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Roman Boča 1,* , Cyril Rajnák 2 and Ján Titiš 2

1 Faculty of Health Science, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
2 Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia;

cyril.rajnak@ucm.sk (C.R.); jan.titis@ucm.sk (J.T.)
* Correspondence: roman.boca@ucm.sk

Abstract: The involvement of spin symmetry in the evaluation of zero-field energy levels in polynu-
clear transition metal and lanthanide complexes facilitates the division of the large-scale Hamiltonian
matrix referring to isotropic exchange. This method is based on the use of an irreducible tensor
approach. This allows for the fitting of the experimental data of magnetic susceptibility and mag-
netization in a reasonable time for relatively large clusters for any coupling path. Several examples
represented by catena-[AN} and cyclo-[AN] systems were modeled. Magnetic data for 20 actually
existing endohedral clusters were analyzed and interpreted.

Keywords: polynuclear complexes; irreducible tensor operators; exchange coupling; big clusters

1. Introduction

The magnetic properties of polynuclear complexes have attracted the attention of
scientists from the early years of magnetochemistry. Data acquisition for these fascinating
systems is a routine task, but theoretical interpretation is, in many cases, far from routine.
An elegant treatment was outlined by Kambe [1], who expressed the pair interaction term
occurring in the Heisenberg exchange-coupled Hamiltonian via operators

(
→
S A ·

→
S B) = [

→
S

2
−
→
S

2

A −
→
S

2

B]/2 = [S(S + 1)− SA(SA + 1)− SB(SB + 1)]/2 (1)

acting on |SA, SB, S〉 kets. The beauty of Kambe’s method lies in the expression of the
energy levels in a closed form. For example, for a trigonal pyramid, A3B (C3v), the exchange
Hamiltonian with two coupling constants

Ĥ = [−Ja(
→
S 1 ·

→
S 4 +

→
S 2 ·

→
S 4 +

→
S 3 ·

→
S 4)− Jb(

→
S 1 ·

→
S 2 +

→
S 1 ·

→
S 3 +

→
S 2 ·

→
S 3)]}−2 (2)

acting to the kets |S1S2S12S3S1−3S4S〉 provides the energy levels

ε(S1−3, S) = −(Ja/2)(S̃− S̃1−3)− (Jb/2)S̃1−3 (3)

Here, S̃ ≡ S(S + 1) for clarity. This is equivalent to a centered triangle (or star, D3h),
and when the coupling constants are Ja = Jb = J, the formula collapses into a tetrahedron
(Td) with

ε(S) = −(J/2)S̃ (4)

which is a “rotational band”. The addition of the Zeeman term in the basis set of cou-
pled kets yields ε(S, B) = ε0(S) + µBgeffBMS. The energy levels, when inserted into the
van Vleck equation, yield an expression for magnetic susceptibility without the lengthy
diagonalization of the Hamiltonian matrix.

Kambe’s method has found wide use in the magnetochemical community [2]. How-
ever, this is far from universal, as such a method fails in more complex situations. Then we
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are left to fill the Hamiltonian matrix and obtain the energy levels after its diagonalization.
The Hamiltonian matrix

HI′ I =
〈

I′
∣∣Ĥ∣∣I〉 (5)

can be expressed either in the basis set of uncoupled spins, |I〉 = |S1M1, S2M2, . . . , SN MN〉,
or coupled spins, |I〉 = |S1, S12, S123, . . . , S, M〉, where intermediate spins occur. However,
coupling is a kind of unitary transformation between basis set functions that leaves the
eigenvalues preserved, so both methods can be implemented with the same results.

The scalar product of spin vectors occurring in the Heisenberg-exchange Hamiltonian
can be rewritten to other representations using spin matrices, e.g.,

• Spherical-tensor matrices:

(
→
S A ·

→
S B)I J = −(S

A
1,+1SB

1,−1)I J + (SA
1,0SB

1,0)I J − (SA
1,−1SB

1,+1)I J (6)

• Shift-operator matrices:

(
→
S A ·

→
S B)I J = [(SA

+SB
−)I J + (SA

−SB
+)I J ]/2 + (SA

z SB
z )I J (7)

• Cartesian matrices:

(
→
S A ·

→
S B)I J = (SA

x SB
x )I J + (SA

y SB
y )I J

+ (SA
z SB

z )I J (8)

The problem arises from the size of the basis set (K), which increases rapidly as

K =
N
∏
SA

(2SA + 1). Let us limit ourselves to a Hamiltonian matrix with the size K ~ 1000;

then, only [A10, SA = 1/2] centers can be handled (K = 1024); [A7, SA = 1] yields K = 729;
[A6, SA = 3/2] yields K = 1024; [A4, SA = 2] yields K = 625; and [A4, SA = 5/2] yields
K = 1296. When we increase our limit to K ~ 5000, then [A12, SA = 1/2] yields K = 4096; [A6,
SA = 1] yields K =2187; [A6, SA = 3/2] yields K = 4096; [A5, SA = 2] yields K = 3125; and [A4,
SA = 5/2] yields K = 1296.

When the symmetry of the spin states is exploited, large matrices can be factored
into blocks of much smaller size. This is the core of the present study. For example,
the tetranuclear system, {DyIII

4}, has K = 65,536 magnetic states and can be handled by
diagonalizing the largest spin block for J = 10 of the size n(J) = 171.

The most progressive tool for filling matrix elements in the basis of coupled spins is
the algebra of irreducible tensor operators [3–14]. Although this kind of mathematics is
less well known, it is no longer difficult, as will be explained below. The method can be
implemented for the reconstruction of magnetic functions—the temperature evolution of
magnetic susceptibility, the field dependence of magnetization [15], and interpreting the
spectra of electron paramagnetic resonance [16]. This method also has similar limitations
to the above, which can be partly overcome by using spatial symmetry [17–33].

The ambition of this paper is to review a general method for processing isotropic
exchange coupling in polynuclear spin systems in a user-friendly way. This method is
based on irreducible tensor operators (Section 2). With growing computing facilities, it is
time to introduce this powerful apparatus to users who can process quite large exchange-
coupled clusters. There are only very simple items in the input: the spins, SA, of the centers
in any order and any size and the topological matrix, T(A,B), which specifies the pairwise
interactions. Everything else can be viewed as a black box prepared by the programmer.
The only limitations are the memory and speed of the user’s (personal) computer.

Sections 3 and 4 include the modeling of the energy spectra for open-chain catena-[AN]
systems compared with closed finite cyclo-[AN] rings (N = 4–9, or 13) for spins SA = 1/2, 1,
3/2, 2, and 5/2. Section 5 deals with the modeling of selected convex polyhedrons [AN]
(N = 4, 5, 6), for spins SA = 1/2, 1, 3/2, 2, and 5/2. Section 6 deals with real complexes
of Mn(III), Mn(II), Fe(III), Co(II), Er(III), and Dy(III), which have already been published
elsewhere [34–52]. They are ordered in a way that allows for comparison and certain gener-
alizations.
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The method originated in the pioneering works, for example, of Tsukerblat [14],
Borrás-Almenar et al. [23], Delfs et al. [53], Waldmann [54], and Schnack [55] and oth-
ers [56]. Several computer programs have been developed for the magnetic data fitting
of polynuclear complexes, such as MAGPACK [23], MVPROG [57], BJMAG [58], MV-
PACK [59], PHI [60], and POLYMAGNET [61]. Some alternative ways to calculate energy
levels have been outlined by Schnack [62,63].

The following notations are used hereafter.

1. Isotropic exchange constants are uniformly defined through the form−JAB(
→
S A ·

→
S B)}−2.

2. The angular momentum operators yield eigenvalues in units of the reduced Planck
constant, }, when operating on the corresponding wave function (ket).

3. The Condon–Shortley phase convention is used together with the pseudo-standard
phase system for irreducible tensor operators.

4. It is assumed that the energy quantities, E (like ε, J, D), are in the form of the corre-
sponding wavenumber; i.e., E/hc are provided in units of cm−1.

5. SI units are used consistently through the paper; χmol [SI] = 4π× 10−6 χmol [cgs&emu].
6. Fundamental physical constants (µ0, NA, kB, µB, }) adopt their usual meaning. The

reduced Curie constant C0 = NAµ0µ2
B/kB = 4.7141997 × 10−6 K m3 mol−1 is met in

the contribution.
7. The temperature evolution of the magnetic susceptibility is often displayed through

the product function, χT, given in units of cgs&emu [cm3 K mol−1]. This old-fashioned
representation can be equivalently expressed as χT/C0. This dimensionless product
function has some advantages as its values for Curie paramagnets (χ = C0g2S(S + 1)/3T
with g = 2) are 1, 8/3, 5, 8, 35/3, 16, and 21 for S = 1/2 to 7/2. This quantity is additive
unlike the effective magnetic moment, so it is more suitable for polynuclear systems.
Conversion to non-SI units: χT[cgs&emu] = C0/(4π × 10−6) × (χT/C0) = 0.3751 ×
χT/C0. The conversion of the effective magnetic moment to a dimensionless product
function is χT/C0 = (µeff

2)/3 when µeff is given in the unit of the Bohr magneton, µB.

2. Methodology
2.1. Spin Symmetry

The idea of working with spin kets in polynuclear systems is based on the assumption
that individual magnetic centers bring the constituents of the basis set, |IA〉 = |SA MA〉,
so the complete basis set is |I〉 = |S1M1〉|S2M2〉 . . . |SN MN〉, which also can be written as
|I〉 = |S1M1, S2M2, . . . , SN MN〉. The magnetic interactions entering the spin Hamiltonian
(Hamiltonian containing only spin operators) cover several terms, e.g.,

Ĥ =
N

∑
A

N

∑
B>A

ĤAB +
N

∑
A

ĤA (9)

Pair-interactions involve

ĤAB = −JAB(
→
S A ·

→
S B)}−2 . . . isotropic (bilinear) exchange

+DAB[ŜA
z ŜB

z − (
→
S A ·

→
S B)/3]}−2 + EAB(ŜA

x ŜB
x − ŜA

y ŜB
y )}−2 . . . asymmetric exchange

+
→
d AB · (

→
S A ×

→
S B)}−2 . . . antisymmetric exchange

 . . . anisotropic exchange
(10)

and the single-center terms are

ĤA = µB(
→
B · gA ·

→
S A)}−1 . . . Zeeman term

+DA[ŜA
z ŜA

z − (
→
S A ·

→
S A)/3]}−2 . . . axial single− ion anisotropy

+EA(ŜA
x ŜA

x − ŜA
y ŜA

y )}−2 . . . rhombic single− ion anisotropy

}
. . . zero− field splitting

(11)

There are also more than two-body interactions. Zero-field splitting and antisymmetric
exchange have been reviewed elsewhere.
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The total dimension of the spin space can be divided into subspaces:

K =
N

∏
A=1

(2SA + 1) =
+Smax

∑
M=−Smax

KM, Smax =
N

∑
A=1

SA (12)

For equivalent centers, the increments are

KM =
INT(ν/m)

∑
n=0

(−1)n
(

N
n

)(
N − 1 + ν− n ·m

N − 1

)
(13)

where m = 2SA + 1, ν = Smax − M, and INT(ν/m) is the largest integer that is less than
or equal to ν/m. For example, for the tetrad of SA = 1/2, the individual dimensions are
K−2 = K+2 = 1, K−1 = K+1 = 4, and K0 = 6, so K = 16. For non-equivalent centers, the formula
is more complex:

KM =
1

(Smax −M)!

[(
d
dz

)Smax−M N

∏
A=1

1− z2SA+1

1− z

]
z=0

(14)

If the Hamiltonian commutes with
→
S

2
, and individual spins are equivalent, then for

0 ≤ M < Smax, further decomposition into orthogonal subspaces is possible:

KM = n(M, M) + ∑
S≥M+1

n(S, M) (15)

Consequently, n(S, S) = KS −KS+1 holds true for S < Smax. For example, for the tetrad
of SA = 1/2, n(0, 0) = 6− 4 = 2 and n(1, 1) = 4− 1 = 3, whereas n(Smax, Smax) = (2, 2) = 1
is trivial.

The isotropic exchange (Heisenberg-type) Hamiltonian includes only the scalar prod-

ucts of the constituent spins, (
→
S A ·

→
S B). This operator commutes with the total spin.

→
S ,

and its third projection, Ŝz: [
Ĥex,

→
S

2]
= 0,

[
Ĥex, Ŝz

]
= 0 (16)

Therefore, there is a common basis set for {Ĥex, Ŝ2, Ŝz} operators; it is labelled |α, S, M〉,
where the symbol α differentiates between states of the same total spin, S (i.e., between
intermediate spins). Consequently, the matrix

Hex
I′ I =

〈
α′S′M′

∣∣Ĥex∣∣αSM
〉
δS′ ,SδM′ ,M = δS′SδM′M(2S + 1)−1/2〈α′S∥∥Ĥex

red
∥∥αS

〉
(17)

has a block-diagonal form with submatrices of much smaller size (Table 1).
Thanks to the factor δM,M′ , the complete isotropic exchange matrix can be reduced to a

form that is independent of M: Hex → Hex
red . This means that states involving different total

spins, S (or alternatively, the compound angular momentum, J = S + L), are orthogonal.
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Table 1. Dimensions of the S-blocks for N-homospin systems a.

