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Abstract: Nuclear Magnetic Resonance is particularly sensitive to the electronic structure of matter
and is thus a powerful tool to characterize in-depth the magnetic properties of a system. NMR
is indeed increasingly recognized as an ideal tool to add precious structural information for the
development of Single Ion Magnets, small complexes that are recently gaining much popularity due
to their quantum computing and spintronics applications. In this review, we recall the theoretical
principles of paramagnetic NMR, with particular attention to lanthanoids, and we give an overview
of the recent advances in this field.
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1. Introduction

Moving from the large to the small scale, the properties of materials undergo signif-
icant variations that result in very interesting effects. In the case of magnetism, systems
composed of few paramagnetic centers, Single Molecule Magnets (SMMs), or even single
paramagnetic ions, Single Ion Magnets (SIMs), are able to preserve their magnetization due
to zero-field degeneracies in the electronic structure. The magnetic hysteresis of these sys-
tems, collectively known as single-domain magnets, originates from a bistable ground state,
where the two minima are separated by a—possibly—high thermal barrier, called blocking
temperature TB. The SMM [1] behavior was first observed in polymetallic complexes [2,3],
where it is dominated by exchange interactions between the ions. In subsequent research
the SIM behavior has been identified in lanthanoid [4,5] and transition metal ions [6,7],
where the magnetic bistability is caused by the electronic structure emerging from the
ligand field (LF) splitting (in this review, we use the term “lanthanoids” as recommended
to the International Union of Pure and Applied Chemistry [8]).

Due to their magnetic hysteresis, SIMs are expected to find large application in quan-
tum computing [9], first of all as memory devices, and in the field of spintronics. Consistent
efforts are indeed devoted to the development of tools that allow for the prediction of
the electronic structure from first principles [10–14]. Multireference self-consistent field
methods, such as Complete Active Space Self-Consistent Field (CASSCF), are proven suc-
cessful in reproducing ab initio the magnetic properties of paramagnetic centers in general,
and the results can be further improved by reintroducing dynamic correlation through
the application of Complete Active Space 2nd order Perturbation Theory (CASPT2) or
n-Electron Valence State 2nd order Perturbation Theory (NEVPT2) methods. Given the
computational requirements of Quantum Chemical (QC) methods, simpler models based
on effective electrostatics or angular overlap are also widely used [15–19]. In any case, a
solid ground of experimentation is needed to prove the efficacy of the design [20]. The
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methodologies of choice for the experimental characterization are Superconducting quan-
tum Interference Device (SQUID) and Cantilever Torque Magnetometry (CTM) [21,22],
which are carried out at low temperatures in crystalline solids. The individual contributions
of the different positions of the molecule in the unit cell can be deconvolved, and then
the data are fit to the crystal field parameters. The use of other methodologies has been
described recently [23–26].

In spite of the limited number of papers dealing with NMR of single-domain magnets,
it is becoming increasingly apparent that NMR is a powerful tool for their fine characteriza-
tion and rational design: in NMR-spectroscopic terms, Single Ion Magnets are systems with
large and axial magnetic susceptibility anisotropies and fast electron relaxation times at
room temperature, making them ideal candidates for an NMR investigation (vide infra). At
the same time, the high magnetic susceptibility anisotropies of SIMs are expected to make
them suited for NMR applications: a large magnetic anisotropy can provide robust experi-
mental data for the determination of structure and dynamics in biological systems [27–30]
and improved contrast agents for Magnetic Resonance Imaging [31,32]. In this review, we
will focus on the NMR properties of single-domain magnets, in particular, of lanthanoid
Single Ion Magnets (Ln-SIMs) [11,33].

2. The SIMs Effects on the NMR Spectra

The magnetic properties of SIMs induce in their NMR spectra significant shifts and
relaxation effects [34], which represent an invaluable source of structural information [35].

2.1. Susceptibility and NMR Observables
2.1.1. Shifts

As it occurs for a macroscopic object, the magnetic susceptibility tensor χ of a molecule
changes the magnetic field in the vicinity of the molecule. The magnetic susceptibility in a
paramagnetic system is due to the presence of unpaired electrons and their interactions
among themselves and with nuclei, and can be described through the Van Vleck equation:

χkk =
µ0µ2

B
kBT

∑i[〈ψi|Lk + geSk|ψi〉〈ψi|Lk + geSk|ψi〉 − 2kBT ∑j 6=i
〈ψi |Lk+geSk |ψj〉〈ψj |Lk+geSk |ψi〉

Ei−Ej
]e−

Ei
kBT

∑i e−
Ei

kBT

(1)

where Lk and Sk are the components of the angular momentum and of the spin operator,
respectively, µ0 is the magnetic permeability of a vacuum, µB is the Bohr magneton, kB
is the Boltzmann constant, and ge is the electron g-factor. The symbols T, E, and ψ carry
the usual meanings of thermodynamic temperature, energy, and quantum state of the
system, respectively.

