was a superparamagnetic system,
from the experimentally determined magnetization an average magnetic field of 20 G
was obtained.

(iii) A small fraction of the sample with negative magnetization, characteristic for diamag-
netic systems, was also determined.

(iv) At low temperatures (~30 K), the sample exhibits paramagnetic behavior in a magnetic field.
(v) The magnetic field inside and in the immediate vicinity of the CoFe2O4 nanoparticles

was first measured by the µSR method, and its value was B = 1.96 ± 0.44 kG.

Although the presented results belong primarily to the category of fundamental knowl-
edge, with the development of technologies for nanoparticle manipulation in technical and
bio-medical applications, such information may turn out to be valuable.
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