AN System Magnetic States, K Zero-Field States, M Dimension n(S) from the Lowest Spin, Smin = 0 or 1/2, to the Highest
Spin, Smax = N·SA

SA = 1
2

A3 8 3 2, 1
A4 16 6 2, 3, 1
A5 32 10 5, 4, 1
A6 64 20 5, 9, 5, 1
A7 128 35 14, 14, 6, 1
A8 256 70 14, 28, 20, 7, 1
A9 512 126 42, 48, 27, 8, 1
A10 1024 252 42, 90, 75, 35, 9, 1
A11 2048 462 132, 165, 110, 44, 10, 1
A12 4096 924 132, 297, 275, 154, 54, 11,1
A13 8192 1716 429, 572, 429, 208, 65, 12, 1
A14 16,384 3432 429, 1001, 1001, 637, 273, 77, 13, 1
A15 32,768 6435 1430, 2002, 1638, 910, 350, 90, 14 1

SA = 1

A3 27 7 1, 3, 2, 1
A4 81 19 3, 6, 6, 3, 1
A5 243 51 6, 15, 15, 10, 4, 1
A6 729 141 15, 36, 40, 29, 15, 5, 1
A7 2187 393 36, 91, 105, 84, 49, 21, 6, 1
A8 6561 1107 91, 232, 280, 238, 154, 76, 28, 7, 1
A9 19,683 3139 232, 603, 750, 672, 468, 258, 111, 36, 8, 1
A10 59,049 8954 603, 1585, 2025, 1890, 1398, 837, 405, 155, 45, 9, 1

SA = 3/2

A3 64 12 2, 4, 3, 2, 1
A4 256 44 4, 9, 11, 10, 6, 3, 1
A5 1024 155 20, 34, 36, 30, 20, 10, 4, 1
A6 4096 580 34, 90, 120, 120, 96, 64, 35, 15, 5, 1
A7 16,384 2128 210, 364, 426, 400, 315, 210, 119, 56, 21, 6, 1
A8 65,536 8092 364, 1000, 1400, 1505, 1351, 1044, 700, 406, 202, 84, 28, 7, 1
A9 262,144 30,276 2400, 4269, 5256, 5300, 4600, 3501, 2352, 1392, 720, 321, 120, 36, 8, 1

A10 1,048,576 116,304 4269, 11,925, 17,225, 19,425, 18,657, 15,753, 11,845, 7965, 4785, 2553, 1197, 485,
165, 45, 9, 1

SA = 2

A3 125 19 1, 3, 5, 4, 3, 2, 1
A4 625 85 5, 12, 16, 17, 15, 10, 6, 3, 1
A5 3125 381 16, 45, 65, 70, 64, 51, 35, 20, 10, 4, 1
A6 15,625 1751 65, 180, 260, 295, 285, 240, 180, 120, 79, 35, 15, 5, 1
A7 78,125 8135 260, 735, 1085, 1260, 1260, 1120, 895, 645, 420, 245, 126, 56, 21, 6, 1

A8 390,625 38,165 1085, 3080, 4600, 5460, 5620, 5180, 4340, 3325, 2331, 1492, 868, 454, 210, 84, 28,
7, 1

A9 1,953,125 180,325 4600, 13,140, 19,845, 23,940, 25,200, 23,925, 20,796, 16,668, 12,356. 8470, 5355,
3108, 1644, 783, 330, 120, 36, 8, 1

A10 9,765,625 856,945 19,845, 56,925, 86,725, 106,050, 113,706, 110,529, 98,945, 82,215, 63,645,
45,957, 30,933, 19,360, 11,220, 5985, 2913, 1277, 495, 165, 45, 9, 1

SA = 5/2

A3 216 27 2, 4, 6, 5, 4, 3, 2, 1
A4 1296 146 6, 15, 21, 24, 24, 21, 15, 10, 6, 3, 1
A5 7776 780 45, 84, 111, 120, 115, 100, 79, 56, 35, 20, 10, 4, 1
A6 46,656 4332 111, 315, 475, 575, 609, 581, 505, 405, 300, 204, 126, 70, 35, 15, 5, 1

A7 279,936 24,017 1050, 1974, 2666, 3060, 3150, 2975, 2604, 2121, 1610, 1140, 750, 455, 252, 126,
56, 21, 6, 1

A8 1,679,616 135,954 2666, 7700, 11,900, 14,875, 16,429, 16,576, 15,520, 13,600, 11,200, 8680, 6328,
4333, 2779, 1660, 916, 462, 210, 84, 28, 7, 1

A9 10,077,696 767,394 26,775, 50,904, 70,146, 83,000, 88,900, 88,200, 82,005, 71,904, 59,661, 46,920,
34,980, 24,696, 16,478, 10,360, 6111, 3360, 1707, 792, 330, 120, 36, 8, 1

A10 60,466,176 4,395,456
70,146, 204,050, 319,725, 407,925, 463,155, 484,155, 473,670, 437,590, 383,670,
320,166, 254,639, 193,095, 139,545, 95,985, 62,712, 38,808, 22,660, 12,420, 6345,

2993, 1287, 495, 165, 45, 9, 1
a For the N-spins, s = 1/2: n(S) = (2S + 1) · N!/[(N/2 + S + 1)!(N/2− S)!]. Size of the maximum block is in
bold type.
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2.2. Matrix Elements

The main problem associated with the computational approach to large exchange cou-
pled systems lies in the size of the interaction matrices. The reduction to an M-independent
core enables the partitioning of the interaction matrix into blocks of much smaller size:

Hiso
red =


S = Smin 0 . . . 0 0

0 S = Smin + 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . S = Smax − 1 0

0 0 . . . 0 S = Smax

 (18)

These blocks can be treated (diagonalized) independently.
In order to obtain the final molecular spin from the constituent elements,

|IA〉 = |SA MA〉, we have to follow the correct addition of the angular momenta, which
is called the coupling. For instance, two elements, |S1M1〉 and |S2M2〉, form the basis for
constructing |(S1S2), SM〉 via a linear combination (unitary transformation):

|(S1S2), SM〉 = ∑
M1

∑
M2

〈S1S2M1M2|SM 〉 · |S1M1〉|S2M2〉 (19)

Clebsh–Gordan coefficients, 〈S1S2M1M2|SM 〉, are integrals of angular momentum
functions (a priori known numbers) that form a unitary matrix and are proportional to
3j-symbols, which have useful symmetry properties:(

S1 S2 S
M1 M2 −M

)
= 〈S1S2M1M2|SM 〉(−1)S1−S2+M(2S + 1)−1/2 (20)

There is a simple equation for their evaluation This procedure secures the correct
fulfillment of the conservation of angular momentum and its quantization. Several coupling
paths are available to add more spins. For example, adding four spins can be done in the
following ways:

|S1M1〉+ |S2M2〉 → |(S1S2), S12M〉+ |S3M3〉 →
|(S1S2S3), S12S123M〉+ |S4M4〉 → |(S1S2S3S4), S12S123SM〉 (21)

or
|S1M1〉+ |S2M2〉 → |(S1S2), S12M〉
|S3M3〉+ |S4M4〉 → |(S3S4), S34M〉

}
→ |(S1S2S3S4), S12S34SM〉 (22)

While the coupling paths and the set of intermediate spins are different, the resulting
states are unambiguously determined. Note that coupling is a kind of unitary transforma-
tion that necessarily preserves eigenvalues. The sequential coupling scheme will be applied
hereafter as a universal, case-independent method that can be easily programmed.

The coupling scheme finds advantages in calculating the reduced matrix elements of

the compound operator formed by spins T̂k(
→
S A ⊗

→
S B), where the k—tensor rank, is

RAB(k)
α′S′ ;αS =

〈
α′S′

∥∥∥∥T̂k(
→
S A ⊗

→
S B)

∥∥∥∥αS
〉

(23)

which depends upon all intermediate spins, (α′S′; αS). Then, the decoupling formula will
provide the analytic expression in the form of



Magnetochemistry 2023, 9, 226 7 of 50

〈
S1S2 . . . SN ; S̃′2S̃′3 . . . S̃′N−1S′

∥∥T̂k
∥∥S1S2 . . . SN ; S̃2S̃3 . . . S̃N−1S

〉
=

〈
S1

∥∥∥∥T̂k1(
→
S 1)

∥∥∥∥S1

〉
×[(2S̃′2 + 1)(2S̃2 + 1)(2k̃2 + 1)]

1/2


S1 S1 k1
S2 S2 k2

S̃′2 S̃2 k̃2


〈

S2

∥∥∥∥T̂k2(
→
S 2)

∥∥∥∥S2

〉

×[(2S̃′3 + 1)(2S̃3 + 1)(2k̃3 + 1)]
1/2


S̃′2 S̃2 k̃2
S3 S3 k3

S̃′3 S̃3 k̃3


〈

S3

∥∥∥∥T̂k3(
→
S 3)

∥∥∥∥S3

〉
×[. . .] . . .

×[(2S′ + 1)(2S + 1)(2k + 1)]1/2

 S̃′N−1 S̃N−1 k̃N−1
SN SN kN
S′ S k


〈

SN

∥∥∥∥T̂kN(
→
S N)

∥∥∥∥SN

〉
(24)

Here, S̃i = S12...i denotes the intermediate spins and k̃i = k12...i denotes the intermedi-
ate rand of the operators. The matrix elements of the elementary spin operators are trivial,〈

Si

∥∥∥∥T̂ki=0(
→
S i)

∥∥∥∥Si

〉
= (2si + 1)1/2 (25)

〈
Si

∥∥∥∥T̂ki=1(
→
S i)

∥∥∥∥Si

〉
= [si(si + 1)(2si + 1)]1/2 (26)

with (si) = S1S2 . . . SN . The 9j-symbol in the compound parenthesis {} is a number that
correctly adds the four angular momenta occurring in the bra-vector, ket-vector, and
operator part. For example, the 9j-symbol,

9j =


S̃′2 S̃2 k̃2
S3 S3 k3

S̃′3 S̃3 k̃3

 (27)

contains, in the first row, the intermediate spins of the bra-vector, S̃′2 = S′12; the ket-vector,
S̃2 = S12; and the intermediate rank of the operator k̃2 = k12; in the second row, it contains
the added spins, S3, for the bra- and ket-vectors, together with the tensor rank of the added
spins, k3 = 1; and in the third row, there are intermediate spins of the bra-vector, S̃′3 = S′123;
ket-vector, S̃3 = S123; and the intermediate rank of the operator, k̃3 = k123.

In the above procedure, two kinds of the operators are met:

(a) Bilinear isotropic exchange:

Ĥiso =
N

∑
A

N

∑
B>A

(−JAB)(
→
S A ·

→
S B) =

N

∑
A

N

∑
B>A

(−JAB)(−
√

3)
{

T̂0,0(
→
S A ⊗

→
S B)

}
(28)

(b) Zeeman operator:

ĤZ = µB

N

∑
A
(
→
B · gA ·

→
S A) = µB

N

∑
A

+1

∑
q=−1

(−1)q(
→
B · gA)1,−q

{
T̂1,q(

→
S A)

}
(29)

where the right-hand forms are expressed through spherical tensors, T̂k,q(
→
S A ⊗

→
S B) (zero-

rank—scalar) and T̂1,q(
→
S A) (first-rank—vector).

The complete matrix element of the bilinear isotropic exchange is
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〈
α′S′M′

∣∣∣∣(→S A ·
→
S B)

∣∣∣∣αSM
〉

= −
√

3(−1)S−M
(

S 0 S′

−M 0 M′

)〈
α′S
∥∥∥∥{T̂1(

→
S A)⊗ T̂1(

→
S B)

}
0

∥∥∥∥αS
〉

= −[3/(2S + 1)]1/2δS,S′δM,M′R
(A,B)
α′S;αS

(30)

with reduced matrix elements

RA,B
α′S;αS ≡

〈
α′S
∥∥∥∥{T̂1(

→
S A)⊗ T̂1(

→
S B)

}
0

∥∥∥∥αS
〉

(31)

A computational problem arises when a magnetic field is applied: the matrix elements
of the Zeeman term in the basis set of coupled kets are off-diagonal in the total spin. There
is one exception: when all g-factors are equal, the off-diagonal matrix elements of the
Zeeman operator exactly vanish. This is indeed a fortunate case, since then, the Zeeman
contributions can simply be added to the roots of the zero-field Hamiltonian:

ε(S, B) = ε0(S) + µBgeffBMS (32)

Then, the magnetic functions (magnetization and susceptibility) can be expressed
exactly using the thermodynamic partition function, Z, as follows:

Mmol = NA
1
Z

T1 (33)

χ̃mol =
NAµ0

kBT
1

Z2 (T2Z− T2
1 ) (34)

The terms entering the magnetization and the differential (true) magnetic susceptibil-
ity are

Z = ∑
i

exp(−εi/kBT) =
Smax

∑
S=Smin

+S

∑
MS=−S

exp[(nS J − µBgBMS)/kBT] (35)

T1 = ∑
i

(
−∂εi

∂B

)
exp(−εi/kBT) = µBg

Smax

∑
S=Smin

+S

∑
MS=−S

MS exp[(nS J − µBgBMS)/kBT] (36)

T2 = ∑
i

(
∂εi
∂B

)2
exp(−εi/kBT) = (µBg)2

Smax

∑
S=Smin

+S

∑
MS=−S

M2
S exp[(nS J − µBgBMS)/kBT]

(37)
with nS = S(S + 1)/2.

2.3. Density of State Function

As spin increases, the number of zero-field energy levels becomes high; they are
distributed within a certain energy interval so transparency is lost. Therefore, it is possible
to generate a density of state (DOS) function defined as

N(ε) =
1√
2πσ

∑
i

exp[(ε− εi)
2/2σ2] (38)

Here, the Gaussian broadening parameter σ (a small number) ensures that the DOS
function is continuous; the height of the DOS function is proportional to the spin multiplic-
ity of the given state multiplied by its random degeneracy.

Using the DOS function, each cluster has its characteristic spectrum in the zero-field
(or magnetic) energy levels.
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2.4. Implementation

We have already decided that the processing of large spin clusters will be carried out
using the consecutive coupling scheme. In the first step, the size of the interaction matrix

(K) and the number of zero-field states (M) are calculated. Maximum spin is Smax =
N
∑

A=1
SA,

and the minimum is either 0 or 1/2 depending on whether Smax is even or odd. This is a
trivial task.

In the second step, the size of the blocks is evaluated. In doing so, the spins are added
gradually regardless of their order or size. Let us provide an example of four non-equivalent
spins, SA{1, 1, 1

2 , 1
2 }. To avoid handling half-integral values (1/2), they are all doubled: DA{2,

2, 1, 1}. (Calculations with integers are much faster than with real numbers.) Now the spins
are summed: the minimum value is |Di − Di+1|, and the maximum is |Di + Di+1|, with all
values in between in step 2. For example, the range of D12 is |D1 − D2| = 0 to (D1 + D2) = 4,
so D12 = 0, 2, 4. The range of D123 is |D12 − D3| to (D12 + D3), which involves 1, 3, and 5; the
range of D1234 is |D123 − D4| to (D123 + D4), which yields 0 (twice), 2 (four times), 4 (three
times), and 6 (once). The scheme is shown in Table 2 and defines the “coupling history matrix”,
hereafter, the CHM. All necessary information for the decoupling process is encoded in the
CHM; i.e., it contains all intermediate spins.