Since most SIMs are based on lanthanoid ions, it is important to recall that, because of
the strong spin–orbit coupling, only the total magnetic moment J is defined, thus the Van
Vleck equation (Equation (1)) needs to be modified to yield:

χkk =
µ0µ2

Bg2
J

kBT

∑i[〈ψi|Jk|ψi〉〈ψi|Jk|ψi〉 − 2kBT ∑j 6=i
〈ψi |Jk |ψj〉〈ψj |Jk |ψi〉

Ei−Ej
]e−

Ei
kBT

∑i e−
Ei

kBT

(2)

where Jk are the components of the total angular momentum operator, and the electronic
g-factor is given in terms of the spin and the orbital quantum numbers and of their
combination to yield gJ = 1 + J(J+1)−L(L+1)+S(S+1)

2J(J+1) [35,36].
The LF causes the energy splitting of the 2J + 1 sublevels in the spin–orbit–coupled

J ground state and can be quantitatively described by the LF parameters. The magnetic
susceptibility can thus be calculated from the LF parameters [16,37,38], from the angular
overlap [15], or with ab initio methods [10,39–41]. As mentioned in the introduction, the
calculations can thus be used to provide a physical model for the interpretation of the
experimental data.
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In NMR, the magnetic susceptibility leaves its marks on several observables: mainly in
pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs), but also on relaxation
and in other field-dependent effects.

The nuclear spin Hamiltonian contains a term that is proportional to χ [42–44]. This
term is usually represented, according to Kurland and McGarvey [42], as the dipolar
interaction between the magnetic moment of the nucleus µI = }γII and the average
induced electron magnetic moment 〈µel〉 = χ·B0

µ0
:

H = − µ0

4π

[
3(}γI Ikk · r)(〈µel〉 · r)

r5 − }γIk · 〈µel〉
r3

]
= −}γI B0

4πr5 Ikk ·
[
3r(r · χ)− r2χ

]
k (3)

where the nuclear spin operator I is quantized along the direction k of B0 (I = Ikk),
γI is the nuclear gyromagnetic ratio, and r is the metal–nucleus distance. This relation
was obtained following a semiempirical treatment [36,45], and has been only recently
validated by a complete quantum chemical treatment [46]. The dipolar interaction has an
orientational dependence and can be described by a rank-2 tensorial quantity, which is
called shielding tensor:

σPC = − 1
4πr5

[
3r(r · χ)− r2χ

]
. (4)

Different orientations of the nucleus–metal vector with respect to the magnetic field
direction thus result in different values of shift and, if interconversion between different
orientations is impeded, such as in a solid, all different shift values of all nuclei will
contribute to the spectrum, generating the so-called powder pattern (Figure 1).
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Figure 1. Powder patterns for nuclei located along the three principal axes of the magnetic susceptibil-
ity tensor. For a rhombic susceptibility tensor (left columns), the three powder patterns are different,
and their averages are different from zero (dashed lines). For a spherically symmetric susceptibility
(e.g., for a gadolinium(III) ion in a highly symmetric environment), the three powder patterns are
identical, and their average equals zero (right column). Therefore, nuclei experience pseudocontact
shifts, which have different values for different metal–nucleus positions. Reproduced from ref. [47]
with permission from the Royal Society of Chemistry.
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On the contrary, in solution the molecule will be free to reorient (see below), and
the effect of the shielding will be averaged to its trace. If χ is isotropic, as in the case of a
nondegenerate ground state of high symmetry (e.g., in manganese(II) or gadolinium(III)
in Oh or Td symmetry), no shift will be observed. If, on the contrary, χ is anisotropic, the
average electron magnetic moment 〈µel〉 is not necessarily oriented along the magnetic
field (Figure 2), the powder patterns of the different nuclei are different from one another
even if at the same distance from the paramagnetic metal, depending on the position of
the nucleus in the frame of χ (Figure 1, left panel), and the reorientational averages are in
general different from zero.
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The average shift values are called pseudocontact shifts and are described by the
following equation:

δPCS = −1
3

Tr(σPC) =
1

12πr3

[(
χzz −

χxx + χyy

2

)(
3 cos2 ϑ− 1

)
+

3
2
(
χyy − χyy

)
sin2 ϑcos2ϕ

]
, (5)

where Tr denotes the trace of the matrix, ϑ and ϕ are the spherical angles describing the
orientation of r in the principal frame of the χ tensor, and χxx, χyy and χzz are the principal
components of the tensor.