Table 2. Scheme for the addition of doubled spins DA{2, 2, 1, 1} and DA{1, 2, 2, 1}, yielding the
coupling history matrix: CHM = {D1, D12, D123, . . . , D1. . . N = 2S} a.

Coupling Scheme 1 Coupling Scheme 2

DA 2 2 1 1 1 2 2 1

State D1 D12 D123 D1234 = 2S D1 D12 D123 D1234 = 2S

1 2 0 1 0 1 1 1 0
2 2 0 1 2 1 1 1 2
3 2 2 1 0 1 1 3 2
4 2 2 1 2 1 1 3 4
5 2 2 3 2 1 3 1 0
6 2 2 3 4 1 3 1 2
7 2 4 3 2 1 3 3 2
8 2 4 3 4 1 3 3 4
9 2 4 5 4 1 3 5 4

10 2 4 5 6 1 3 5 6
a S̃i = S12...i, D̃i = D12...i = 2S12...i; D1234/2 is the final spin state S1234 = S. In total, there are M = 10 zero-field states.

In the next stage, it is necessary to identify the ranks of tensors appearing in the
decoupling formula (24). For single (uncoupled) spins occurring in the Zeeman term, this is
trivial: kA = 1. With 4 centers, there are 6 pairwise interactions for which the tensor ranks of

the involved centers, A1 through A4 (independent of spins), T̂k=0(
→
S A ⊗

→
S B), are provided

in Table 3. The last assignment of the tensor ranks refers to the ranks of the intermediate
operator, k̃i = k12...i, for each pair (see also the explanation for Equation (27)).

Table 3. Tensor ranks for spins (vectors of 1st rank) occurring in the scalar products T̂k=0(
→
S A ⊗

→
S B)

a.

Operator Ranks, OR Intermediate Operator Ranks, IOR
Pair A, B k1 k2 k3 k4 k̃2=k12 k̃3=k123 k̃4=k1234=k

1, 2 1 1 0 0 0 0 0
1, 3 1 0 1 0 1 0 0
2, 3 0 1 1 0 1 0 0
1, 4 1 0 0 1 1 1 0
2, 4 0 1 0 1 1 1 0
3, 4 0 0 1 1 0 1 0

a The data printed in bold represent the example discussed below.
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If the CHM is available, the dimensionality of each S-block can be simply summed up:
dim(S = 0) = 2, dim(S = 1) = 4, dim(S = 2) = 3, dim(S = 3) = 1. In this way, it is possible to
determine the dimensions of the S-blocks for any spin cluster, regardless of the size and
order of the constituent spins. The massive results are collected in Table 1.

As an example, the matrix element for the diad,
→
S 2 ·

→
S 4 = T̂k=0(

→
S 2⊗

→
S 4), between bra,〈

. . . S̃′2 = 0, S̃′3 = 1
2 , S′ = 1

∣∣∣, and ket,
∣∣∣. . . S̃2 = 0, S̃3 = 1

2 , S = 1
〉

, fills the diagonal position

in the block for the molecular spin S′ = S = 1; it is expressed by the decoupling formula

MS̃′2 S̃′3S′ ,S̃2 S̃3S(2, 4) =
〈[

S1
1

][
S2
1

][
S3
1/2

][
S4
1/2

]
;
[

S̃′2
0

][
S̃′3
1/2

][
S′

1

]∥∥∥∥T̂k=0(
→
S2 ⊗

→
S4)

∥∥∥∥[ S1
1

][
S2
1

][
S3
1/2

][
S4
1/2

]
;
[

S̃2
0

][
S̃3
1/2

][
S
1

]〉
=

〈[
S1
1

]∥∥∥∥T̂
[

k1
0

]∥∥∥∥[ S1
1

]〉
×
(

2 ·
[

S̃′2
0

]
+ 1
)1/2(

2 ·
[

S̃2
0

]
+ 1)

)1/2(
2 ·
[

k̃2
1

]
+ 1
)1/2


S1 = 1 S1 = 1 k1 = 0
S2 = 1 S2 = 1 k2 = 1
S̃′2 = 0 S̃2 = 0 k̃2 = 1


〈[

S2
1

]∥∥∥∥T̂
[

k2
1

]∥∥∥∥[ S2
1

]〉

×
(

2 ·
[

S̃′3
1/2

]
+ 1
)1/2(

2 ·
[

S̃3
1/2

]
+ 1
)1/2(

2 ·
[

k̃3
1

]
+ 1
)1/2

 S̃′2 = 0 S̃2 = 0 k̃2 = 1
S3 = 1/2 S3 = 1/2 k3 = 0
S̃′3 = 1/2 S̃3 = 1/2 k̃3 = 1


〈[

S3
1/2

]∥∥∥∥T̂
[

k3
0

]∥∥∥∥[ S3
1/2

]〉

×
(

2 ·
[

S′

1

]
+ 1
)1/2(

2 ·
[

S
1

]
+ 1
)1/2(

2 ·
[

k
0

]
+ 1
)1/2

 S̃′3 = 1/2 S̃3 = 1/2 k̃3 = 1
S4 = 1/2 S4 = 1/2 k4 = 1
S′ = 1 S = 1 k = 0


〈[

S4
1/2

]∥∥∥∥T̂
[

k4
1

]∥∥∥∥[ S4
1/2

]〉

(39)

where for clarity, in
[

symbol
value

]
, the upper row is a symbol and the lower one is the used

value for the given elementary or intermediate spin or the tensor rank. The involved
elements of the elementary tensor operators are〈

Si=1

∥∥∥∥T̂ki=0(
→
S i)

∥∥∥∥Si=1

〉
= (2Si + 1)1/2 = 31/2 (40)

〈
Si=1

∥∥∥∥T̂ki=1(
→
S i)

∥∥∥∥Si=1

〉
= [Si(Si + 1)(2Si + 1)]1/2 = (1 · 2 · 3)1/2 (41)

and analogously for Si = 1/2.
The 9j-symbols can be expressed using simpler 6j-symbols (recoupling coefficients for

angular momenta):
j11 j12 j13
j21 j22 j23
j31 j32 j33

 =
jmax

∑
j=jmin

(−1)2j(2j + 1)
{

j11 j21 j31
j32 j33 j

}{
j12 j22 j32
j21 j j23

}{
j13 j23 j33
j j11 j12

}
(42)

where the index j runs over all the meaningful values for which the triangular conditions
of the 6j-symbols are satisfied, i.e.,

jmin = min{|j11 − j33|; |j32 − j21|; |j12 − j23|} (43)

jmax = max{j11 + j33; j32 + j21; j12 + j23} (44)

For the evaluation of the 6j-symbol, an explicit formula is at our disposal
Because the complete set of intermediate spins is encoded in the coupling history matrix,

CHM = {D1, D12, D123,. . . ., D1. . . N = 2S} or {S1, S12, S123,. . . ., S1. . . N = S} (45)

computer aided evaluations of matrix elements Mα′S′ ,αS(A, B) for isotropic exchange are
fast. Since such a matrix is symmetric, it is stored in the upper triangle mode. Note that the

set of matrices (6 for the above case for coupling 4 centers or
(

N
2

)
in general) is calculated

only once, saved on disc, and is independent of the coupling constants, which vary during
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the fitting procedure of the magnetic data. Moreover, when the coupling constant is zero,
J(A,B) = 0; then, the entire process of evaluating the matrix elements, Mα′S′ ,αS(A, B), is
skipped.

The actual assignment of exchange coupling constants to matrix elements is based on
the definition of the (symmetric) topological matrix, T(A,B). This contains either the value
of J(A,B) or zero. For example, for a chain of 4 equivalent centers, there is

T =


0 J1,2 0 0
0 0 J2,3 0
0 0 0 J3,4 = J1,2
0 0 0 0

 (46)

and for a ring of 4 equivalent centers,

T =


0 J 0 J
0 0 J 0
0 0 0 J
0 0 0 0

 (47)

To this end, the isotropic exchange is expressed (with the sign convention −1 in front
of the spin operators) as

〈
I′
∣∣Ĥex∣∣I〉 = Hα′S′ ,αS =

N

∑
A

N

∑
B>A
−T(A, B) ·Mα′S′ ,αS(A, B) (48)

The technical implementation is based on the following steps.

1. Define the topological matrix, T(A,B).
2. Determine the total number of zero-field states, M; limit Smin and Smax and the size of

the matrices with the same spin dim(S).
3. For the final spin states, S, prepare the coupling history matrix: CHM = {D1, D12,

D123,. . . ., D1. . . N = 2S}.
4. For pairs of centers, prepare operator ranks, OR = {k1,. . . , kN}, and intermediate

operator ranks, IOR = {k̃2 = k12, . . . , k̃N = k1...N}.
5. Open a loop over the molecular spins, S = Smin to Smax, and fill matrix elements of the

blocks for the same spin and all intermediate spins, Mα′S′ ,αS(A, B), for each relevant
pair, {A,B}. The row and column indices of such a matrix use the set of intermediate
spins contained in the CHM.

6. The final block, Hα′S′ ,αS, is the sum of all relevant matrices, Mα′S′ ,αS(A, B), multiplied
by a non-zero topological matrix, T(A,B), containing the current value of J(A,B).

7. The final block is diagonalized (only eigenvalues are searched). The zero-field eigen-
values are enriched with a Zeeman term in the form of ε(S, B) = ε0(S) + µBgeffBMS,
where uniform geff-factors occur. (This approximation is either a weakness or a
strength of the whole procedure.)

8. Magnetic energy levels, ε(S, B), enter the statistical partition function, Z(B,T), from
which the magnetization and susceptibility are calculated using Equations (33)–(37).

9. The calculated susceptibility, χc(B,T), and magnetization, Mc(B,T), together with the
experimental points enter the error functional, F(B,T), which is processed by advanced
minimization procedures such as simulated annealing or genetic algorithms to obtain
an optimized set of magnetic parameters, JAB and geff.

2.5. Utilization of Symmetry

When dealing with symmetry, we need to specify which kind of group of operations
we are speaking about. The common symmetry point group, G, contains spatial operations,
i.e., identity, E; rotation axes, Cn reflection planes, σa; inversion, i; and indirect rotations, Sn.
Elements of symmetry intersect in at least one point in space. In addition, the double group
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contains the “half-identity”, Q, which means a rotation by an angle of 2π while the identity,
E, indicates a rotation by an angle of 4π.

The symmetry group, SN, is formed from all permutations between N-members of the
group; their number is equal to N!. The symmetry group applies to many body systems
and abstracts from the spatial views. Work with the symmetry group is described in
detail elsewhere

The wave function of a multi-electron system should be symmetry-invariant. The
considered symmetry consists of the following:

1. Spatial symmetry of atomic coordinates within the point group, G;
2. Angular momentum symmetry within the fully rotational group in three dimensions,

R3, and the special unitary group, SU2j+1 in (2j + 1), dimensions, which contains 4j(j + 1)

tensor operators T(k)
q for 1 ≤ k ≤ 2j and −k ≤ q ≤ k;

3. Permutation symmetry, which corresponds to permutations of individual particles
(spins) within the symmetry group, SN.

In the theory of the symmetry group, SN, a key role is played by the partition,
λ = [λ1, λ2, . . . , λN ]—the decomposition of the number, N, into natural numbers (0, 1,
2, . . . ). Each partition defines classes and irreducible representations (IRs), Гλ, of the SN
group. For a given partition, the dimension of the IRs in SUm (m = 2s +1 is the multiplicity)
is given by the formula

d{Γλ ∈ SUm} =
m

∏
i<j

(λi − λj) + (j− i)
(j− i)

= n{Γλ ∈ SN} (49)

This is equal to the occurrence number, n{Γλ ∈ SN}, of the IR from the SN group, and
then, the overall dimension is K = ∑

λ
n{Γλ ∈ SN} · d(Γλ ∈ SN). Now, the theory tells us

exactly how the S-blocks in Table 1 can be further divided into blocks of lower dimensions;
this is exemplified in Table 4 for four centers with the spin value of s = 2.

Table 4. Effect of permutation symmetry within S4 and uniform spins, s = 2.

Partition Young
Diagram

IR a

Гλ(d)
Dimension

n × d
Spin, S, in R3

b

0–8
Dimension of Blocks Reduced Blocks Free of

Projections c
IR
Td

[4000] = [4]
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special notation, the exponent denotes multiple occurrences of a given spin; e.g., 42 means S = 4 twice. c The
reduced block with the maximum dimension represents a 9 × 9 matrix for Г4 and S = 3.

The symmetry group, S4, is isomorphous to the point group, Td (they have the
same character table), which allows for the direct identification of relationships between
their irreducible representations. This means that blocks of the given S can be further
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decomposed to blocks according to the IRs of the Td group. For example, spin-blocks are
decomposed as follows:

S = 0→ A1 ⊕ 2E (5 members)

S = 1→ 2T2 ⊕ 2T1 (12 members)

S = 2→ 2A1 ⊕A2⊕ 2E⊕ 2T2 ⊕ T1 (16 members)

S = 3→ E⊕ 3T2 ⊕ 2T1 (17 members)

etc., where we count the double or triple degeneracy for E, T1, and T2, respectively.
In more complex cases, the relationships between symmetry and point groups follow

reduction chains

For bosons (s = 1, 2, 3) G ⊂ R3 ⊂ R2s+1 ⊂ SU2s+1 (50)

For fermions (s = 1/2, 3/2, 5/2, 7/2) G ⊂ R3 ⊂ Sp2s+1 ⊂ SU2s+1 (51)

where some intermediate groups occur. (Reduction means that IRs in the group become
reducible in its subgroup.) The reason for the decomposition of the IRs when passing
from the special unitary group, SUm, is that, in addition to the symmetry operations
(permutations), there are rotations leading to new constraints on the objects (tensors). The
subduction of R3 into point groups, G, is well known and has been reported in many
sources.

The states,
∣∣Γj,λ

〉
, transforming according to an irreducible representation, Γj, of the

group, G, can be generated as follows:

∣∣∣Γ(a)
j;λ

〉
=

{d(Γj)

h

}n

∑
R

[
Γj(R)] ∗

λλ
R̂|I〉 (52)

where the symmetry operator, R̂, acts on the basis set, |I〉; d(Γj)—dimension of the IR;

h—order of group G. The superscript a in
∣∣∣Γ(a)

j,λ

〉
distinguishes between repeated represen-

tations (it is an ordering number). Matrices of irreducible representations,
[
Γj(R)]

λµ
, are

tabulated elsewhere; only their diagonal elements refer to the projection operator. The trans-
formation of matrix elements into a basis set of symmetry-adapted functions is performed
using a formula:

〈
Γj;λ′

∣∣∣ĤS
∣∣∣Γj;λ

〉
=

{d(Γj)

h

}1/2 h

∑
R

[
Γj(R)] ∗

λλ

〈
I
∣∣∣ĤS

∣∣∣R̂I
〉

(53)

This means that a projector applied to a ket-vector projects only a single symmetry-
adapted term, and applying a projector to a bra-vector yields zero unless the bra- and
ket-vectors are the same.

There are two elaborated cases for utilizing point groups of symmetry:

1. The basis set consists of uncoupled kets, i.e., |I〉 = |. . . SA MA . . .〉; this approach is
applicable to the general case, which includes other interactions besides isotropic
exchange, such as asymmetric exchange, etc.

2. The basis set is represented by coupled kets, |I〉 =
∣∣∣S1, S2, S̃12, . . . , S̃N−1, SN , SM

〉
; this

is appropriate for isotropic exchange alone with a uniform Zeeman term (all g-factors
are equivalent.
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It is useful to find the correspondence between symmetry operations, R̂, in a point
group and permutations of spin centers, P̂, for the system under study. For example, the
symmetry operations in the quadro-[A4] system can be mapped within the point group, D2
(h = 4), and the subgroup of the symmetry group, S4 (whose dimension is h = 4! = 24), as
seen in Table 5.

Table 5. Character table for diagonal isomorphous groups a.

D2 (h = 4) Ê Ĉ2(z) Ĉ2(y) Ĉ2(x)

π4⊂S4 P̂(1234) P̂(3412) P̂(4321) P̂(2143)

A +1 +1 +1 +1
B1 +1 +1 –1 –1
B3 +1 –1 –1 +1
B2 +1 –1 +1 –1

a Symmetry elements defined in Figure 1.

The effect of the symmetry operator is the permutation of the quantum numbers, MA,
in the trial kets

P̂(3412)|M1M2M3M4〉 = |M3M4M1M2〉 (54)

For instance, the (normalized) symmetry-adapted function is projected as∣∣∣B(1)
1

〉
=

1
2
[1 · P̂(1234) + 1 · P̂(3412)− 1 · P̂(4321)− 1 · P̂(2143)]|M1M2M3M4〉 (55)

Obviously, such permutations do not change the total spin of the kets. Another
function of the same IRs can be obtained by examining a different trial vector:∣∣∣B(2)

1

〉
= 1

2 [1 · P̂(1234) + 1 · P̂(3412)− 1 · P̂(4321)− 1 · P̂(2143)]|M4M1M2M3〉
= 1

2 [|M4M1M2M3〉+ |M2M3M4M1〉 − |M3M2M1M4〉 − |M1M4M3M2〉]
(56)

Each repeated function,
∣∣∣Γ(a)

j

〉
, must be orthogonalized with the remainder set,∣∣∣Γ(a−1)

j

〉
, using Schmidt orthogonalization and then renormalized. If the projected function

has a scalar product with a remainder equal to zero, it is linearly dependent, and should,
therefore, be omitted.

The second possibility is to work in a basis set of coupled kets. The effect of the
recoupling between a pair of spins is

|S1S2S3S12S〉 = ∑
S13

|S1S2S3S13S〉 · 〈S1S2S3S13S|S1S2S3S12S 〉 (57)

where the coupling coefficient is related to the 6j-symbol as{
S1 S2 S12
S3 S S13

}
= (−1)S1+S2+S3+S[(2S12 + 1)(2S13 + 1)]−1/2 · 〈S1S2S3S12S|S1S2S3S13S 〉 (58)

Therefore, any intermediate spin, Sab, can be recoupled to another Sac (sharing one
index) via the 6j-symbols as

|. . . Sab . . . Sabc . . .〉 = ∑
Sac

|. . . Sac . . . Sabc . . .〉 · 〈. . . Sac . . . Sabc . . . |. . . Sab . . . Sabc . . . 〉

= ∑
Sac

|. . . Sac . . . Sabc . . .〉 · (−1)Sa+Sb+Sc+Sabc [(2Sab + 1)(2Sac + 1)]1/2
{

Sa Sb Sab
Sc Sabc Sac

} (59)
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so the recoupling performs just the transposition, T̂bc, in the coupling scheme. When the
transposition operator swaps the centers but leaves the intermediate spin invariant, the
result is the original function multiplied by just the phase factor,

T̂(. . . b . . . a)|. . . Sa . . . Sb . . . Sab . . .〉 = (−1)Sa+Sb−Sab |. . . Sa . . . Sb . . . Sab . . .〉 (60)

For instance, in the quadro-[A4] system,

Ĉ2(x)|S1S2S12S3S4S34S〉 = P̂(2143)|S1S2S12S3S4S34S〉 =
T̂(21)T̂(43)|S1S2S12S3S4S34S〉 = (−1)S1+S2−S12(−1)S3+S4−S34 |S1S2S12S3S4S34S〉

(61)

In practical implementations, it is necessary to choose a suitable symmetry point group
according to which the selected symmetry operations will be applied. As an example, the
complex tetrahedro-@-tetrahedro-[FeIII

8(µ4-O)4(µ-pz)12Cl4] (No 12) will be discussed. In this
system, one can identify three two-fold rotation axes, C2(z), C2(y), and C2(x), belonging
to the symmetry point group, D2. This has four irreducible representations: E, B1, B2,
and B3. Spin permutation symmetry uses a coupling scheme that is left invariant under
the symmetry operations of the point group. This condition is fulfilled for the coupling
scheme S12 = S1 + S2, S34 = S3 + S4, S56 = S5 + S6, S78 = S7 + S8, S1234 = S12 + S34,
S5678 = S56 + S78, S = S1234 + S5678.The required coupling coefficients are shown in
Table 6.

Table 6. Clebsh–Gordan coefficients for the recoupling scheme in the Fe8-cluster.

Symmetry
Operation E C2(z) C2(x) C2(y)

Permutation O(12345678) O(21436587) O(34128765) O(43217856)
Coupling of centers <1,2,12> <2,1,12> <3,4,34> <4,3,34>

<3,4,34> <4,3,34> <1,2,12> <2,1,12>
<5,6,56> <6,5,56> <8,7,78> <7,8,78>
<7,8,78> <8,7,78> <6,5,56> <5,6,56>

Coupling of diads <12,34,1234> <12,34,1234> <34,12,1234> <34,12,1234>
<56,78,5678> <56,78,5678> <78,56,5678> <78,56,5678>

Coupling of tetrads <1234,5678,S> <1234,5678,S> <1234,5678,S> <1234,5678,S>

Using these prerequisites, the generator for the A1 states is

|A1; S1S2S12S3S4S34S5S6S56S7S8S78S1234S5678S; M〉
= 1

4 (O(12345678) + O(21436587) + O(43217856) + O(34128765))
|S1S2S12S3S4S34S5S6S56S7S8S78S1234S5678S; M〉
= 1

4 [+1|S1S2S12S3S4S34S5S6S56S7S8S78S1234S5678S; M〉
+(−1)S1+S2−S12+S3+S4−S34+S5+S6−S56+S7+S8−S78 |S2S1S12S4S3S34S6S5S56S8S7S78S1234S5678S; M〉
+(−1)S1+S2−S12+S3+S4−S34+S34+S12−S1234+S78+S56−S5678 |S4S3S34S2S1S12S7S8S78S5S6S56S1234S5678S; M〉
+(−1)S5+S6−S56+S7+S8−S78+S34+S12−S1234+S78+S56−S5678 |S3S4S34S1S2S12S8S7S78S6S5S56S1234S5678S; M〉

]
(62)

and one member, as an example, is

|A1; 5/2, 5/2, 5, 5/2, 5/2, 5, 5/2, 5/2, 4, 5/2, 5/2, 4, 1, 1, 1; M〉
= 1

4 (O(12345678) + O(21436587) + O(43217856) + O(34128765))
|5/2, 5/2, 5, 5/2, 5/2, 5, 5/2, 5/2, 4, 5/2, 5/2, 4, 1, 1, 1; M〉
= 1

4 [+1|5/2, 5/2, 5, 5/2, 5/2, 5, 5/2, 5/2, 4, 5/2, 5/2, 4, 1, 1, 1; M〉 + (−1)2|5/2, 5/2, 5, 5/2, 5/2, 5, 5/2, 5/2, 4, 5/2, 5/2, 4, 1, 1, 1; M〉
+(−1)16|5/2, 5/2, 5, 5/2, 5/2, 5, 5/2, 5/2, 4, 5/2, 5/2, 4, 1, 1, 1; M〉+ (−1)18|5/2, 5/2, 5, 5/2, 5/2, 5, 5/2, 5/2, 4, 5/2, 5/2, 4, 1, 1, 1; M〉

]
= |5/2, 5/2, 5, 5/2, 5/2, 5, 5/2, 5/2, 4, 5/2, 5/2, 4, 1, 1, 1; M〉

(63)

A complete decomposition of the huge basis set for the octanuclear S = 5/2 system is
provided in Table 7.
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Table 7. Classification of spin states in zero magnetic field according to D2 point group.

S A1 B1 B2 B3 Total Number

0 776 630 630 630 2666
1 1820 1960 1960 1960 7700
2 3080 2940 2940 2940 11,900
3 3625 3750 3750 3750 14,875
4 4201 4076 4076 4076 16,429
5 4066 4170 4170 4170 16,576
6 3958 3854 3854 3854 15,520
7 3340 3420 3420 3420 13,600
8 2860 2780 2780 2780 11,200
9 2128 2184 2184 2184 8680

10 1624 1568 1568 1568 6328
11 1057 1092 1092 1092 4333
12 721 686 686 686 2779
13 400 420 420 420 1660
14 244 224 224 224 916
15 108 118 118 118 462
16 60 50 50 50 210
17 18 22 22 22 84
18 10 6 6 6 28
19 1 2 2 2 7
20 1 0 0 0 1
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3. Modeling of Finite Chains

The finite chains have a characteristic topological function in which the exchange
coupling constants, JAB, appear just above the diagonal, as in Equation (46). Although the
coupling constants are different (at least those at the ends of the chain), the approximation
of the uniform coupling constants and uniform g-factors can be accepted. In general,
however, it is not necessary to have uniform spin centers as, for example, in the catena-
[MnII

2MnIII
2(dipic)6(H2O)4] with the chain MnIII-MnII-MnII-MnIII [34].

When modeling finite chains, the following spin Hamiltonian was assumed:

Ĥ = −J
N

∑
A=2

(
→
S A−1 ·

→
S A) + µBBg

N

∑
A=1

ŜA
z (64)

The modeling parameters were as follows: all, g = 2.0; reference field, B0 = 10−6 T.
Calculated zero-field energy levels for a number of catena-[AN] systems are provided in
Tables 8–10.
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Table 8. Zero-field energy levels for catena-[AN], s = 1/2; J/hc = −1 cm−1 a.
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a Odd-member chains catena-[A5] have an irregular energy spectrum; i.e., S0 = s (3/2, 2, 5/2) is the ground state.



Magnetochemistry 2023, 9, 226 18 of 50

Table 9. Zero-field energy levels for catena-[AN], s = 1; J = −1 cm−1 a.

catena-[A4], Jn(3×) catena-[A5], Jn(4×) catena-[A6], Jn(5×)

Magnetochemistry 2023, 9, x FOR PEER REVIEW 18 of 53 
 

 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 
catena-[A10], Jn(9×) catena-[A11], Jn(10×) catena-[A12], Jn(11×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

2

4

6

8

 
a These are true (open) chains; no cyclic boundary has been applied. 

Table 9. Zero-field energy levels for catena-[AN], s = 1; J = −1 cm−1 a. 

catena-[A4], Jn(3×) catena-[A5], Jn(4×) catena-[A6], Jn(5×) 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 
catena-[A7], Jn(6×) catena-[A8], Jn(7×) catena-[A9], Jn(8×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 18 of 53 
 

 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 
catena-[A10], Jn(9×) catena-[A11], Jn(10×) catena-[A12], Jn(11×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

2

4

6

8

 
a These are true (open) chains; no cyclic boundary has been applied. 

Table 9. Zero-field energy levels for catena-[AN], s = 1; J = −1 cm−1 a. 

catena-[A4], Jn(3×) catena-[A5], Jn(4×) catena-[A6], Jn(5×) 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 
catena-[A7], Jn(6×) catena-[A8], Jn(7×) catena-[A9], Jn(8×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 18 of 53 
 

 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 
catena-[A10], Jn(9×) catena-[A11], Jn(10×) catena-[A12], Jn(11×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5

ε /
cm

-1

0

1

2

3

4

5

6

7

8

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

2

4

6

8

 
a These are true (open) chains; no cyclic boundary has been applied. 

Table 9. Zero-field energy levels for catena-[AN], s = 1; J = −1 cm−1 a. 

catena-[A4], Jn(3×) catena-[A5], Jn(4×) catena-[A6], Jn(5×) 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

 
catena-[A7], Jn(6×) catena-[A8], Jn(7×) catena-[A9], Jn(8×) catena-[A7], Jn(6×) catena-[A8], Jn(7×) catena-[A9], Jn(8×)

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy spectrum;
i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange.