The paramagnetic shift, i.e., the contribution to the NMR shift due to the presence of a
paramagnetic metal, may also contain a term arising from unpaired electron spin density
at the nucleus, which is called the “Fermi Contact” shift (FCS). Analogous to the dipolar
shielding, it is possible to define an FC shielding tensor:

σFC = − 1
µ0

A
}

1
γIµB

(
χg−1

)
(6)



Magnetochemistry 2021, 7, 96 5 of 20

where A is the hyperfine coupling constant, directly proportional to the unpaired electron
density at the nucleus. The FCSs are given by the trace of the FC shielding tensor:

δFCS = −1
3

Tr(σFC) =
1

µ0

A
}

1
3γIµB

(
χxx

gxx
+

χyy

gyy
+

χzz

gzz

)
. (7)

These FCSs can provide a contribution larger than that provided by PCSs, and their
separation can result cumbersome [48]. However, the low covalency of the bonding in
lanthanoids makes this term practically negligible in most cases, except for relatively
short metal–nucleus distances, or in ligands with considerable electron delocalization
or for ligands carrying unpaired electrons (e.g., neutral double-decker phthalocyaninato
complexes [49]).

2.1.2. Field-Dependent Effects

In the above section, we assumed implicitly that the molecule in solution is completely
free to reorient. This is not necessarily true, as the strong magnetic anisotropy makes some
orientations of the molecule with respect to the field more favorable than others. We can
therefore introduce an orientation tensor that describes the probability that the molecule is
oriented along the principal axes of the magnetic susceptibility tensor:

Pii =

∫
Ω cos2 αi exp

(
− Ei

kT

)
sin αidαidβi∫

Ω exp
(
− Ei

kT

)
sin αidαidβi

=

∫
Ω cos2 αi exp

[
B2

0
2µ0kT

(
χmol

ii cos2 αi+χmol
jj sin2 αi cos2 βi+χmol

zz sin2 αi sin2 βi

)]
sin αidαidβi∫

Ω exp
[

B2
0

2µ0kT

(
χmol

ii cos2 αi+χmol
jj sin2 αi cos2 βi+χmol

zz sin2 αi sin2 βi

)]
sin αidαidβi

(8)

where αi and βi are the spherical angles representing the orientation of the magnetic
field with respect to the main axes of the magnetic susceptibility tensor. To the first order,
the integrals evaluate to [50,51]:

Pii =
1
3

[
1 +

B2
0

5µ0kBT

(
χmol

ii − χmol
iso

)]
. (9)

To include the effect of partial orientation on the shifts it is enough to multiply the
shielding tensor of Equations (4) and (6) by the orientation tensor P before taking the trace:

δori
PCS = −Tr(σPC · P) (10)

and, analogously:
δori

FCS = −Tr(σFC · P). (11)

The complete forms of the equations are given elsewhere [36]. The effect of the
orientation on the observed shifts is negligible at low fields, but it can reach up to a few
percentage points at higher fields (Figure 3).

There are other effects that become apparent because of partial molecular alignment:
the dipolar couplings between different nuclei and the quadrupolar couplings in nuclei
with a nuclear spin quantum number higher than 1

2 both vanish upon free reorientation
because they are represented through traceless tensors. However, in the presence of
anisotropic reorientation, the nucleus–nucleus dipolar coupling gives rise to a splitting
given by:

∆νD =
µ0}γ1γ2

8π2r5
12

Tr

 3x2 − r2 3xy 3xz
3xy 3y− r2 3yz
3xz 3yz 3z− r2

 Pxx 0 0
0 Pyy 0
0 0 Pzz

 (12)

where r12 is the distance between the two nuclei and x, y and z are the differences between
the coordinates of the two nuclei in the principal frame of the tensor P. This splitting is
called residual dipolar coupling (RDC). If reorientation is anisotropic due to the anisotropy
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of the tensor χ, and thus Equation (9) holds, the residual dipolar couplings thus have a
paramagnetic origin.
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The quadrupolar coupling depends on the nature of the investigated quadrupolar
nuclei, through the quadrupole moment Q. The expression for the splitting (residual
quadrupolar coupling, RQC) of a transition between two nuclear spin states with ∆mI = ±1
is given by:

∆νQ =
3eQ

8I(2I − 1)
Tr

 Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 Pxx 0 0
0 Pyy 0
0 0 Pzz

 (13)

where V is the symmetric, traceless electric field gradient tensor at the nucleus that, in

its principal axes frame, is given by V = eq

 η − 1 0 0
0 −η − 1 0
0 0 2

 [50,53,54]. In most

practical cases, the only nucleus with a quadrupole moment sufficiently small so as to be
observable by solution NMR is deuterium.