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a.

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×)

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 



Magnetochemistry 2023, 9, 226 19 of 50

Table 10. Cont.

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×)

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 19 of 53 

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

5

10

15

20

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

5

10

15

20

a Odd-member chains (e.g., catena-[A3], catena-[A5], catena-[A7], catena-[A9]) have an irregular energy 
spectrum; i.e., S0 = 1 is the ground state irrespective of the antiferromagnetic exchange. 

Table 10. Zero-field energy levels for catena-[AN], s = 3/2, 2, 5/2; J = −1 cm−1 a. 

catena-[A4], s = 3/2, Jn(3×) catena-[A4], s = 2, Jn(3×) catena-[A4], s = 5/2, Jn(3×) 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A5], s = 3/2, Jn(4×) catena-[A5], s = 2, Jn(4×) catena-[A5], s = 5/2, Jn(4×) 

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11

ε /
cm

-1

0

10

20

30

40

50

spin
0.5 2.5 4.5 6.5 8.5 10.5 12.5

ε /
cm

-1

0

10

20

30

40

50

60

70

catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×) catena-[A6], s = 3/2, Jn(5×) catena-[A6], s = 2, Jn(5×) catena-[A6], s = 5/2, Jn(5×)

Magnetochemistry 2023, 9, x FOR PEER REVIEW 20 of 53 

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

10

20

30

spin
0 1 2 3 4 5 6 7 8 9 10 11 12

ε /
cm

-1

0

10

20

30

40

50

spin
0 1 2 3 4 5 6 7 8 9 101112131415

ε /
cm

-1

0

10

20

30

40

50

60

70

a Odd-member chains catena-[A5] have an irregular energy spectrum; i.e., S0 = s (3/2, 2, 5/2) is the 
ground state. 

4. Modeling of Finite Rings
The spin Hamiltonian for ring systems with uniform constituents is 

eff1 1 B
2 1

ˆˆ [( ) ( )]
N N

A
N A A z

A A
H J S S S S Bg Sμ−

= =

= − ⋅ + ⋅ + 
   

(65)

and contains a single exchange coupling constant. Formally, a triangle and a square also 
belong to this class. The topological function is analogous to that of (47). The calculated
zero-field energy levels are shown in Tables 11–13.  
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and contains a single exchange coupling constant. Formally, a triangle and a square also
belong to this class. The topological function is analogous to that of (47). The calculated
zero-field energy levels are shown in Tables 11–13.
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a Cyclic boundary has been applied. For the cyclo-[AN] system coupled in an antiferromagnetic manner, the
ground state is four-fold degenerate (two Kramers doublets with S = 1/2) if Ns is a half-integer. If Ns is an integer,
the ground state is non-degenerate (S = 0). For instance, cyclo-[A9, s = 1/2] possesses the doubly degenerate
ground state S = 1/2 (twice). The ground state of catena-[A9, s = 1/2] is S = 1/2 (×1), and the first excited state,
S = 1/2 (×1), lies at energy −0.75J.
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Table 12. Zero-field energy levels for cyclo-[AN], s = 1; J = −1 cm−1.
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manner, the ground state is four-fold degenerate (two Kramers doublets with S = 1/2) if Ns is a half-
integer. If Ns is an integer, the ground state is non-degenerate (S = 0). For instance, cyclo-[A9, s = 1/2]
possesses the doubly degenerate ground state S = 1/2 (twice). The ground state of catena-[A9, s = 1/2]
is S = 1/2 (×1), and the first excited state, S = 1/2 (×1), lies at energy −0.75J. 
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a All cyclo-[AN]s have a regular energy spectrum; i.e., S0 = 0 or 1/2 is the ground state. 

The spectra of the spin energy levels for catena- and cyclo-[AN] spin systems are
compared in Tables 14–16.  
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catena-[A15], S0 = 1/2 (1×) n(S) = 1430, 2002, 1638, 910, 350, 90, 14, 1 cyclo-[A15], S0 = 1/2 (2×)
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catena-[A15], S0 = 1/2 (1×) n(S) = 1430, 2002, 1638, 910, 350, 90, 14, 1 cyclo-[A15], S0 = 1/2 (2×)

Magnetochemistry 2023, 9, x FOR PEER REVIEW 23 of 53 

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

10

20

30

40

spin
0 1 2 3 4 5 6 7 8 9 10 11 12

ε /
cm

-1

0

10

20

30

40

50

60

spin
0 1 2 3 4 5 6 7 8 9 101112131415

ε /
cm

-1

0

10

20

30

40

50

60

70

80

a All cyclo-[AN]s have a regular energy spectrum; i.e., S0 = 0 or 1/2 is the ground state. 

The spectra of the spin energy levels for catena- and cyclo-[AN] spin systems are
compared in Tables 14–16.  

Table 14. Normalized density of states for catena-[AN] s = 1/2 and cyclo-[AN] s = 1/2 systems, J = −1 
cm−1. 

Catena-[A13], S0 = 1/2 (1×) n(S) = 429, 572, 429, 208, 65, 12, 1 a cyclo-[A13], S0 = 1/2 (2×)

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

2

4

6

8

10

DOS
0.0 0.2 0.4 0.6 0.8 1.0

ε /
cm

-1

0

2

4

6

8

10

A13-chain 
A13-ring

spin
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

ε /
cm

-1

0

2

4

6

8

10

catena-[A14], S0 = 0 (1×) n(S) = 429, 1001, 1001, 637, 273, 77, 13, 1 cyclo-[A14], S0 = 0 (1×)

spin
0 1 2 3 4 5 6 7

ε /
cm

-1

0

2

4

6

8

10

DOS
0.0 0.2 0.4 0.6 0.8 1.0

ε /
cm

-1

0

2

4

6

8

10

A14-chain 
A14-ring

spin
0 1 2 3 4 5 6 7

ε /
cm

-1

0

2

4

6

8

10

catena-[A15], S0 = 1/2 (1×) n(S) = 1430, 2002, 1638, 910, 350, 90, 14, 1 cyclo-[A15], S0 = 1/2 (2×)

a All cyclo-[AN]s have a regular energy spectrum; i.e., S0 = 0 or 1/2 is the ground state.

The spectra of the spin energy levels for catena- and cyclo-[AN] spin systems are
compared in Tables 14–16.
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Table 15. Cont.
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Table 16. Comparison of zero-field energy levels for chain and ring systems, s = 1/2, J = −1 cm−1.

A9 A10 A11 A12 A13

Energy spectrum for a chain—aligned left (black); for a ring—aligned right (blue) a
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ring shows waves; the DOS for a chain is smoother. 
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a For systems coupled in a ferromagnetic manner, the energy diagram is inverted. The A10-ring is still a crude approximation to the true A10-chain. The DOS for a 
ring shows waves; the DOS for a chain is smoother. 
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5. Modeling of Convex Polyhedra

The modeling of energy levels for a set of [A4], [A5], and [A6] systems is presented in
Tables 17–19. The following conditions were used: all, g = 2.0; B0 = 10−6 T; and J = −1 cm−1.
The situation with different negative J values can be covered by a simple rescaling of the
energy axis.

Table 17. Calculated energy levels for convex [A4] systems with spin s = 1/2, 1, 3/2, 2, 5/2.

[A3B], trigonal pyramid, s = 1/2Jb(3×), Ja(3×)
= Jb/2, T1

[A2B2], bisphenoid, s = 1/2Ja(2×), Jc(4×) =
Ja/2, T2

[A3B], star, s = 1/2, Jc(5×), s = 1/2 T3
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[A3B], trigonal pyramid, s = 3/2  [A2B2], bisphenoid, s = 3/2  [A3B], star, s = 3/2 
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[A3B], trigonal pyramid, s = 3/2  [A2B2], bisphenoid, s = 3/2  [A3B], star, s = 3/2 

Magnetochemistry 2023, 9, x FOR PEER REVIEW 26 of 53 
 

 

5. Modeling of Convex Polyhedra 
The modeling of energy levels for a set of [A4], [A5], and [A6] systems is presented in 

Tables 17–19. The following conditions were used: all, g = 2.0; B0 = 10−6 T; and J = −1 cm−1. 
The situation with different negative J values can be covered by a simple rescaling of the 
energy axis.  

Three geometries are exceptional. In the tetrahedron, all four vertices are connected 
by six exchange-coupling constants, and the result is that the energy spectrum is highly 
degenerate: it contains a rotational band, ε = S(S + 1)—not shown.  

An analogous situation occurs in the vacant octahedron, [A6], where all six vertices 
are joined by 15 exchange-coupling constants, which also provide a highly degenerate 
energy spectrum, ε = S(S + 1). However, often, a diamagnetic atom, X, sits in the very 
center of the octahedron, [A6X], so the three trans-AB linkages through X can be neglected, 
and the remaining 12 cis-AB contacts cause the degeneracy to be lifted. 

In pentacoordinate systems, a centered tetrahedron, [A4A], is a special case, which 
also provides a rotational band thanks to 10 J-constants.  

Table 17. Calculated energy levels for convex [A4] systems with spin s = 1/2, 1, 3/2, 2, 5/2. 

[A3B], trigonal pyramid, s = 1/2 
Jb(3×), Ja(3×) = Jb/2, T1 

[A2B2], bisphenoid, s = 1/2 
Ja(2×), Jc(4×) = Ja/2, T2 

[A3B], star, s = 1/2, Jc(5×), s = 1/2  
T3 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

1

2

3

4

5

 
[A3B], trigonal pyramid, s = 1  [A2B2], bisphenoid, s = 1  [A3B], star, s = 1 
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[A3B], trigonal pyramid, s = 3/2  [A2B2], bisphenoid, s = 3/2  [A3B], star, s = 3/2 

[A3B], trigonal pyramid, s = 1 [A2B2], bisphenoid, s = 1 [A3B], star, s = 1
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[A3B], trigonal pyramid, s = 1  [A2B2], bisphenoid, s = 1  [A3B], star, s = 1 
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[A3B], trigonal pyramid, s = 3/2  [A2B2], bisphenoid, s = 3/2  [A3B], star, s = 3/2 
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[A3B], trigonal pyramid, s = 1  [A2B2], bisphenoid, s = 1  [A3B], star, s = 1 

spin
0 1 2 3 4 5 6

ε /
cm

-1

0

2

4

6

8

10

12

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

2

4

6

8

10

12

 spin
0 1 2 3 4 5 6

ε /
cm

-1

0

2

4

6

8

10

12

 
[A3B], trigonal pyramid, s = 3/2  [A2B2], bisphenoid, s = 3/2  [A3B], star, s = 3/2 
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[A3B], trigonal pyramid, s = 1  [A2B2], bisphenoid, s = 1  [A3B], star, s = 1 
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[A3B], trigonal pyramid, s = 3/2  [A2B2], bisphenoid, s = 3/2  [A3B], star, s = 3/2 [A3B], trigonal pyramid, s = 3/2 [A2B2], bisphenoid, s = 3/2 [A3B], star, s = 3/2
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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Table 17. Cont.

[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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[A3B], trigonal pyramid, s = 5/2 [A2B2], bisphenoid, s = 5/2 [A3B], star, s = 5/2 
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[A3B], trigonal pyramid, s = 5/2 [A2B2], bisphenoid, s = 5/2 [A3B], star, s = 5/2
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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[A3B], trigonal pyramid, s = 5/2 [A2B2], bisphenoid, s = 5/2 [A3B], star, s = 5/2 
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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[A3B], trigonal pyramid, s = 5/2 [A2B2], bisphenoid, s = 5/2 [A3B], star, s = 5/2 
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[A3B], trigonal pyramid, s = 2 [A2B2], bisphenoid, s = 2 [A3B], star, s = 2 
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[A3B], trigonal pyramid, s = 5/2 [A2B2], bisphenoid, s = 5/2 [A3B], star, s = 5/2 
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Table 18. Calculated energy levels for convex [A5] systems with spin s = 1/2, 1, 3/2, 2, 5/2.

[A4B], tetragonal pyramid, s = 1/2
Jb(4×), Ja(4×), Jt(2×) = 0, T1

[A3B2], trigonal bipyramid, s = 1/2
Jb(3×), Ja(6×), Jt(1×) = 0, T2

[A4B], star, s = 1/2
Jc(4×), T3
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 
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Table 18. Cont.

[A4B], tetragonal pyramid, s = 1 [A3B2], trigonal bipyramid, s = 1 [A4B], star, s = 1
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[A4B], tetragonal pyramid, s = 1 [A3B2], trigonal bipyramid, s = 1 [A4B], star, s = 1 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 
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[A4B], tetragonal pyramid, s = 1 [A3B2], trigonal bipyramid, s = 1 [A4B], star, s = 1 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 

[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2
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[A4B], tetragonal pyramid, s = 1 [A3B2], trigonal bipyramid, s = 1 [A4B], star, s = 1 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 
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[A4B], tetragonal pyramid, s = 1 [A3B2], trigonal bipyramid, s = 1 [A4B], star, s = 1 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 
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[A4B], tetragonal pyramid, s = 1 [A3B2], trigonal bipyramid, s = 1 [A4B], star, s = 1 
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[A4B], tetragonal pyramid, s = 3/2 [A3B2], trigonal bipyramid, s = 3/2 [A4B], star, s = 3/2 
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[A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2 [A4B], tetragonal pyramid, s = 2 [A3B2], trigonal bipyramid, s = 2 [A4B], star, s = 2
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[A4B], tetragonal pyramid, s = 5/2 [A3B2], trigonal bipyramid, s = 5/2 [A4B], star, s = 5/2  
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[A4B], tetragonal pyramid, s = 5/2 [A3B2], trigonal bipyramid, s = 5/2 [A4B], star, s = 5/2
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[A4B], tetragonal pyramid, s = 5/2 [A3B2], trigonal bipyramid, s = 5/2 [A4B], star, s = 5/2  
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[A4B], tetragonal pyramid, s = 5/2 [A3B2], trigonal bipyramid, s = 5/2 [A4B], star, s = 5/2  
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Topological matrices that define pair interactions of the centers:

T1(4−pyramid) =


− b 0 b a

− b 0 a
− b a

− a
−

 T2(3−bipyramid) =


− b b a a

− b a a
− a a

− 0
−

 T3(star) =


− 0 0 0 c

− 0 0 c
− 0 c

− c
−



Table 19. Calculated energy levels for convex [A6] systems with spin s = 1/2, 1, 3/2, 2, 5/2.