2.2. Relaxation
2.2.1. Electron Spin Relaxation

In the environment of the paramagnetic center of interest, molecular motions of the
“lattice” and/or of the neighboring spins can generate fluctuating magnetic fields that drive
electron spin relaxation. For the sake of simplicity, we will focus our attention on diluted
systems, where inter-spin relaxation is reduced or abolished. Under these conditions, the
mechanisms through which an electron spin can relax [2,55] are:

• coupling to a phonon that matches the energy difference between the two spin states
(direct mechanism);

• coupling to two phonons through an excited state lying within the phonon continuum
(Orbach mechanism);
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• coupling to two phonons through virtual levels lying inside (Van Vleck or 1st order
Raman) or outside of the phonon continuum (2nd order Raman).

These mechanisms are depicted in Figure 3. For lanthanoid ions, low-lying states are
available due to the mJ manifold splitting caused by the ligand field. Low-lying states with
a strong admixing of electronic and magnetic degrees of freedom are necessary for the two
latter mechanisms, which are far more efficient because of the higher density of the acoustic
phonons at frequencies higher than the Zeeman splitting (cyan shading in Figure 4) [56].
Therefore, at temperatures higher than TB, relaxation times of the order of picoseconds or
lower can be attained. An approximate form of the phonon density is given by the Debye
model, with phonons increasing as a cubic power of the frequency but finer representation
of phonons and their coupling to spins is becoming possible [56,57].
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As we will see in the following sections, such short electron relaxation times provide
relatively inefficient nuclear relaxation, in particular for molecules with relatively short
reorientational correlation times and/or at low magnetic fields.

2.2.2. Nuclear Spin Relaxation

Nuclear relaxation in paramagnetic systems has a further contribution with respect to
diamagnetic systems due to the stochastic modulation of the dipole–dipole interactions
between the nuclear magnetic moment µI and the magnetic moment of the unpaired
electron(s) µel . To account for the different strength of the coupling between orbital and
spin angular moment, µel is written as µel = −µBg·S for transition metal ions [36] and
µel = −µBgJJ for lanthanoid ions (see Table 1) [58].

Two terms can be used to explain the paramagnetic relaxation enhancement, dividing
the dipolar interaction of the nuclear magnetic moment with the electron magnetic mo-
ment in two terms: (i) the interaction with the zero-averaging component of µel (Solomon
term, Equations (14) and (15)) and (ii) the interaction with the non-null thermal average of
µel [35,59,60] (Curie-spin term, Equations (16) and (17)). For the Solomon term, the fluctua-
tions of the dipole–dipole energy can be due to molecular reorientation, chemical exchange,
electron relaxation, or a combination thereof. Therefore, the timescale of the fluctuations is
defined by a correlation time τ−1

c = τ−1
R + τ−1

M + R1e, where τR is the reorientation time,
τM the residence time of the nucleus in the proximity of the paramagnetic center, and
R1e the electron relaxation rate. Depending on the paramagnetic metal, on the molecular
size, and on the residence time of the nucleus, each of these contributions can pass from
dictating the value of the correlation time τc to being irrelevant. Because of the very fast
electron relaxation typical of all paramagnetic lanthanoid ions except gadolinium(III), in
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these ions τc tends to coincide with the electron relaxation time. The Solomon longitudinal
and transverse nuclear relaxation rates are described by the following equations:

RSolomon
1M =

2
15

( µ0

4π

)2 γ2
I g2

isoµ2
BS(S + 1)
r6

(
7τc,2

1 + ω2
s τ2

c
+

3τc,1

1 + ω2
I τ2

c

)
, (14)

RSolomon
2M =

1
15

( µ0

4π

)2 γ2
I g2

isoµ2
BS(S + 1)
r6

(
4τc,1 +

13τc,2

1 + ω2
s τ2

c
+

3τc,1

1 + ω2
I τ2

c

)
(15)

where ωs = −γeB0 and ωI = −γI B0 are the electron and nuclear Larmor frequency,
respectively. In the case of lanthanoid ions other than gadolinium(III), the J quantum
number substitutes the S quantum number and gJ substitutes giso in the equations above.