[A6] octahedron, s = 1/2
Jc(12×), Jt(3×) = 0, T1

A6, trigonal prism, s = 1/2
Jb(6×) = Ja(3×), Ja2(6×) = 0, T2

A5B, star, s = 1/2, Jc(5×), T3
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 

spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

10

20

30

40

50

 spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

10

20

30

40

50

 spin
0 1 2 3 4 5 6 7 8 9

ε /
cm

-1

0

10

20

30

40

50

 
[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 

[A6] octahedron, s = 1 A6, trigonal prism, s = 1 A5B, star, s = 1
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 
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[A6] octahedron, s = 3/2 A6, trigonal prism, s = 3/2 A5B, star, s = 3/2
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 
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[A6] octahedron, s = 3/2  A6, trigonal prism, s = 3/2  A5B, star, s = 3/2 
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[A6] octahedron, s = 2  A6, trigonal prism, s = 2  A5B, star, s = 2 [A6] octahedron, s = 2 A6, trigonal prism, s = 2 A5B, star, s = 2
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[A6] octahedron, s = 5/2 A6, trigonal prism, s = 5/2 A5B, star, s = 5/2 
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Trigonal antiprism T1a is equivalent to T1 
when Jb(6×) = Je(6×), Jt(3×) = 0 

6. Exchange Interaction in Real Clusters
Several systems were chosen to illustrate the application of the spin-blocking method 

to real polynuclear complexes. These cover clusters formed from magnetoactive Mn(III), 
Mn(II), Fe(III), Co(II), Er(III), and Dy(III) centers. They have already been studied in a 
different way [34–52] and, if necessary, the fitting of the magnetic data has been revised 
in a consistent manner. These complexes have a large number of magnetic states, K, and 
zero-field states, M; the maximum angular momentum is Jmax = 60/2 for the cluster {Dy4}. 
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6. Exchange Interaction in Real Clusters
Several systems were chosen to illustrate the application of the spin-blocking method 

to real polynuclear complexes. These cover clusters formed from magnetoactive Mn(III), 
Mn(II), Fe(III), Co(II), Er(III), and Dy(III) centers. They have already been studied in a 
different way [34–52] and, if necessary, the fitting of the magnetic data has been revised 
in a consistent manner. These complexes have a large number of magnetic states, K, and 
zero-field states, M; the maximum angular momentum is Jmax = 60/2 for the cluster {Dy4}. 
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Several systems were chosen to illustrate the application of the spin-blocking method 

to real polynuclear complexes. These cover clusters formed from magnetoactive Mn(III), 
Mn(II), Fe(III), Co(II), Er(III), and Dy(III) centers. They have already been studied in a 
different way [34–52] and, if necessary, the fitting of the magnetic data has been revised 
in a consistent manner. These complexes have a large number of magnetic states, K, and 
zero-field states, M; the maximum angular momentum is Jmax = 60/2 for the cluster {Dy4}. 



Magnetochemistry 2023, 9, 226 31 of 50

Table 19. Cont.

Topological matrices that define pair interactions of the centers:
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Trigonal antiprism T1a is equivalent to T1

when Jb(6×) = Je(6×), Jt(3×) = 0

Three geometries are exceptional. In the tetrahedron, all four vertices are connected
by six exchange-coupling constants, and the result is that the energy spectrum is highly
degenerate: it contains a rotational band, ε = S(S + 1)—not shown.

An analogous situation occurs in the vacant octahedron, [A6], where all six vertices are
joined by 15 exchange-coupling constants, which also provide a highly degenerate energy
spectrum, ε = S(S + 1). However, often, a diamagnetic atom, X, sits in the very center of
the octahedron, [A6X], so the three trans-AB linkages through X can be neglected, and the
remaining 12 cis-AB contacts cause the degeneracy to be lifted.

In pentacoordinate systems, a centered tetrahedron, [A4A], is a special case, which
also provides a rotational band thanks to 10 J-constants.

6. Exchange Interaction in Real Clusters

Several systems were chosen to illustrate the application of the spin-blocking method
to real polynuclear complexes. These cover clusters formed from magnetoactive Mn(III),
Mn(II), Fe(III), Co(II), Er(III), and Dy(III) centers. They have already been studied in a
different way [34–52] and, if necessary, the fitting of the magnetic data has been revised
in a consistent manner. These complexes have a large number of magnetic states, K, and
zero-field states, M; the maximum angular momentum is Jmax = 60/2 for the cluster {Dy4}.
The decomposition of the zero-field Hamiltonian matrix into blocks of smaller sizes is
presented in Table 20.

6.1. Mn Complexes

The complex catena-[MnII
2MnIII

2(dipic)6(H2O)4] (1) has a core, {MnIIMnIIIMnIIIMnII},
and given its chain structure, two coupling constants occur: Jt (terminal) and Ji (inner),
with separation, MnIII-MnIII = 3.827 Å, and two angles, MnIII-O-MnIII = 109.6◦. The spin
Hamiltonian, along with the corresponding topological matrix selecting the exchange
coupling constants, is contained in Figure 2, together with the topological function that
defines the pairwise interactions. The experimental DC magnetic functions (the temperature
dependence of the product function χT and the field dependence of the magnetization per
formula unit) are also included and superimposed by the fitted data.
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Table 20. Size of interaction matrices.

No Core K M Size of Blocks {Smin through Smax} a

1, 2 {MnII
2MnIII

2} 62·52 = 900 110 {S = 0–9}: 5, 13, 18, 29, 19, 15, 10, 6, 3, 1
3 {MnII

4} 64 = 1296 146 {S = 0–10}: 6, 15, 21, 24, 24, 21, 15, 10, 6, 3, 1
4 {MnII

3CrIII
4} 6344 = 55,296 5737 {S =1/2–27/2}: 326, 661, 852, 915, 862, 726, 550, 375, 228, 122, 56, 21, 6, 1

5 {MnII
3} 63 = 216 216 {S =1/2–15/2}: 2, 4, 6, 5, 4, 3, 2, 1

6 {MnIII
8} 58 = 390,625 38,165 {S = 0–16}: 1085, 3080, 4600, 5460, 5620, 5180, 4340, 3325, 1492, 868, 454, 210,

84, 28, 7, 1

7 {FeIII
4MnIII

4} 64·54 = 810,000 71,346 {S = 0–18}: 1650, 4735, 7221, 8844, 9500, 9250, 8290, 6890, 5326, 3829, 2555,
1576, 892, 458, 210, 84, 28, 7, 1

8 {FeIII
6CoIII

6} 66 = 46,656 4332 {S = 0–15}: 111, 315, 475, 575, 609, 581, 505, 405, 300, 204, 126, 70, 35, 15, 5, 1
9, 10 {FeIII

6FeII} 66 = 46,656 4332 {S = 0–15}: 111, 315, 475, 575, 609, 581, 505, 405, 300, 204, 126, 70, 35, 15, 5, 1

11 {FeIII
7} 67 = 279,936 24,017 {S = 1/2–35/2} 1050, 1974, 2666, 3060, 3150, 2975, 2604, 2121, 1610, 1140,

750, 455, 252, 126, 56, 21, 6, 1

12, 13
{FeIII

8},
{FeIII

10}
→ {FeIII

8}
68 = 1,679,616 135,954 {S = 0–20}: 2666, 7700, 11,900, 14,875, 16,429, 16,576, 15,520, 13,600, 11,200,

8680, 6328, 4333, 2779, 1660, 916, 462, 210, 84, 28, 7, 1

14 {CoII
6CoIII} 46 = 4096 580 {S = 0–9}: 34, 90, 120, 120, 96, 64, 35, 15, 5, 1

15 {CoII
11CoIII

2}→ {CoII
7} 47 = 16,384 2128 {S = 1/2–21/2}: 210, 364, 426, 400, 315, 210, 119, 56, 21, 6, 1

16 {CoII
9CoIII

3} 49 = 262,144 30,276 {S = 1/2–27/2}: 2400, 4269, 5256, 5300, 4600, 3501, 2352, 1392, 720, 321, 120,
36, 8, 1

17 {ErIII
3} 163 = 4096 192 {J = 1/2–45/2}: 2, 4, 6, 8, 10, 12, 14, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3,

2, 1

18, 19 {DyIII
4} 164 = 65,536 2736 {J = 0–30}: 16, 45, 71, 94, 114, 131, 145, 156, 164, 169, 171, 170, 166, 159, 149,

136, 120, 105, 91, 78, 66, 55, 45, 36, 28, 21, 15, 10, 6, 3, 1
20 {DyIII

2CuII
5} 162·25 = 8192 482 {J = 1/2–35/2}: 0, 30, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 26, 16, 6, 1

a The maximum-sized block is in bold type; J = S + L—total angular momentum. The symbol → means a
simplification of the ring system into a smaller ring.

Magnetochemistry 2023, 9, x FOR PEER REVIEW 33 of 53 
 

 

1, catena-[MnII2MnIII2(dipic)6(H2O)4],  
dipic—dipicolinic acid (pyridine-2,6-

dicarboxylic acid) 

 
CCDC 921826,  

MnII-violet, MnIII-purple 

 

Topological functions 
II 0 0

III 0
(chain)

III
II

t
i

t

 
 
 =
 
 
 

T  

Hamiltonians 
ex

1 2 3 4

2 3

ˆ [ )

( )

t

i

H J S S S S

J S S

→ → → →

→ →

= − ⋅ + ⋅

− ⋅
 

Z
B A

1

B eff
1

ˆˆ

ˆ

N

z Az
A
N

z Az
A

H B g S

B g S

μ

μ

=

=

=

→




 

Fitting parameters: 
Ji = −1.12 cm–1; Jt = −0.72 cm–1; geff 
= 2.019; temperature-
independent term, χTIM = −2.45 
× 10–9 m3 mol–1; molecular-field 
correction, zj = −0.022 cm–1; 
discrepancy factors of the fit, 
R(χ) = 0.065; and R(M) = 0.076 

T/K

0 50 100 150 200 250 300

χ T
/C

0

0

10

20

30

40

B/T

0 1 2 3 4 5 6 7

M
m

ol
/(N

Aμ
B)

0

5

10

15

0 10 20 30 40

χ m
ol

/(1
0-6

 m
3 

m
ol

-1
)

0

5

10

15

20

T = 2.0 KB = 0.1 T

T = 4.6 K

 

spin
0 1 2 3 4 5 6 7 8 9 10

ε /
cm

-1

0

10

20

30

40

 
110 entries; ground state, S0 = 0 

Structure Assumptions Magnetic data and energy levels 
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dimensionless product function, χT/C0; magnetization per formula unit in Bohr magnetons. 
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The complex [MnII
2MnIII

2(HBuDea)2(BuDea)2(DMBA)4] (2) with a {MnII(MnIIIMnIII)MnII}
core is somehow analogous to 1, but with a different coupling path: the peripheral MnII centers
are coupled to both inner MnIII ones. The crystallographic Mn1 centers related to MnIII are
labeled as 1 and 1′, while the Mn2 centers corresponding to MnII are labeled as 2 and 2′ centers.
Then, Ji refers to the inner diad J(MnIII-MnIII) with separation, Mn1-Mn1 = 3.17 Å; Ja and Jb
correspond to two different pairs, MnII-MnIII, for separations Mn2-Mn1 = 3.24 and 3.41 Å,
respectively. The magnetic data are shown in Figure 3.
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Figure 3. Structure and magnetic functions for 2. According to [35]. 
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Figure 4. Structure and magnetic functions for 3. According to [36]. 

Figure 3. Structure and magnetic functions for 2. According to [35].

Two MnIII–O–MnIII superexchange pathways with a bond angle of 98◦ transmit an
exchange coupling of a ferromagnetic nature with positive Ji. The slightly positive Ja reflects
two superexchange pathways with MnIII–O–MnII bond angles of 89◦ and 107◦. The slightly
negative Jb relates to two superexchange pathways with MnIII–O–MnII bond angles of
103◦ and 109◦. A simplified model that merges Ja = Jb provides geff = 1.95, Ji = 25.0 cm−1,
Ja = 0.97 cm−1, χTIM = 9 × 10−9 m3 mol−1; R(χ) = 0.041, R(M) = 0.054. The spectrum of
energy levels for 2 is completely different from 1, as the ferromagnetic interaction between
the inner pair of MnIII centers, Ji >> 0, now dominates (Figure 3).

The complex catena-[MnII
4(abpt)4(µ1,1-N3)8(H2O)2] (3) is a typical chain of uniform

spins whose Hamiltonian contains two different coupling constants Jt (terminal) and Ji
(internal). The magnetic functions presented in Figure 4 were fitted assuming the ferro-
magnetic exchange; the ground state, S0 = Smax = 10, is also confirmed by the saturation of
the magnetization.
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Figure 3. Structure and magnetic functions for 2. According to [35]. 
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The complex [MnII
3CrIII

4(NCS)6(Htea)6] (4) with a {MnII
3CrIII

4} core has the shape
of a plaquet, where the trinuclear chain MnIII. . . MnIII. . . MnIII is decorated with two pairs
of CrIII centers. An appropriate Hamiltonian, together with the topological matrix for
the chosen numbering, is shown in Figure 5. The energy spectrum of 4 has an “irregular
structure” with a ground state of neither the lowest nor the highest spin.
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Figure 5. Structure and magnetic functions for 4. According to [37]. 
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Magnetic data for catena-[MnII(poxap)MnII(ac)4MnII(poxap)] (5) show that the magnetic
susceptibility gradually decreases upon cooling but then rises abruptly (Figure 6). A
simultaneous fitting of susceptibility and magnetization for 5 yielded J = −4.56 cm−1,
g = 1.96, D = −0.02 cm−1, and zj/hc = +0.054 cm−1. This is also the case for the irregular
energy spectrum.