Table 1. J quantum number and Landé g-factor for lanthanoid ions.

Ion J gJ

Ce3+ 5/2 6/7
Pr3+ 4 4/5
Nd3+ 9/2 8/11
Pm3+ 4 3/5
Sm3+ 5/2 2/7

Eu3+(Sm2+) 0 -
Gd3+(Eu2+) 7/2 2

Tb3+ 6 3/2
Dy3+ 15/2 4/3
Ho3+ 8 5/4
Er3+ 15/2 6/5
Tm3+ 6 7/6
Yb3+ 7/2 8/7

Conversely, the correlation time for Curie spin relaxation is only determined by the
reorientation and the nuclear residence time, τ−1

Curie = τ−1
R + τ−1

M , and not by the electron
relaxation, because the thermal average of µel (equal to χ·B0

µ0
) is already an average over the

electron spin states. The Curie-spin relaxation rates can be written in the form:

RCurie
1M =

1
2

Λ2
σω2

I
τCurie

1 + 9ω2
I τ2

Curie
+

2
15

∆2
σω2

I
τCurie

1 + ω2
I τ2

Curie
∼ 2

5

(
1

4π

)2 ω2
I χ2

iso
r6

3τCurie

1 + ω2
I (τCurie)

2 , (16)

RCurie
1M =

1
4

Λ2
σω2

I
τCurie

1 + 9ω2
I τ2

Curie
+

1
45

∆2
σω2

I

(
4τCurie +

3τCurie

1 + ω2
I τ2

Curie

)
∼ 1

5

(
1

4π

)2 ω2
I χ2

iso
r6

(
4τc +

3τCurie

1 + ω2
I (τCurie)

2

)
, (17)

with
Λ2

σ =
(
σxy − σyx

)2
+ (σxz − σzx)

2 +
(
σyz − σzy

)2, (18)

∆2
σ = σ2

xx + σ2
yy + σ2

zz − σxxσyy − σxxσzz − σyyσzz +
3
4

[(
σxy + σyx

)2
+ (σxz + σzx)

2 +
(
σyz + σzy

)2
]

(19)

where σij are the components of the nuclear shielding tensor, which contains the term
σPC (Equation (4)) due to magnetic susceptibility and, potentially, the term σFC as well
(Equation (6)). It is curious to observe that, in the presence of a large anisotropy and high
magnetic fields, the term in Λ2

σ can, in principle, provide a contribution to R1 larger than
that to R2 [61,62], though these effects are expected to be too small to be profitably observed.

In Equations (14) and (15) and in the approximate forms of Equations (16) and (17)
it is assumed that the χ tensor is isotropic. It was shown that considering an anisotropic
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g tensor causes small changes in the Solomon relaxation rates [63–68]. Since the squared
thermal average of µel , corresponding to the prefactor of Equations (16) and (17)

µel
2 =

(
g2

isoµ2
BS(S + 1)
3kT

B0

)2

=
ω2

I χ2
iso

µ2
0

, (20)

is much smaller than g2
isoµ2

BS(S + 1)/3, corresponding to the prefactor of Equations (14)
and (15), the Curie spin relaxation provides a contribution to the relaxation rates that is
non-negligible with respect to the Solomon term, only when τCurie >> τc. This happens
when both the reorientation time and the nuclear residence time are much longer than the
electron relaxation correlation time. This is the case of lanthanoids (except gadolinium),
which, as already seen, have electron relaxation times as small as picoseconds or less.

Figure 5 shows the dependence of the longitudinal and transverse paramagnetic
relaxation rates on the electron relaxation time for a molecule with a reorientation time of
10 ns at 900 MHz and room temperature. The Solomon and Curie contributions to relaxation
are also indicated. The Curie contribution to R1M is almost always negligible, except for
high spin quantum numbers and very fast electron relaxation, while it can provide a
dominant contribution to R2M even for electron relaxation times as large as 1 ns, depending
on the value of S (or J) and giso (or gJ). In the figure, the curves for the two lanthanoids
(samarium(III) and dysprosium(III)) inducing the shortest and the largest relaxation rates
are reported, together with the S = 7/2, corresponding to gadolinium(III) ion.
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Figure 5. Solomon (dotted blue lines) and Curie (dashed pink lines) contributions to nuclear longitudinal (a) and 
transverse (b) paramagnetic relaxation (solid black lines) as a function of the electron relaxation time for samarium(III), 
gadolinium(III) and dysprosium(III). A non-exchangeable 1H nucleus was considered at a distance r = 10 Å from the 

Figure 5. Solomon (dotted blue lines) and Curie (dashed pink lines) contributions to nuclear longitudinal (a) and transverse
(b) paramagnetic relaxation (solid black lines) as a function of the electron relaxation time for samarium(III), gadolinium(III)
and dysprosium(III). A non-exchangeable 1H nucleus was considered at a distance r = 10 Å from the paramagnetic metal, in
a molecule with a reorientation time τR = 10 ns, in a magnetic field of 900 MHz proton Larmor frequency.

Figure 6 shows the relative magnitude of 1
15
( µ0

4π

)2
γ2

I g2
Jµ

2
BJ(J + 1) and 1

45
( µ0

4π

)2 γ2
I g4

J µ4
BB2

0 J2(J+1)2

k2T2

at room temperature, corresponding to the prefactors in the Solomon and Curie spin
relaxation equations, respectively. The positions in the plots corresponding to the different
lanthanoids are also indicated. The figure clearly shows that (i) the prefactor in the Solomon
term is always orders of magnitude larger than the prefactor in the Curie term, and that
(ii) the lanthanoids inducing the largest nuclear transverse relaxation rates under the same
electron relaxation time and reorientation time are Dy3+ and Ho3+, followed, in order, by
Tb3+, Er3+, Gd3+, Tm3+, Yb3+, Ce3+, and Sm3+.
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In the case of a non-negligible spin density at the nucleus, contact coupling also occurs
and can be described by the Bloembergen equations [69]:

R1M =
2
3

S(S + 1)
(

A
}

)2 τc,2

1 + ω2
s τ2

c,2
, (21)

R2M =
1
3

S(S + 1)
(

A
}

)2
(

τc,1 +
τc,2

1 + ω2
s τ2

c,2

)
(22)

where τc,1 = R1e + 1/τM and τc,2 = R2e + 1/τM.
All equations above assume that the energy of the electron spin states is determined

by the Zeeman interaction between the magnetic moment and the applied magnetic field.
It was shown that dramatic effects are caused by the inclusion of the zero-field splitting,
which may be present in paramagnetic transition metal ions with S > 1/2. In fact, the
zero-field splitting can largely affect the energy of the electron spin states, especially at low
fields. As a result, the differences in energy related to most electronic spin transitions can be
much larger than what is calculated from the Zeeman interaction only, thus accounting for
changes in the transition probabilities and, in turn, in the nuclear relaxation rates [65,70,71].
In the presence of zero-field splitting, the nuclear relaxation rates not only depend on the
distance between nucleus and unpaired electron(s) but also on the angular position of the
nucleus with respect to the zero-field splitting tensor axes [36].

In lanthanoids, crystal-field effects remove the degeneracy of the electronic levels
at zero magnetic field. This splitting of the electronic levels at zero field is typically
modeled by a tensor with the same form of the zero-field splitting tensor. Recently, it was
experimentally shown that indeed there is an angular dependence in the relaxation rates
measured for a paramagnetic lanthanoid(III) complex [68]; this dependence was modeled
using the parametric equation:

RSolomon
1M =

2
3

( µ0

4π

)2 γ2
I

r6 Tr
[(

3r̂r̂T − 1
)2

G(ωI)

]
(23)

where Tr denotes the trace of the matrix, r̂ is the unit vector pointing in the direction of r,
and the six independent components of the symmetric spectral density tensor G(ωI) are
treated as fitting parameters.
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3. NMR for SIMs and Vice Versa

In systems with a degenerate ground state, the magnetic susceptibility anisotropy is
usually rather large, and the electron relaxation time short. From what we have seen in the
two paragraphs above, this implies that in these cases the paramagnetic shifts of the NMR-
active nuclei are rather large and, assuming that the unpaired spin density on the observed
nucleus is negligible, they only depend on the magnetic susceptibility anisotropy. At the
same time, nuclear relaxation is not particularly severe, especially for small molecules
and low magnetic fields. On these grounds, it is not surprising that NMR is a particularly
suitable tool for the characterization of the electronic structure of those systems that feature
SIM behavior [34,72,73].

As already mentioned, the first systems identified to have SIM behavior were double-
decker phthalocyanine complexes with Tb3+ or Dy3+ [6]. The preparation and charac-
terization of these complexes dates back to the late eighties [74,75]. A complete NMR
characterization of double- and triple-decker (either SIMs with a single paramagnetic
center or dinuclear SMMs) has followed more recently, due to the difficulties that are
related to the detection of the signals of strongly paramagnetic systems as described
above [49,52,76–78]. Of note, porphyrin double-deckers were addressed earlier [79,80].