The octanuclear complex [MnIII
8(µ3-O)4(µ-pz)8(µ-OMe)4(OMe)4] (6) with a {MnIII

8}
core has a complex architecture. The coupling path involves three exchange constants
(Figure 7).
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6.2. Fe(III) Complexes

The heterometallic complex tetrahedro@tetrahedro-[FeIII
4(µ4-O)4MnIII

4(L)8(DMF)4] ·2DMF
(7) contains an {FeIII

4MnIII
4} core. Its architecture is represented by the central FeIII

4 unit
arranged in a tetrahedron, which is further decorated by four peripheral MnIII centers (a
tetrahedron within a tetrahedron); this is somewhat similar to 5. There might be two distinct
coupling pathways Ja(FeIII-FeIII) and Jb(FeIII-MnIII) of an antiferromagnetic nature (Figure 8).
The averaged bond angles are Fe-O-Fe = 103◦ and Mn-O-Fe = 113◦.
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Figure 8. Structure and magnetic functions for 7. According to [40].

The polynuclear complex catena-[CoIII
6FeIII

6(HL)2(L)10(µ-Cl)2]·8DMF (8) contains a
magnetoactive {FeIII

6} chain decorated with six diamagnetic CoIII centers. This means
there are two coupling constants: Jt (terminal) and Ji (internal). The profile of the product
function suggests antiferromagnetic exchange (Figure 9).
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Figure 9. Structure and magnetic functions for 8. Compare item catena-[A6], s = 5/2, Jn(5×) in Table 
10. According to [41]. 

The [FeII(CN)6{FeIII(salpet)}6]Cl2 complex (9) contains a central unit {FeII(CN)6} with six 
{FeIII(salpet)}+ moieties attached. The FeII center in a strong crystal field is non-magnetic. 
Six SA = 5/2 centers provide the resulting spins, S = 0 through 15. However, 9 shows a 
thermally induced spin crossover, as shown in Figure 10, probably from three low-spin 
plus three high-spin states. The susceptibility upon cooling only increases and does not 
show the maximum typical of the S0 = 0 ground state. However, this could be masked by 
paramagnetic impurity because of S = 5/2 mononuclear fragments.  

  

Figure 9. Structure and magnetic functions for 8. Compare item catena-[A6], s = 5/2, Jn(5×) in Table 10.
According to [41].

The [FeII(CN)6{FeIII(salpet)}6]Cl2 complex (9) contains a central unit {FeII(CN)6} with
six {FeIII(salpet)}+ moieties attached. The FeII center in a strong crystal field is non-magnetic.
Six SA = 5/2 centers provide the resulting spins, S = 0 through 15. However, 9 shows a
thermally induced spin crossover, as shown in Figure 10, probably from three low-spin
plus three high-spin states. The susceptibility upon cooling only increases and does not
show the maximum typical of the S0 = 0 ground state. However, this could be masked by
paramagnetic impurity because of S = 5/2 mononuclear fragments.

There are three similar complexes with slightly modified ligands, L = La, Lb, and Lc,
of which [FeII(CN)6{FeIII(Lb)}6]Cl2·H2O (10b) is analyzed below. The core {FeIII

6FeII} of
the complex is identical to 9, but the complex is high-spin over the entire temperature
range (Figure 11). The first model considers fifteen J constants; the second considers twelve
Jc(cis)-constants and omits three J(trans).

The third model includes a single-center axial zero-field splitting parameter, D. Because
of D, the Hamiltonian yields matrix elements that are off-diagonal in the spin quantum
number, and the S-blocking of the total interaction matrix is not valid. To make the calcula-
tion feasible, a symmetry-adapted local basis set was generated using the spin permutation
symmetry of the spin Hamiltonian and the D6 point group of symmetry. Consequently, the
entire interaction matrix is divided according to irreducible representations into blocks A1
(K = 4291), A2 (K = 3535), B1 (K = 4145), B2 (K = 3605), E1 (K = 15,470), and E2 (K = 15,610).

The complex [FeIII
7O3(O2CPh)9(mda)3(H2O)] (11) was prepared and investigated in

depth elsewhere [44]. Its architecture suggests a combination of a ring and a star with
magnetic data indicating antiferromagnetic coupling. Magnetostructural correlations
(MSCs) predict that there are four coupling constants in play, Ja = −45.0, Jb = −12.6,
Jc = −6.2, and Jd = −30.0 cm−1 (for notation −2J between spins), yielding the ground state
S0 = 5/2. To confirm this prediction, a spin-Hamiltonian with empirical (MSC) coupling
constants (rescaled to −J notation) was worked out, and the predicted magnetic functions
are plotted in Figure 12. The course of the product function matches the experimental
findings [44]. The resulting energy levels confirm the ground state, S0 = 5/2 (not 1/2),
separated from the lowest excited state, S = 7/2, by ∆E = 157 cm−1
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The complex [FeIII
8(µ4-O)4(µ-pz)12Cl4] (12) has a tetrahedro@tetrahedro-{FeIII

8} core.
Susceptibility data are shown in Figure 13 and indicate massive antiferromagnetic coupling.
The topological function suitable for the data fitting contains two coupling constants, Ji
(inner tetrahedron, 6×) and Jo (outer 12×). There is an obstacle—the large size of the largest
block n(S = 5) = 16576. The problem of diagonalization of such matrices was avoided by
using the symmetry point group, D2.

The fitting procedure provided the coupling constants Ji = −2.1, Jo = −50.6 cm−1,
and g = 2.0 (fixed); the energy spectrum is drawn in Figure 13. Only a very limited part
of the energy spectrum is thermally populated; this explains the temperature evolution
of the product function. The small value of Ji refers to six coupling pathways inside the
inner tetrahedron with an average angle of 12 bonds: Fe-O-Fe = 96.7◦. The bond angles of
Fei-O-Feo average 119.7◦, rationalizing the much more negative Jo.

The complex cyclo-[FeIII
10(bdtbpza)10(MeO)20] (13) is a typical ring system (wheel) that

has only one J-constant between neighboring members. Its magnetic functions are presented
in Figure 14, indicating an exchange coupling of an antiferromagnetic nature. Fitting 10-
membered FeIII systems is an unrealistic task because there are M = 4,395,456 zero-field
states, and the biggest S-block has a dimension of n(S = 5) = 484,155. Therefore, we restricted
ourselves to the cyclo-{FeIII

8} model with M = 135,954 and n(S = 5) = 16,576, hoping it would
work satisfactorily. The construction of the topological matrix and the spin-Hamiltonian are
straightforward; the fitting procedure yielded J =−8.58 cm−1, g = 2.0; xPI = 0.0049. For a more
simplified cyclo-{FeIII

6} model with M = 4332 and n(S = 4) = 609, the calculated parameters
were J = −8.64 cm−1, xPI = 0.0064. The energy levels for a such model are displayed in
Figure 14.
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Figure 11. Structure and magnetic functions for 10. According to [43]. 

The complex [FeIII7O3(O2CPh)9(mda)3(H2O)] (11) was prepared and investigated in 
depth elsewhere [44]. Its architecture suggests a combination of a ring and a star with 
magnetic data indicating antiferromagnetic coupling. Magnetostructural correlations 
(MSCs) predict that there are four coupling constants in play, Ja = −45.0, Jb = −12.6, Jc = −6.2, 
and Jd = −30.0 cm−1 (for notation −2J between spins), yielding the ground state S0 = 5/2. To 
confirm this prediction, a spin-Hamiltonian with empirical (MSC) coupling constants 
(rescaled to −J notation) was worked out, and the predicted magnetic functions are plotted 
in Figure 12. The course of the product function matches the experimental findings [44]. 
The resulting energy levels confirm the ground state, S0 = 5/2 (not 1/2), separated from the 
lowest excited state, S = 7/2, by ΔE = 157 cm−1  

Figure 11. Structure and magnetic functions for 10. According to [43].

6.3. Co(II) Complexes

The complex cyclo-[CoII
6CoIII(thmp)2(acac)6(ada)3] (14) with a {CoII

6CoIII} core is a
ring system indicating only a single exchange coupling constant. However, there is some
asymmetry in the Co. . . Co separations (3.034, 3.145, 3.032, 3.169, 3.174, 3.038 Å), and
therefore, two different J-constants were considered (Figure 15).
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Figure 12. Structure and magnetic functions for 11. According to [44]. 

The complex [FeIII8(µ4-O)4(µ-pz)12Cl4] (12) has a tetrahedro@tetrahedro-{FeIII8} core. 
Susceptibility data are shown in Figure 13 and indicate massive antiferromagnetic 
coupling. The topological function suitable for the data fitting contains two coupling 
constants, Ji (inner tetrahedron, 6×) and Jo (outer 12×). There is an obstacle—the large size 
of the largest block n(S = 5) = 16576. The problem of diagonalization of such matrices was 
avoided by using the symmetry point group, D2. 

The fitting procedure provided the coupling constants Ji = −2.1, Jo = −50.6 cm−1, and g 
= 2.0 (fixed); the energy spectrum is drawn in Figure 13. Only a very limited part of the 
energy spectrum is thermally populated; this explains the temperature evolution of the 
product function. The small value of Ji refers to six coupling pathways inside the inner 
tetrahedron with an average angle of 12 bonds: Fe-O-Fe = 96.7°. The bond angles of Fei-O-
Feo average 119.7°, rationalizing the much more negative Jo.  

The complex cyclo-[FeIII10(bdtbpza)10(MeO)20] (13) is a typical ring system (wheel) that 
has only one J-constant between neighboring members. Its magnetic functions are 
presented in Figure 14, indicating an exchange coupling of an antiferromagnetic nature. 
Fitting 10-membered FeIII systems is an unrealistic task because there are M = 4,395,456 
zero-field states, and the biggest S-block has a dimension of n(S = 5) = 484,155. Therefore, 
we restricted ourselves to the cyclo-{FeIII8} model with M = 135,954 and n(S = 5) = 16,576, 
hoping it would work satisfactorily. The construction of the topological matrix and the 
spin-Hamiltonian are straightforward; the fitting procedure yielded J = −8.58 cm−1, g = 2.0; 
xPI = 0.0049. For a more simplified cyclo-{FeIII6} model with M = 4332 and n(S = 4) = 609, the 
calculated parameters were J = −8.64 cm−1, xPI = 0.0064. The energy levels for a such model 
are displayed in Figure 14.  

Figure 12. Structure and magnetic functions for 11. According to [44].
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Figure 13. Structure and magnetic functions for 12. According to [45]. 
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Figure 14. Structure and magnetic functions for 13. According to [46]. 
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Figure 13. Structure and magnetic functions for 12. According to [45]. 
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Figure 14. Structure and magnetic functions for 13. According to [46]. Figure 14. Structure and magnetic functions for 13. According to [46].

It is well known that single-ion magnetic anisotropy plays an important role in hexaco-
ordinate Co(II) complexes. This is expressed by the axial zero-field splitting parameter, D,
and was involved in the spin Hamiltonian for 14 (see Equation (11)). The magnetic data are
shown in Figure 15, and the fitting procedure yielded Ja = 0.95, Jb = 5.11 cm−1, g = 2.65, and
D = 79 cm−1. The modeled energy levels for D = 0 are plotted in Figure 15. (The D-value
makes the spin no longer a good quantum number, and the classification of zero-field states
using spin becomes meaningless).

The complex bis-cyclo-[CoII
11CoIII

2(thmp)4(Me3CCOO)4(acac)6(OH)4(H2O)4] (Me3CCOO)2·
H2O (15) with a {CoII

11CoIII
2} core is the result of the fusion of two ring systems. The magnetic

functions are shown in Figure 16. Treating the eleven S = 3/2 centers is a serious problem
because there are now K = 4,194,304 energy levels in play. The task was simplified by considering
a ring of only seven cyclo-[A7] centers with K = 16,384 levels in the basis of uncoupled functions.
The use of permutation symmetry made it possible to divide the entire matrix into subblocks.
A new set of symmetry-adapted spin basis sets was created using the D7 point group. The
total interaction matrix is split into submatrices A1 (N = 1300), A2 (N = 1044), E1 (N = 4680),
E2 (N = 4680), and E3 (N = 4680). Then, a fitting procedure based on both temperature and
field-dependent magnetic data resulted in J = 3.34 cm−1, D = 63.8 cm−1, and g = 2.64. The
increased value of the g-factor relative to the free-electron, ge = 2.0, reflects the presence of the
orbital angular momentum; it is manifested by a magnetization per formula unit that exceeds
the value of M1 ~ 21 µB. The energy levels in the approximation of the [Co7] ring are drawn in
Figure 16.
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Figure 15. Structure and magnetic functions for 14. According to [47]. 
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(Me3CCOO)2·H2O (15) with a {CoII11CoIII2} core is the result of the fusion of two ring 
systems. The magnetic functions are shown in Figure 16. Treating the eleven S = 3/2 centers 
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Figure 15. Structure and magnetic functions for 14. According to [47].

The complex [CoII
9CoIII

3(µ3-O)3-(µ1,1,1-N3)(µ1,1-N3)3(µ3-L)9(µ-L)6](ClO4)2·H3tea·9.5H2O
(16) contains a {CoII

9CoIII
3} core and it has the architecture of a plaquet. The magnetic data are

plotted in Figure 17, which shows the hook at the lowest temperature of the product function.
Three inner CoII centers forming a triangle are coupled by double bridges with angles i{90.6(N),
103.5(O)}, and the inner-outer paths include double bridges of o{100.2, 101.2} and o{94.1, 104.5}.
S-blocking offered the highest matrix to be diagonalized at a size of n(S = 7/2) = 5300, and the
fitting procedure yielded Ji =−10.3 cm−1, Jo = +0.98 cm−1, and g = 2.58. The zero-field splitting
was omitted, which prevents a reliable reconstruction of the low-temperature data.