Sugita and co-workers proposed an NMR-based method to determine the LF parame-
ters from a series of isomorphically structured lanthanoid complexes that simultaneously
reproduce the 1H NMR paramagnetic shifts and the magnetic susceptibilities measured
at various temperatures [81]. An NMR-only method for the LF parameters determination
was proposed by the group of Enders [37,49,82,83]. The approach is based on the partial
alignment effects, RDCs and RQCs, which depend on the paramagnetism (see paragraph
1.2 above and chapter 3 in ref. [35]) of the system [50,84]. The analysis of hyperfine shifts
from 1H and 2H NMR spectra at different temperatures, combined with structural models,
allows for the determination of the axial magnetic susceptibility tensors for a lanthanoid
ions series. The temperature dependence of the χax = χzz −

χxx+χyy
2 values is then used to

derive the three axial LF parameters (Figure 7) [37].
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The results of this work also allow for a general consideration about the interplay
between theory and experiment, which is necessary, but should be used with caution,
because computational methods, although powerful, can result in discrepancies with
experimental values. Remarkable is, indeed, the case of the Dy3+ ion, for which the ground
state results to be the mJ = | ± 11/2〉 state through the NMR-based method and the
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mJ = | ± 9/2〉 state from the ab initio calculations, and the χax value is negative according
to the computations, positive according to the experiments [37].

As mentioned in the introduction, Ln-SIMs are even ideal candidates as shift-inducing
tags [85–87], due to their high magnetic susceptibility anisotropy, tunable paramagnetic
properties, and relative stability. Systems for which lanthanoid substitutions are now quite
common are proteins, because even though not naturally present in biological systems,
they can substitute ions such as Mg2+ and Ca2+, due to their similar ionic radii [85]. We note
the exception of a recently discovered Ln-binding protein [88–91]. Although not preferred
because of their significantly lower magnetic susceptibility anisotropy with respect to
lanthanoids, transition metal ions also can display Single Ion Magnets behavior [6,92,93].
Intriguingly, in the quest for the achievement of highly efficient SIMs, complexes with large
values of the zero-field splitting and large g-anisotropies [94] that correspond to a large
anisotropy of the magnetic susceptibility are obtained, as in the case of trigonal prismatic
coordinated cobalt(II) cage complexes [95,96]. The large PCSs and the moderate paramag-
netic relaxation enhancement exerted by cobalt(II) are nicely highlighted in Figure 8. The
1H-NMR signals arise from the long alkyl chain attached to the boron atom. Because the
O–B bonds impede the transmission of the spin density, the contact shifts are negligible.
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4. Solid-State NMR of Paramagnetic Molecules and Possible Effect of Dynamics on
Relaxation in the Solid State

As we have already mentioned (Figure 1), in a solid sample all the nuclei (which can
have different shielding values) contribute to the observed powder pattern. It is however
important to remark that, as long as interconversions between different positions with
respect to the magnetic field are impeded, each nucleus does not randomly explore with
time the different values of shift in the powder pattern, and therefore its energy is not
modulated. Therefore, Curie spin relaxation is, in principle, absent in solids (vide infra),
and high resolution spectra can be achieved under Magic Angle Spinning [97]. In the
following, we will review some notable applications of solid-state NMR of paramagnetic
complexes. In those solids that are characterized by periodicity, i.e., crystals, there are
intrinsically strong interactions between each spin and its neighbors. The intermolecular
contributions can be comparable to the intramolecular ones, and sizably complicate the
spectra. Therefore, they need to be accounted for when fitting the data [98–100]. This
complication, however, provides a wealth of additional information: if the lattice parame-
ters are known, it is possible to simultaneously determine the crystal structures and the
magnetic susceptibility starting from the experimental values of shifts and the dipolar
shielding anisotropy patterns [101]. Because of the short electron relaxation time and the
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absence of Curie-spin relaxation, the solid-state spectra of Ln-based compounds are easily
observable [102,103], and the fitting of the anisotropy parameters can then be used to
obtain the LF parameters [104]. Given that the intensity of each signal is spread out over
shift ranges easily spanning over 1000 ppm, the effect of paramagnetic doping is that of
reducing the signal intensity of diamagnetic systems. This effect can be used to extract
information about the distribution of the paramagnetic centers, and might be relevant for,
e.g., the creation of phosphors [105,106]. Further lineshape analysis can be used to support
the estimates [107].