6.4. Ln(III) Complexes

Apart from Gd(III), lanthanide complexes are typically known as highly anisotropic
systems, exhibiting large g-factor differences (gz—gxy). Because of the addition of spin
and angular momenta, the total angular momentum, J = L + S, is in play, giving rise to
spin–orbit multiplets. The crystal field is a minor effect because the f-orbitals are effectively
screened against point charges generated by the ligands. Stevens operators, Ôq

k , however,
imitate the effect of a crystal field, where the contributions cover several Bq

kÔq
k members

(k—tensor rank, q—component). These operators cause J-multiplets to be split and mixed
into zero-field-slitting levels. The omission of these factors has an important effect on the
reconstruction of the magnetization at low temperatures: the calculated magnetization is
much higher than the experimental data.
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Figure 16. Structure and magnetic functions for 15. According to [47]. 
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function. Three inner CoII centers forming a triangle are coupled by double bridges with 
angles i{90.6(N), 103.5(O)}, and the inner-outer paths include double bridges of o{100.2, 
101.2} and o{94.1, 104.5}. S-blocking offered the highest matrix to be diagonalized at a size 
of n(S = 7/2) = 5300, and the fitting procedure yielded Ji = −10.3 cm−1, Jo = +0.98 cm−1, and g 
= 2.58. The zero-field splitting was omitted, which prevents a reliable reconstruction of the 
low-temperature data.  
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Figure 17. Structure and magnetic functions for 16. According to [48]. 
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systems, exhibiting large g-factor differences (gz—gxy). Because of the addition of spin and 
angular momenta, the total angular momentum, J = L + S, is in play, giving rise to spin–
orbit multiplets. The crystal field is a minor effect because the f-orbitals are effectively 
screened against point charges generated by the ligands. Stevens operators, ˆ q
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(k—tensor rank, q—component). These operators cause J-multiplets to be split and mixed 
into zero-field-slitting levels. The omission of these factors has an important effect on the 
reconstruction of the magnetization at low temperatures: the calculated magnetization is 
much higher than the experimental data.  

The complex triangulo-[ErIII3Cl(L)3(OH)2(H2O)5]Cl3 (17) has an {ErIII3} core referring to 
an isosceles triangle (there is one additional Er-Cl bond). The Er-Er distances are 3.505, 
3.509, and 3.478 Å, indicating two coupling constants. The bond angles along the path 
a{97, 99} and along b{95, 98} deg predict that Ja and Jb will be small. The product function 
gradually decreases upon cooling, reflecting the prevailing antiferromagnetic exchange 
(Figure 18). The susceptibility data were fitted using a Hamiltonian that includes the total 
angular momentum, J = S + L, instead of the net spin, where each Er(III) center offers JA = 
15/2 (the free-atom multiplet is 4I15/2 with gJ = 6/5). The molecular J-value varies between 
1/2 and 45/2, yielding an irregular energy spectrum; the ground state is J0 = 21/2 
(Figure 18). When only the ground state is populated at a sufficiently low temperature, 
the estimated magnetization will be M0 ~ gJ0 ~ 12.3 µB.  

Figure 17. Structure and magnetic functions for 16. According to [48].
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The complex triangulo-[ErIII
3Cl(L)3(OH)2(H2O)5]Cl3 (17) has an {ErIII

3} core referring
to an isosceles triangle (there is one additional Er-Cl bond). The Er-Er distances are 3.505,
3.509, and 3.478 Å, indicating two coupling constants. The bond angles along the path
a{97, 99} and along b{95, 98} deg predict that Ja and Jb will be small. The product function
gradually decreases upon cooling, reflecting the prevailing antiferromagnetic exchange
(Figure 18). The susceptibility data were fitted using a Hamiltonian that includes the total
angular momentum, J = S + L, instead of the net spin, where each Er(III) center offers
JA = 15/2 (the free-atom multiplet is 4I15/2 with gJ = 6/5). The molecular J-value varies
between 1/2 and 45/2, yielding an irregular energy spectrum; the ground state is J0 = 21/2
(Figure 18). When only the ground state is populated at a sufficiently low temperature, the
estimated magnetization will be M0 ~ gJ0 ~ 12.3 µB.
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topologically analogous to 2 (rhombus). It has three coupling paths with Ja{107, 112} and 
Ji{109} for an inner diad and Jc{100, 99, 80-Cl}, where data in parentheses refer to bond 
angles. Upon cooling, the product function remains almost constant and then decreases 
(Figure 19). The energy spectrum ranges from Jmin = 0 to Jmax = 4·(15/2) = 60/2; the ground 
state is J0 = 0 (Figure 19). The leading coupling is an inner diad, Ji < 0, and is responsible 
for the overall antiferromagnetic exchange. This is the main difference compared with the 
2a with an analogous topology.  
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The tetranuclear complex [DyIII
4(L)4(µ2-OH)2Cl4]Cl2·EtOH (18) with a {DyIII

4} core is
topologically analogous to 2 (rhombus). It has three coupling paths with Ja{107, 112} and
Ji{109} for an inner diad and Jc{100, 99, 80-Cl}, where data in parentheses refer to bond
angles. Upon cooling, the product function remains almost constant and then decreases
(Figure 19). The energy spectrum ranges from Jmin = 0 to Jmax = 4·(15/2) = 60/2; the ground
state is J0 = 0 (Figure 19). The leading coupling is an inner diad, Ji < 0, and is responsible
for the overall antiferromagnetic exchange. This is the main difference compared with the
2a with an analogous topology.
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four-membered ring with a single J-constant. The Dy-O-Dy bond angles are 110—115°, so 
a negative J is expected. The magnetic data are shown in Figure 20; they were 
reconstructed with J = −0.03 cm−1 [51]. The fitting procedure yielded J = −0.041 cm−1, g = 
1.27.  
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The complex quadro-[DyIII
4(HL)4(H2L)2(NO3)4](NO3)4·4MeOH (19) can be considered

a four-membered ring with a single J-constant. The Dy-O-Dy bond angles are 110—115◦, so
a negative J is expected. The magnetic data are shown in Figure 20; they were reconstructed
with J = −0.03 cm−1 [51]. The fitting procedure yielded J = −0.041 cm−1, g = 1.27.
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The heteronuclear complex [(H2O)6DyIII
2(µ2-L)2(µ3-O)4CuII

5(µ2-Cl)2] (20) with a pla-
quet architecture contains two DyIII centers that are non-coordinated: two tetracoordinate
CuII, two pentacoordinate CuII, and one hexacoordinate CuII center. The magnetic func-
tions are shown in Figure 21 with an unusual course of product function: it gradually
decreases during cooling but then rises sharply. The width of the energy spectrum is
J = 1/2 to 35/2, and the ground state is J0 = 25/2. The irregular shape of the energy spec-
trum causes the product function to increase upon cooling since the magnetically productive
ground state is then increasingly more populated; this is regardless of antiferromagnetic
exchange (Ja and Jb < 0) when one would (erroneously) expect J0 = 1/2.

Magnetochemistry 2023, 9, x FOR PEER REVIEW 49 of 53 
 

 

20, [(H2O)6DyIII2(μ2-L)2(μ3-O)4 

CuII5(μ2-Cl)2], 
L ← 5-bromo-3-

methoxysalicylaldehyde + 2-
hydroxy-1,3-propandiamine 

CCDC 2160393,  
DyIII—gold,  
CuII—brown 

Topological matrix 
(plaquet)
Dy 0 0 0

Cu 0 0 0
Cu 0 0 0

Cu
Cu

Cu
Dy

a a a
b b

b
b b a

b a
a

=

 
 
 
 
 
 
 
 
 
 
 

T

 
Fitted parameters: 
Ja(Dy-Cu) = –2.1,  

Jb(Cu-Cu) = –4.6 cm-1,  
geff = 1.23; 

R(χ) = 0.024, R(M) = 0.10 
Approximation: 

gDy = gCu = geff 

T/K
0 50 100 150 200 250 300

χ T
/ C

0

0

20

40

60

80

B/T
0 1 2 3 4 5 6 7

M
m

ol
/N

Aμ
B

0

5

10

15

0 10 20 30 40 50

χ m
ol

/(1
0-6

 m
3 
m

ol
-1

)

0

50

100

150

200

T = 2.0 KB = 0.1 T

 

Molecular J
0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

En
er

gy
 le

ve
ls

/c
m

-1

0

20

40

60

80

100

 
482 entries; ground state, J0 = 25/2 

Structure Assumptions Magnetic data and energy levels 
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7. Conclusions 
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any combination of pairwise interactions between the constituting spins (or alternatively, 
the total angular momenta, J). Spins at the centers can be of any size (for example, S = 5/2 
or J = 15/2), non-uniform, and set in any order. The matrix elements of the spin-
Hamiltonian are taken into a reduced form (free of projections of angular momenta) and 
then decoupled into the elementary reduced matrix elements using 9j-symbols (numbers 
that couple four angular momenta). The full set of intermediate quantum numbers is 
contained in the coupling history matrix (CHM); the matrices of the operator ranks (ORs) 
and the intermediate operator ranks (IORs) are evaluated in an automated way with no 
assistance from the user. The rate-limiting step is the diagonalization of the (symmetric) 
blocks of the Hamiltonian matrix, although only the eigenvalues are required. For 
example, for an {FeIII8} system with spins with SA = 5/2, the largest block for S = 5 has a 
dimension of 16,576.  

The user’s task is to set 
• A number of magnetic centers, N, and spins, SA, on individual centers in any order 
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• The topological matrix T(A,B), which defines the coupling path; this contains a trial 

set of exchange-coupling constants, J(A,B), that will be optimized; their number is 
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• The value of the g-factor, which must be uniform (geff), to correctly exploit the 
blocking of the Hamiltonian matrix according to molecular spin.  
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7. Conclusions

This theoretical work outlines a general method of handling exchange coupling in
polynuclear spin systems. The method avoids the case-by-case coupling of the Kambe
method, which works in many cases but also fails in many cases. The method uses a
whole apparatus of irreducible tensor operators. The exchange Hamiltonian can include or
skip any combination of pairwise interactions between the constituting spins (or alterna-
tively, the total angular momenta, J). Spins at the centers can be of any size (for example,
S = 5/2 or J = 15/2), non-uniform, and set in any order. The matrix elements of the spin-
Hamiltonian are taken into a reduced form (free of projections of angular momenta) and
then decoupled into the elementary reduced matrix elements using 9j-symbols (numbers
that couple four angular momenta). The full set of intermediate quantum numbers is
contained in the coupling history matrix (CHM); the matrices of the operator ranks (ORs)
and the intermediate operator ranks (IORs) are evaluated in an automated way with no
assistance from the user. The rate-limiting step is the diagonalization of the (symmetric)
blocks of the Hamiltonian matrix, although only the eigenvalues are required. For example,
for an {FeIII

8} system with spins with SA = 5/2, the largest block for S = 5 has a dimension
of 16,576.
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The user’s task is to set

• A number of magnetic centers, N, and spins, SA, on individual centers in any order
and size;

• The topological matrix T(A,B), which defines the coupling path; this contains a trial
set of exchange-coupling constants, J(A,B), that will be optimized; their number is less
or equal to N(N—1)/2;

• The value of the g-factor, which must be uniform (geff), to correctly exploit the blocking
of the Hamiltonian matrix according to molecular spin.

The zero-field energy levels, magnetic susceptibility (temperature dependence). and
magnetization (field dependence) are obtained as outputs and processed by an optimiza-
tion procedure to obtain the minimum error function, F(Mo, Mc; χo, χc), composed of
observed (o) and calculated (c) magnetic functions. Susceptibility and magnetization data
are optimized simultaneously. This is a very strict requirement: sometimes excellent fits are
obtained only for the susceptibility and magnetization data.

In practical applications, the method is limited only by the memory and speed of the
user’s computer. The inclusion of the non-uniform g-factors (gA), zero-field splitting (DA,
EA), asymmetric exchange (DAB, EAB), and antisymmetric exchange (aAB) cause the key
advantage of the blocking to collapse.

During the modeling of spin chains/rings/convex polyhedrons, several important
findings were revealed.

One would expect that, for antiferromagnetic coupling, the ground states should either
be S0 = 0 or 1

2 . This is not true in general, as there are systems that have an irregular energy
spectrum where the ground state falls between Smin and Smax. This is always the case for
star-like architectures and odd catena-[AN] chains for N = 3, 5, 7, 9, . . . S = 3/2, and 5/2.

For the antiferromagnetically coupled cyclo-[AN] system, the ground state is four-fold
degenerate (two Kramers doublets with S = 1/2) if Ns is a half-integer. If Ns is an integer,
the ground state is non-degenerate (S = 0).

For cyclo-[A9, s = 1/2], the ground state is doubly degenerate S0 = 1/2 (twice). The
ground state of catena-[A9, s = 1/2] is S0 = 1/2 (×1), and the first excited state, S1 = 1/2
(×1), lies at an energy of −0.75J.

Applications to real systems confirm that the method is applicable to homonuclear
systems with uniform g-factors and systems with similar g-factors. For polynuclear lan-
thanides, the susceptibility can be recovered satisfactorily; however, the magnetization is
overestimated since the asymmetry terms provided by the Stevens operators are missing.
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31. Boča, R. Zero-field splitting in metal complexes. Coord. Chem. Rev. 2004, 248, 757–815. [CrossRef]
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35. Reis Conceição, N.; Nesterova, O.V.; Rajnák, C.; Boča, R.; Pombeiro, A.J.L.; Guedes da Silva, M.F.C.; Nesterov, D.S. New members
of the polynuclear manganese family: MnII

2MnIII
2 single-molecule magnets and Mn II3Mn III8 antiferromagnetic complexes.

Synthesis and magnetostructural correlations. Dalton Trans. 2020, 49, 13970–13985. [CrossRef]
36. Meng, Z.-S.; Yun, L.; Zhang, W.-X.; Hong, C.-G.; Herchel, R.; Ou, Y.-C.; Leng, J.-D.; Peng, M.-X.; Lin, Z.-J.; Tong, M.-L. Reactivity

of 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, structures and magnetic properties of polynuclear and polymeric Mn(II), Cu(II)
and Cd(II) complexes. Dalton Trans. 2009, 10284–10295. [CrossRef] [PubMed]

37. Semenaka, V.V.; Nesterova, O.V.; Kokozay, V.N.; Zybatyuk, R.I.; Shishkin, O.V.; Boča, R.; Shevchenkod, D.V.; Huang, P.; Styring, S.
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