But what happens when the ligand field around the metal center is fluxional? There
are several reports of systems that undergo an easy-axis to easy-plane transition with
increasing temperature, or for which the principal axes of magnetic susceptibility change
dramatically in response to minor changes in the coordination environment [108–113].
Variations in the fundamental state configuration cause orientation changes of the axes
of the magnetic susceptibility and its values. As an example, the changes in the axiality
degree for a C3-symmetric nine-coordinated lanthanoid series [LnL1] (Ln = Dy, Er, Yb and
H3L1 = 1,4,7-tris[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclonane) as a function of the
second-rank axial crystal field parameter B0

2 are shown in Figure 9 [114].
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Figure 9. Changes in the energies of the ground state J multiplets for [DyL1−3], [ErL1−3], and
[YbL1−3] in response to the variation of the axial crystal field parameter B0

2 . The color code indicates
the degree of axiality (toward easy-axis or easy-plane) in the principal g-values anisotropy for each
Kramers doublet. Energies are referenced to the barycenter for each parameter set. Vertical lines
correspond to the B0

2 value obtained from CASSCF-SO calculations based on XRD data. Reprinted
with permission from ref. [114], copyright 2019 American Chemical Society.

These drastic changes in the susceptibility have been shown to have consequences on
the magnetic susceptibility as observed by NMR, in terms of changes in the principal axes of
the magnetic susceptibility across a homologous series of lanthanoid(III) compounds [115].
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Another example along these lines is the change in the magnitude of the anisotropy
in M3[Yb(BINOL)3] (M = Li, Na, K; BINOL = enantiopure 1,1′-bis(2-naphtol)), which
decreases when the radius of the counterion is increased: the anisotropies with sodium(I)
and potassium(I) as counterions are 43.8 and 16.0% of the anisotropy with lithium(I) as
counterion, respectively (Figure 10) [116].
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We proposed earlier that a modulation of the magnetic susceptibility could provide
an additional relaxation mechanism in paramagnetic solids (see ref. [47] and chapter 5 in
ref. [35]), which can be related to a Curie-spin-like type of relaxation. Here, we would like
to point out that the impact of this additional term on the observation of the signals may not
be negligible. To provide a quantitative description, we approximated this effect to have the
same functional form of Curie-spin relaxation (Equations (16) and (17)). A large part of the
shielding anisotropy will not be affected by the averaging of the susceptibility, hence it will
only give rise to a powder pattern as described above (Equation (3) and Figure 1). However,
there will be a part of the shielding anisotropy given by the difference between the largest
shielding values and the averaged values. Depending on the intensity of the applied
magnetic field, which increases the frequency range of the shielding anisotropy, and on the
rate of modulation of the magnetic susceptibility tensor, this effect can have a sizable impact
on the linewidths. In Figure 11 we show the expected effect on the transverse relaxation in
the solid state for a system where the main magnetization axis can jump randomly between
three perpendicular orientations.
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Figure 11. Additional Curie-spin-like contribution to the transverse relaxation of a 1H nucleus 10 Å
away from a dysprosium(III) complex where the magnetic susceptibility (with eigenvalues 5 × 10−30,
5 × 10−30, and 1 × 10−30, respectively) can switch between three orthogonal orientations, with a
correlation time ranging from 1 × 10−13 to 1 × 10−6, evaluated at 28.2 T (black), 18.8 T (red), 9.4 T
(blue), 4.7 T (green). The Solomon relaxation evaluated with an electron relaxation time of 1× 10−13 s,
at the same fields—which does not depend on the correlation time of the susceptibility reorientation
and is, therefore, constant—is also reported.

5. Conclusions

In this review we give an overview of the NMR properties of Single Ion Magnets, with
a specific focus on lanthanoid complexes. The sizable impact of the lanthanoid ions on shifts
and relaxation provides a wealth of information about the system under investigation, as it
is demonstrated by the recent literature examples. On the one hand, NMR is a powerful
tool for the SIMs characterization, thus allowing for the rational design and application of
SIMs in the fields of quantum computing and spintronics. On the other hand, it is apparent
that Ln-SIMs are ideal candidates to the generation of paramagnetic tags for structural
biology applications and as contrast agents for MRI. Finally, we believe that the examples
we examined demonstrate that experimental determination of the magnetic parameters
and theoretical models need to be combined: the experimental observations may hide
effects of mobility or structural rearrangements that can be only grasped through modeling,
and computational data need to be carefully compared to several experimental values to
avoid their possible misinterpretation.
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